JPH0747295A - Method for pulverizing method and device - Google Patents

Method for pulverizing method and device

Info

Publication number
JPH0747295A
JPH0747295A JP19655893A JP19655893A JPH0747295A JP H0747295 A JPH0747295 A JP H0747295A JP 19655893 A JP19655893 A JP 19655893A JP 19655893 A JP19655893 A JP 19655893A JP H0747295 A JPH0747295 A JP H0747295A
Authority
JP
Japan
Prior art keywords
particles
rotor
low temperature
gas
hollow container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19655893A
Other languages
Japanese (ja)
Inventor
Torao Tazo
寅夫 田雑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP19655893A priority Critical patent/JPH0747295A/en
Publication of JPH0747295A publication Critical patent/JPH0747295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crushing And Pulverization Processes (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

PURPOSE:To provide a method and a device for pulverizing resin of low melting point to produce fine particles and enabling throughput to be increased and necessary motive power to be reduced. CONSTITUTION:A pulverizer 10 is constituted of a rotor 12 rotated around an axial center in a hollow vessel 11, a stator 14 surrounding the circumference of the rotor, a low temperature device 16 for holding the inside of the hollow vessel at low temperature and a particle feeder 18 which supplies particles A for pulverizing together with gas being in a state of low temperature and decompression to the vicinity of the axial center of the rotor. Furthermore, the pulverizer 10 is constituted of a suction separating device 20 and a classification circuiting device 30. The suction separating device 20 sucks particles pulverized by collision together with gas to the outside of the hollow vessel and holds the inside of the hollow vessel in the state of decompression and separates the particles contained in the gas. The classification circulating device 30 classifies the separated particles into coarse grains L and fine particles S and mixes the coarse rains with particles for pulverizing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉砕方法及び装置に係
わり、更に詳しくは高速回転式の粉砕方法及び装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crushing method and apparatus, and more particularly to a high speed rotary crushing method and apparatus.

【0002】[0002]

【従来の技術】複写機用のトナー等の樹脂を粉砕するに
は、従来からエアージェットミルと高速回転ミル(高速
回転式粉砕装置)が用いられている。エアージェットミ
ルは、200m/s以上の高速衝撃が可能であり、比較
的微細粒子を製造することができるが、処理能力が低く
所要動力が大きいため大量生産には適さない問題点があ
った。これに対して、高速回転ミルは、図4に例示する
ように、中空容器1内に軸心を中心に回転するロータ2
と、ロータの周りを取り囲むステータ3とを備え、ロー
タ2を高速で回転し、ロータ2の軸心付近にガスと共に
粉砕用粒子4を供給し、粒子をロータ2の回転によりス
テータ3に衝突させ、衝突により粉砕された粒子をガス
と共に外部に取り出すものである。高速回転ミルは、処
理能力が高く所要動力が小さいため、大量生産に適して
いるが、粒子の衝突速度を150m/s以上にすること
が困難であり、8〜10μm程度の微粒子しか製造でき
ない問題点があった。従って、更に微細な粒子(例えば
5μm以下)を効率良く製造できる粉砕装置が従来から
要望されていた。
2. Description of the Related Art Conventionally, an air jet mill and a high-speed rotary mill (high-speed rotary pulverizer) have been used for pulverizing a resin such as a toner for a copying machine. The air jet mill is capable of high-speed impact of 200 m / s or more and can produce relatively fine particles, but has a problem that it is not suitable for mass production because of its low processing capacity and large power requirements. On the other hand, the high-speed rotary mill is, as illustrated in FIG. 4, a rotor 2 that rotates around an axis in a hollow container 1.
And a stator 3 surrounding the rotor, the rotor 2 is rotated at high speed, the grinding particles 4 are supplied together with the gas near the axis of the rotor 2, and the particles are made to collide with the stator 3 by the rotation of the rotor 2. The particles crushed by collision are taken out together with the gas. The high-speed rotary mill is suitable for mass production because it has a high processing capacity and a small required power, but it is difficult to make the particle collision speed 150 m / s or more, and it is possible to produce only particles of about 8 to 10 μm. There was a point. Therefore, there has been a demand for a crushing device capable of efficiently producing finer particles (for example, 5 μm or less).

【0003】かかる要望を満たすために、ケーシングを
冷却しながら粉砕する高速回転式粉砕装置(特公昭64
−100号公報)、減圧した真空チャンバー内で粉砕す
る真空高速衝撃粉砕装置(特開昭1−107854号公
報)、及び気流により粉砕装置の液状冷媒と被粉砕物と
の熱交換を行い低温で気流粉砕する低温気流式粉砕装置
(特公平1−16539号公報)等が提案されていた。
In order to meet such demands, a high-speed rotary crusher for crushing a casing while cooling it (Japanese Patent Publication No.
-100), a vacuum high-speed impact crusher for crushing in a decompressed vacuum chamber (JP-A-1-107854), and heat exchange between a liquid refrigerant of the crusher and an object to be crushed by an air stream at low temperature. A low-temperature airflow-type crushing device for airflow crushing (Japanese Patent Publication No. 1-16539) has been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、特公昭64−
100号の粉砕装置では、ケーシングを冷却しても粒子
が十分に冷却されず、また、冷却により空気の粘性が大
きくなるので、粒子の衝突速度が低下し、従来と同様の
8〜10μm程度の微粒子しか製造できなかった。ま
た、特開昭1−107854号の粉砕装置では、粉砕に
より被粉砕物が加熱されるため、トナー等の融点の低い
樹脂の粉砕には適用できない問題点があった。更に、特
公平1−16539号の低温気流式粉砕装置も、粒径が
8〜10μm程度で限界であり、かつ所要動力が大きい
問題点があった。
However, Japanese Patent Publication No. 64-64
In the No. 100 pulverizer, the particles are not sufficiently cooled even when the casing is cooled, and the viscosity of the air is increased by the cooling, so that the collision speed of the particles is reduced, and the particle size is about 8 to 10 μm as in the conventional case. Only fine particles could be produced. Further, the crushing apparatus of JP-A-1-107854 has a problem that it cannot be applied to the crushing of a resin having a low melting point such as a toner because the crushed object is heated by the crushing. Further, the low temperature air flow type pulverizer of Japanese Examined Patent Publication No. 1-16539 has a problem that the particle size is limited to about 8 to 10 μm and the required power is large.

【0005】本発明は、かかる問題点を解決するために
創案されたものである。すなわち、本発明の目的は、融
点の低い樹脂に適用でき、微細な粒子を製造することが
でき、処理能力を高め所要動力を低減できる粉砕方法及
び装置を提供することにある。
The present invention was devised to solve such problems. That is, it is an object of the present invention to provide a pulverizing method and apparatus which can be applied to a resin having a low melting point, can produce fine particles, and can enhance processing capacity and reduce required power.

【0006】[0006]

【課題を解決するための手段】本発明によれば、中空容
器内に軸心を中心に回転するロータと、該ロータの周り
を取り囲むステータとを備え、中空容器内を低温かつ減
圧状態に保持し、前記ロータを高速で回転し、該ロータ
の軸心付近に低温かつ減圧状態のガスと共に粉砕用粒子
を供給し、該粒子をロータの回転により前記ステータに
衝突させ、衝突により粉砕された粒子をガスと共に中空
容器の外部に取り出し、ガス中の粒子を粗粒と微粒に分
級し、分級された粗粒を前記粉砕用粒子に混入する、こ
とを特徴とする粉砕方法が提供される。
According to the present invention, a hollow container is provided with a rotor that rotates about an axis and a stator that surrounds the rotor, and the hollow container is maintained at a low temperature and reduced pressure. Then, the rotor is rotated at a high speed, particles for grinding are supplied together with a gas in a low temperature and reduced pressure in the vicinity of the axial center of the rotor, the particles are made to collide with the stator by the rotation of the rotor, and the particles are ground by the collision. Is taken out of the hollow container together with the gas, the particles in the gas are classified into coarse particles and fine particles, and the classified coarse particles are mixed with the particles for crushing.

【0007】本発明の好ましい実施例によれば、前記ロ
ータの周速は40m/s以上であり、前記低温は−20
℃以下であり、前記減圧は300torr以下である。
更に、本発明によれば、中空容器内に軸心を中心に回転
するロータと、該ロータの周りを取り囲むステータと、
前記中空容器内を低温に保持する低温装置と、前記ロー
タの軸心付近に低温かつ減圧状態のガスと共に粉砕用粒
子を供給する粒子供給装置と、からなる粉砕器と、衝突
により粉砕された粒子をガスと共に中空容器の外部に吸
引して前記中空容器内を減圧状態に保持し、かつガス中
の粒子を分離する吸引分離装置と、分離した粒子を粗粒
と微粒に分級し、粗粒を粉砕用粒子に混入させる分級循
環装置とからなる粉砕装置が提供される。
According to a preferred embodiment of the present invention, the peripheral speed of the rotor is 40 m / s or more, and the low temperature is -20.
C. or lower, and the reduced pressure is 300 torr or lower.
Furthermore, according to the present invention, a rotor that rotates about an axis in a hollow container, and a stator that surrounds the rotor,
A crusher consisting of a low temperature device for holding the hollow container at a low temperature, a particle supply device for supplying crushed particles together with a gas in a low temperature and reduced pressure in the vicinity of the axial center of the rotor, and particles crushed by collision Is suctioned with the gas to the outside of the hollow container to hold the inside of the hollow container in a depressurized state, and a suction separation device for separating the particles in the gas, and the separated particles are classified into coarse particles and fine particles. There is provided a crushing device including a classifying and circulating device for mixing the particles for crushing.

【0008】[0008]

【作用】上記本発明の方法及び装置によれば、中空容器
内が低温かつ減圧状態に保持され、粉砕用粒子が高速で
回転するロータの軸心付近に低温かつ減圧状態のガスと
共に供給されるので、減圧により粒子の空気抵抗が減少
し、小さい所要動力でロータをより高速に回転でき、か
つ粒子が気流に乗って逃げるのを防ぎ、相対衝撃速度の
低下を軽減することができる。また、併せて低温により
樹脂の衝撃抵抗を低減することができる。従って、高速
回転式粉砕装置により粒子を従来以上の高速(例えば2
00m/s以上)でステータ又はロータに衝突させるこ
とができ、この高速衝撃により微細な粒子を製造するこ
とができる。また、低温で粉砕するため融点の低い樹脂
に適用することができる。更に、空気抵抗の減少によ
り、従来以上に処理能力を高めかつ所要動力を低減する
ことができる。
According to the above-described method and apparatus of the present invention, the inside of the hollow container is kept at a low temperature and a reduced pressure, and the grinding particles are supplied together with the gas at a low temperature and a reduced pressure in the vicinity of the axis of the rotor that rotates at high speed. Therefore, the air resistance of the particles is reduced by the reduced pressure, the rotor can be rotated at a higher speed with a small required power, and the particles are prevented from escaping along with the air flow, and the decrease in the relative impact velocity can be reduced. In addition, the impact resistance of the resin can be reduced due to the low temperature. Therefore, a high-speed rotary pulverizer is used to remove particles at a higher speed (for example, 2
00 m / s or more), and the fine particles can be produced by this high-speed impact. Further, since it is pulverized at a low temperature, it can be applied to a resin having a low melting point. Furthermore, due to the reduction in air resistance, the processing capacity can be increased and the required power can be reduced more than ever before.

【0009】[0009]

【実施例】以下、本発明の好ましい実施例を図面を参照
して説明する。図1は本発明による粉砕装置の全体構成
図である。この図において、粉砕装置は、粉砕器10、
吸引分離装置20、及び分級循環装置30とからなる。
粉砕器10は、中空容器11内に軸心を中心に回転する
ロータ12と、ロータ12の周りを取り囲むステータ1
4と、中空容器12内を低温に保持する低温装置16
と、ロータ12の軸心付近に低温かつ減圧状態のガスと
共に粉砕用粒子Aを供給する粒子供給装置18と、から
なる。低温装置16は、例えば中空容器12に設けられ
た冷媒用ジャケット(図示せず)とこれに冷媒(例えば
液体窒素、液化炭酸ガス)を供給する冷媒供給装置とか
らなる。粒子供給装置18は、例えば仕切弁或いはスク
リュウフィーダからなり、中空容器12の内部を減圧状
態に保持したまま、粉砕用粒子Aを内部に供給できるよ
うになっている。ロータ12の周速は40m/s以上で
あり、中空容器12の温度は−20℃以下であるのがよ
い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an overall configuration diagram of a crushing device according to the present invention. In this figure, the crusher is a crusher 10,
The suction / separation device 20 and the classification / circulation device 30 are included.
The crusher 10 includes a rotor 12 that rotates around an axis in a hollow container 11, and a stator 1 that surrounds the rotor 12.
4 and a low temperature device 16 for keeping the inside of the hollow container 12 at a low temperature
And a particle supply device 18 for supplying the particles A for grinding together with the gas in a low temperature and reduced pressure in the vicinity of the axis of the rotor 12. The low temperature device 16 includes, for example, a refrigerant jacket (not shown) provided in the hollow container 12 and a refrigerant supply device that supplies a refrigerant (for example, liquid nitrogen or liquefied carbon dioxide gas) to the jacket. The particle supply device 18 is composed of, for example, a sluice valve or a screw feeder, and is capable of supplying the grinding particles A to the inside while keeping the inside of the hollow container 12 in a depressurized state. The peripheral speed of the rotor 12 is 40 m / s or more, and the temperature of the hollow container 12 is preferably -20 ° C or less.

【0010】吸引分離装置20は、衝突により粉砕され
た粒子をガスと共に中空容器11の外部に吸引して中空
容器11内を減圧状態に保持し、かつガス中の粒子を分
離するようになっている。吸引分離装置20は、真空ポ
ンプ21、ブロア22、バグフィルタ23、及び仕切弁
24、25とからなる。本実施例では、吸引分離装置2
0は、真空ポンプ21によりバルブ24を介して粒子を
ガスと共に中空容器11の外部に吸引し、バグフィルタ
23で粒子を分離する吸引分離ライン26と、ブロア2
2によりバルブ25を介してバグフィルタ23で分離さ
れた粒子を分級循環装置30に供給する粒子供給ライン
28とからなる。吸引分離ライン26と粒子供給ライン
28をそれぞれ2系統備え、交互に切り換えて、連続運
転ができるようになっているのがよい。また、真空ポン
プ21の容量は、粒子供給装置18により粒子と共に供
給されるガス量よりも大きく、中空容器12内を300
torr以下の減圧状態に保持できるように定めるのが
よい。
The suction separation device 20 sucks the particles crushed by collision with the gas to the outside of the hollow container 11 to keep the inside of the hollow container 11 in a depressurized state and separates the particles in the gas. There is. The suction separation device 20 includes a vacuum pump 21, a blower 22, a bag filter 23, and gate valves 24 and 25. In this embodiment, the suction separation device 2
0 is a suction separation line 26 for sucking particles together with gas to the outside of the hollow container 11 through a valve 24 by a vacuum pump 21 and separating the particles by a bag filter 23, and a blower 2
2, a particle supply line 28 for supplying the particles separated by the bag filter 23 via the valve 25 to the classification / circulation device 30. It is preferable that the suction separation line 26 and the particle supply line 28 are provided in two systems, respectively, which are alternately switched to enable continuous operation. Further, the capacity of the vacuum pump 21 is larger than the amount of gas supplied together with the particles by the particle supply device 18, and the volume inside the hollow container 12 is 300.
It is preferable to set it so that the pressure can be maintained at a reduced pressure of less than torr.

【0011】分級循環装置30は、分離した粒子を粗粒
Lと微粒Sに分級し、粗粒Lを粉砕用粒子Aに混入させ
るようになっている。分級循環装置30は内部に分級用
ロータ(図示せず)を有し、このロータの高速回転によ
り、吸引分離装置20より供給された粒子を粗粒Lと微
粒Sに分級し、分級した粗粒Lをガスとともに粉砕器2
0の粒子供給装置18に供給する。微粒Sの平均粒径
が、例えば5μm以下になるように分級循環装置30
(例えばロータの回転数)を設定する。
The classification / circulation device 30 classifies the separated particles into coarse particles L and fine particles S, and mixes the coarse particles L with the grinding particles A. The classification and circulation device 30 has a classification rotor (not shown) inside, and the high speed rotation of this rotor classifies the particles supplied from the suction separation device 20 into coarse particles L and fine particles S, and the classified coarse particles L with gas and crusher 2
0 to the particle supply device 18. Classification and circulation device 30 such that the average particle size of the fine particles S is, for example, 5 μm or less.
(For example, the number of rotations of the rotor) is set.

【0012】図1に示した粉砕装置は以下のように使用
する。 まず、低温装置16と吸引分離装置20により、中空
容器11内を−20℃以下の低温かつ300torr以
下の減圧状態に保持し、粉砕器10のロータ12を周速
40m/s以上の高速で回転する。 次いで、ロータ12の軸心付近に低温かつ減圧状態の
ガスと共に粉砕用粒子Aを供給し、粒子Aをロータ12
の回転によりステータ14に衝突させて粉砕する。 更に、吸引分離装置20により、衝突により粉砕され
た粒子をガスと共に中空容器11の外部に取り出し、分
級循環装置30によりガス中の粒子を粗粒Lと微粒Sに
分級し、分級された粗粒Lを粉砕用粒子Aに混入する。
The crushing device shown in FIG. 1 is used as follows. First, the inside of the hollow container 11 is kept at a low temperature of −20 ° C. or less and a reduced pressure of 300 torr or less by the low temperature device 16 and the suction separation device 20, and the rotor 12 of the crusher 10 is rotated at a high speed of 40 m / s or more in peripheral speed. To do. Next, the particles A for grinding are supplied near the axis of the rotor 12 together with the gas in the low temperature and reduced pressure state, and the particles A are fed to the rotor 12
Is rotated to collide with the stator 14 and pulverize. Further, the particles separated by the collision are taken out of the hollow container 11 together with the gas by the suction separation device 20, and the particles in the gas are classified into the coarse particles L and the fine particles S by the classification and circulation device 30 to classify the coarse particles. L is mixed with the grinding particles A.

【0013】図2は種々の樹脂の衝撃強さと温度との関
係を示す図である。この図から明らかなように、複写機
のトナー等に用いられる樹脂は、一般的に0℃以下の低
温で衝撃強さが小さくなり、特に−20℃以下では顕著
に低下する。従って、中空容器11内を−20℃以下の
低温に保持することにより、微細な粒子を容易に製造す
ることができる。また、空気の密度は、低温では増大す
るが、−20℃以下の低温かつ300torr以下の減
圧状態に保持することにより、常温に比べて空気の密度
を1/2以下に減らすことができる。更に、同様の状態
において、空気の粘度は20〜30%低下する。従っ
て、−20℃以下の低温と300torr以下の減圧を
併用することにより、減圧により粒子の空気抵抗が減少
し、小さい所要動力でロータをより高速に回転でき、か
つ粒子とロータ又はステータとの相対衝撃速度の低下を
軽減することができる。また、低温で粉砕するため融点
の低い樹脂に適用することができる。
FIG. 2 is a diagram showing the relationship between the impact strength of various resins and the temperature. As is clear from this figure, the resin used for the toner of the copying machine generally has a low impact strength at a low temperature of 0 ° C. or lower, and remarkably lowers at −20 ° C. or lower. Therefore, by maintaining the inside of the hollow container 11 at a low temperature of −20 ° C. or less, fine particles can be easily manufactured. Further, the air density increases at low temperatures, but by maintaining the temperature at −20 ° C. or lower and the depressurized state at 300 torr or less, the air density can be reduced to ½ or less compared to normal temperature. Furthermore, in the same state, the viscosity of air is reduced by 20 to 30%. Therefore, by using a low temperature of −20 ° C. or less and a reduced pressure of 300 torr or less together, the air resistance of the particles is reduced by the reduced pressure, the rotor can be rotated at a higher speed with a small required power, and the relative movement between the particles and the rotor or the stator is reduced. It is possible to reduce the decrease in impact speed. Further, since it is pulverized at a low temperature, it can be applied to a resin having a low melting point.

【0014】図3は、粒子が流体から受ける抵抗力Fに
おけるカニンガムの補正係数Ceを示す図である。粒子
が流体から受ける抵抗力Fは、一般的に下記の式であら
わされる。 F=Cd・(πD2 /4)・(ρv2 /2)/Ce・・・(式1) この式で、Cdは抵抗係数、Dは粒子径、ρは流体密
度、vは粒子と流体の速度差である。−20℃以下の低
温と300torr以下の減圧を併用すると、図3から
明らかなようにカニンガムの補正係数Ceが1より大き
くなり、かつ流体密度ρが小さくなるので、他の因子が
同一の場合に粒子が流体から受ける抵抗力Fが相乗的に
小さくなり、粒子を高速でステータに衝突させることが
可能となる。これにより、従来以上に微細な粒子を製造
することが可能となる。
FIG. 3 is a diagram showing the correction coefficient Ce of Cunningham in the resistance force F that the particles receive from the fluid. The resistance force F that a particle receives from a fluid is generally expressed by the following equation. F = Cd · (πD 2/ 4) · (ρv 2/2) / Ce ··· ( Equation 1) In this equation, Cd is the drag coefficient, D is the particle diameter, [rho is the fluid density, v is the particle and the fluid Is the speed difference. When a low temperature of −20 ° C. or lower and a reduced pressure of 300 torr or less are used together, the correction coefficient Ce of Cunningham becomes larger than 1 and the fluid density ρ becomes smaller as shown in FIG. 3, so that when other factors are the same. The resistance force F that the particles receive from the fluid becomes synergistically small, and it becomes possible to cause the particles to collide with the stator at high speed. This makes it possible to produce finer particles than ever before.

【0015】[0015]

【発明の効果】上述したように本発明の方法及び装置に
よれば、中空容器内が低温かつ減圧状態に保持され、粉
砕用粒子が高速で回転するロータの軸心付近に低温かつ
減圧状態のガスと共に供給されるので、減圧により粒子
の空気抵抗が減少し、小さい所要動力でロータをより高
速に回転でき、かつ粒子とロータ又はステータとの相対
衝撃速度の低下を軽減することができる。また、併せて
低温により樹脂の衝撃抵抗を低減することができる。従
って、高速回転式粉砕装置により粒子を従来以上の高速
(例えば200m/s以上)でステータ又はロータに衝
突させることができ、この高速衝撃により微細な粒子を
製造することができる。
As described above, according to the method and apparatus of the present invention, the inside of the hollow container is kept at a low temperature and a reduced pressure, and the grinding particles are kept at a low temperature and a reduced pressure in the vicinity of the axis of the rotor rotating at a high speed. Since it is supplied together with the gas, the air resistance of the particles is reduced by the reduced pressure, the rotor can be rotated at a higher speed with a small required power, and the reduction in the relative impact speed between the particles and the rotor or the stator can be reduced. In addition, the impact resistance of the resin can be reduced due to the low temperature. Therefore, the particles can be made to collide with the stator or the rotor at a higher speed (for example, 200 m / s or more) than ever before by the high-speed rotary pulverizer, and fine particles can be produced by this high-speed impact.

【0016】従って、本発明の粉砕方法及び粉砕装置
は、融点の低い樹脂に適用でき、微細な粒子を製造する
ことができ、処理能力を高め所要動力を低減できる、優
れた効果を有している。
Therefore, the crushing method and the crushing apparatus of the present invention can be applied to a resin having a low melting point, can produce fine particles, have an excellent effect that the processing capacity can be increased and the required power can be reduced. There is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による粉砕装置の全体構成図である。FIG. 1 is an overall configuration diagram of a crushing device according to the present invention.

【図2】種々の樹脂の衝撃強さと温度との関係を示す図
である。
FIG. 2 is a diagram showing the relationship between impact strength and temperature of various resins.

【図3】粒子が流体から受ける抵抗力Fにおけるカニン
ガムの補正係数Ceを示す図である。
FIG. 3 is a diagram showing a correction coefficient Ce of Cunningham in a resistance force F that particles receive from a fluid.

【図4】従来の高速回転式粉砕装置の概略図である。FIG. 4 is a schematic view of a conventional high-speed rotary crushing device.

【符号の説明】[Explanation of symbols]

1 中空容器 2 ロータ 3 ステータ 4 粉砕用粒子 10 粉砕器 12 ロータ 14 ステータ 16 低温装置 18 粒子供給装置 20 吸引分離装置 21 真空ポンプ 22 ブロア 23 バグフィルタ 24、25 仕切弁 26 吸引分離ライン 28 粒子供給ライン 30 分級循環装置 A 粉砕用粒子 L 粗粒 S 微粒 1 Hollow Container 2 Rotor 3 Stator 4 Grinding Particles 10 Grinder 12 Rotor 14 Stator 16 Low Temperature Device 18 Particle Feeder 20 Suction Separator 21 Vacuum Pump 22 Blower 23 Bag Filter 24, 25 Gate Valve 26 Suction Separation Line 28 Particle Supply Line 30 Classification circulation device A Particles for grinding L Coarse particles S Fine particles

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 中空容器内に軸心を中心に回転するロー
タと、該ロータの周りを取り囲むステータとを備え、中
空容器内を低温かつ減圧状態に保持し、前記ロータを高
速で回転し、該ロータの軸心付近に低温かつ減圧状態の
ガスと共に粉砕用粒子を供給し、該粒子をロータの回転
により前記ステータに衝突させ、衝突により粉砕された
粒子をガスと共に中空容器の外部に取り出し、ガス中の
粒子を粗粒と微粒に分級し、分級された粗粒を前記粉砕
用粒子に混入する、ことを特徴とする粉砕方法。
1. A hollow container is provided with a rotor rotating about an axis and a stator surrounding the rotor, the hollow container is kept at a low temperature and a reduced pressure, and the rotor is rotated at a high speed. Particles for grinding are supplied together with a gas in a low temperature and reduced pressure in the vicinity of the axial center of the rotor, the particles are made to collide with the stator by the rotation of the rotor, and the particles ground by collision are taken out of the hollow container together with the gas, A pulverization method, characterized in that particles in a gas are classified into coarse particles and fine particles, and the classified coarse particles are mixed into the particles for pulverization.
【請求項2】 前記ロータの周速は40m/s以上であ
り、前記低温は−20℃以下であり、前記減圧は300
torr以下である、ことを特徴とする請求項1に記載
の粉砕方法。
2. The peripheral speed of the rotor is 40 m / s or more, the low temperature is −20 ° C. or less, and the decompression is 300.
The pulverization method according to claim 1, wherein the pulverization method is not more than torr.
【請求項3】 中空容器内に軸心を中心に回転するロー
タと、該ロータの周りを取り囲むステータと、前記中空
容器内を低温に保持する低温装置と、前記ロータの軸心
付近に低温かつ減圧状態のガスと共に粉砕用粒子を供給
する粒子供給装置と、からなる粉砕器と、 衝突により粉砕された粒子をガスと共に中空容器の外部
に吸引して前記中空容器内を減圧状態に保持し、かつガ
ス中の粒子を分離する吸引分離装置と、 分離した粒子を粗粒と微粒に分級し、粗粒を粉砕用粒子
に混入させる分級循環装置とからなる粉砕装置。
3. A rotor which rotates about an axis in a hollow container, a stator which surrounds the rotor, a low temperature device which keeps the inside of the hollow container at a low temperature, and a low temperature near the axis of the rotor. A pulverizer consisting of a particle supply device for supplying pulverizing particles together with a gas under reduced pressure, and the particles pulverized by collision are sucked together with the gas to the outside of the hollow container to hold the inside of the hollow container at a reduced pressure, A pulverizer comprising a suction separator for separating particles in the gas and a classifying circulation device for classifying the separated particles into coarse particles and fine particles and mixing the coarse particles with the particles for crushing.
JP19655893A 1993-08-09 1993-08-09 Method for pulverizing method and device Pending JPH0747295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19655893A JPH0747295A (en) 1993-08-09 1993-08-09 Method for pulverizing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19655893A JPH0747295A (en) 1993-08-09 1993-08-09 Method for pulverizing method and device

Publications (1)

Publication Number Publication Date
JPH0747295A true JPH0747295A (en) 1995-02-21

Family

ID=16359737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19655893A Pending JPH0747295A (en) 1993-08-09 1993-08-09 Method for pulverizing method and device

Country Status (1)

Country Link
JP (1) JPH0747295A (en)

Similar Documents

Publication Publication Date Title
US7624936B2 (en) Granular material grinder and method of use
JP5451006B2 (en) Medium stirring powder processing equipment
JP3578880B2 (en) Crusher
JP3624307B2 (en) Crushing classification method and apparatus
JP2004188368A (en) Grinding method
JP2002233787A (en) Apparatus and method for treating powder
KR101085543B1 (en) Closed loop classification and shattering equipment
JP3173062B2 (en) Classifier and crusher equipped with the classifier
EP0317935A2 (en) Method and apparatus for fine grinding
JPH0747295A (en) Method for pulverizing method and device
JP2017074546A (en) Circulation type dry crushing apparatus
JPH075338B2 (en) Cement production equipment with pre-grinding equipment
JP2005270780A (en) Dry type media stirring type crushing machine
JPH09173889A (en) Fine grinding equipment
JPS6136459B2 (en)
JPH07185375A (en) Method for pulverizing low melting resin
KR102382758B1 (en) Blade of air current type crusher
JPH10338518A (en) Production of calcium carbonate
JPH0628186Y2 (en) Impact crusher with built-in classification mechanism
JP3240321U (en) Fine pulverization system
JPS6321324Y2 (en)
JP2019150764A (en) Pulverizer with classification function and pulverizing method of pulverizing object
JPH05253506A (en) Vertical type crushing device
JPH09155214A (en) Horizontal superfine mill
JPH11276920A (en) Method and device for pulverizing and classifying granular raw material by vertical mill