JPH0747281A - Catalyst for producing bisphenol f and production of bisphenol f - Google Patents

Catalyst for producing bisphenol f and production of bisphenol f

Info

Publication number
JPH0747281A
JPH0747281A JP5198140A JP19814093A JPH0747281A JP H0747281 A JPH0747281 A JP H0747281A JP 5198140 A JP5198140 A JP 5198140A JP 19814093 A JP19814093 A JP 19814093A JP H0747281 A JPH0747281 A JP H0747281A
Authority
JP
Japan
Prior art keywords
bisphenol
catalyst
exchange resin
acidic cation
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5198140A
Other languages
Japanese (ja)
Inventor
Satoru Ito
悟 伊藤
Shigeru Iimuro
茂 飯室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP5198140A priority Critical patent/JPH0747281A/en
Publication of JPH0747281A publication Critical patent/JPH0747281A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain high-purity dihydroxydiphenyl methane with an isomer component composition from which selectivity for isolating 4,4'- dihydroxydiphenyl methane is improved and with no impurity contact such as catalyst by using a catalyst obtained by neutralizing an acidic cation- exchange resin with an amino acid derivative of specific structure. CONSTITUTION:This catalyst for producing bisphenol F is obtained by using an acidic cation-exchange resin neutralized with an amino acid derivative(e.g. glycine amide) shown by the formula. In the formula, R1 to R5 are H or an alkyl group. In the presence of this catalyst, a condensation reaction takes place at 50 to 90 deg.C within a molar ratio P/F of phenol P to formaldehyde F of 2 to 100. Consequently, it is possible to produce a high-purity bisphenol F which is free from impurities such as catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はビスフェノールF製造用
触媒およびビスフェノールFの製造方法に関する。詳し
くは本発明は、ビスフェノールFの異性体である4,
4’−ジヒドロキシジフェニルメタンの含有率を向上さ
せ、且つ触媒等の不純物を含まない高純度な、ビスフェ
ノールFを製造する方法に関するものである。ビスフェ
ノールFはエポキシ樹脂またはポリカーボネートの原料
として、また低粘度の樹脂の原料として広く利用されて
いる。また近年、特に環境保全を目的とした無溶媒型エ
ポキシ樹脂の原料として更なる改良が望まれている。
TECHNICAL FIELD The present invention relates to a catalyst for producing bisphenol F and a method for producing bisphenol F. Specifically, the present invention relates to isomers of bisphenol F 4,
The present invention relates to a method for producing high-purity bisphenol F which improves the content of 4'-dihydroxydiphenylmethane and does not contain impurities such as a catalyst. Bisphenol F is widely used as a raw material for epoxy resins or polycarbonates and as a raw material for low-viscosity resins. Further, in recent years, further improvement is desired as a raw material of a solventless epoxy resin particularly for the purpose of environmental protection.

【0002】[0002]

【従来の技術】一般にビスフェノールFは、フェノール
にホルムアルデヒド加え、酸性触媒下で加熱し脱水縮合
させることで得られる。
2. Description of the Related Art Generally, bisphenol F is obtained by adding formaldehyde to phenol and heating it under an acidic catalyst for dehydration condensation.

【0003】ここで、従来ビスフェノールFと称される
ものは、4,4’−ジヒドロキシジフェニルメタン、汎
用ビスフェノールF、高純度ビスフェノールFの3種類
に大別される。
Here, what is conventionally called bisphenol F is roughly classified into three types, 4,4'-dihydroxydiphenylmethane, general-purpose bisphenol F and high-purity bisphenol F.

【0004】汎用ビスフェノールFは、4,4’−ジヒ
ドロキシジフェニルメタン(以下、4,4’−体と称す
る。)、2,4−ジヒドロキシジフェニルメタン(以
下、2,4’−体と称する。)、2,2’−ジヒドロキ
シジフェニルメタン(以下、2,2’−体と称する。)
を88〜93重量%程度含み、他に未反応フェノールお
よびフェノールとホルムアルデヒドが重縮合した3核体
以上の成分を含む混合物である(三井東圧化学製ビスフ
ェノールF−Mが相当)。
General-purpose bisphenol F includes 4,4'-dihydroxydiphenylmethane (hereinafter referred to as 4,4'-form), 2,4-dihydroxydiphenylmethane (hereinafter referred to as 2,4'-form), and 2. , 2'-Dihydroxydiphenylmethane (hereinafter referred to as 2,2'-form)
Is a mixture containing about 88 to 93% by weight of unreacted phenol and a trinuclear or more component in which unreacted phenol and phenol and formaldehyde are polycondensed (corresponding to Mitsui Toatsu Chemical's bisphenol FM).

【0005】高純度ビスフェノールFは、粗ビスフェノ
ールF(ここでは汎用ビスフェノールFに相当する。)
から2核体成分を取り出して得られる物で、2核体を9
5重量%以上含み、他に未反応のフェノールおよびフェ
ノールとホルムアルデヒドが重縮合した3核体成分を少
量含む混合物である(三井東圧化学製ビスフェノールF
−ST、本州化学製ビスフェノールF−Dが相当す
る。)
High-purity bisphenol F is crude bisphenol F (corresponding to general-purpose bisphenol F here).
It is a product obtained by taking out the binuclear body component from
It is a mixture containing 5% by weight or more and a small amount of unreacted phenol and a trinuclear component in which phenol and formaldehyde are polycondensed (bisphenol F manufactured by Mitsui Toatsu Chemicals, Inc.).
-ST corresponds to bisphenol FD manufactured by Honshu Kagaku. )

【0006】前述した一般的な製造方法で得られる汎用
ビスフェノールFの異性体の含有率は、4、4’−体が
28〜38重量%、2,4’−体が40〜50重量%、
2,2’−体が17〜22重量%である。
The content of the isomers of general-purpose bisphenol F obtained by the above-mentioned general production method is 28 to 38% by weight for the 4,4'-form and 40 to 50% by weight for the 2,4'-form.
The 2,2'-form is 17 to 22% by weight.

【0007】低粘度の樹脂の用途として異性体中の4,
4’−体の含有率が高いものが好適であるとされ、更に
含有率を高めるための製造法もいくつか開示されてい
る。例えば、特開平1−190713号明細書には大量
の酸性陽イオン交換樹脂を触媒として用い、4,4’−
体の選択率を向上させる方法が記載されている。また特
公告46−19953号明細書には、活性基の一部をア
ルキルメルカプトアミンで中和、変性した酸性陽イオン
交換樹脂を触媒として用いることにより、4,4’−体
選択率が向上できると示されている。
[0007] As an application of low viscosity resin,
Those having a high content of 4'-form are said to be suitable, and some production methods for further increasing the content have been disclosed. For example, in JP-A-1-190713, a large amount of acidic cation exchange resin is used as a catalyst, and 4,4'-
Methods for improving body selectivity are described. In Japanese Patent Publication No. 46-19953, 4,4'-form selectivity can be improved by using an acidic cation exchange resin obtained by neutralizing and modifying a part of active groups with alkylmercaptoamine as a catalyst. Is indicated.

【0008】しかしながら、大量の酸性イオン交換樹脂
を反応に使用することは生成したジヒドロキシジフェニ
ルメタンがイオン交換樹脂に吸着されることにより収率
を悪化させる原因となり、また、大量に使用することに
より、酸性陽イオン交換樹脂触媒から脱離する遊離酸が
増加し、生成物を汚染するおそれがある。
However, the use of a large amount of acidic ion-exchange resin in the reaction causes the produced dihydroxydiphenylmethane to be adsorbed by the ion-exchange resin, resulting in a poor yield. The amount of free acid released from the cation exchange resin catalyst may increase, and the product may be contaminated.

【0009】一方、アルキルメルカプトアミンによる変
性は中和処理工程での悪臭、生成物の臭気、また大気中
へ漏洩した場合の環境面に影響を与える点を考慮すれば
改善すべき方法である。
On the other hand, the modification with alkyl mercaptoamine is a method that should be improved in consideration of the bad odor in the neutralization process, the odor of the product, and the environmental aspect when it leaks to the atmosphere.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は従来技
術で満足されなかった、低粘度のエポキシ樹脂原料とし
て4,4’−体の選択率を向上させた異性体成分組成を
有し、且つ触媒等の不純物を含まない高純度なジヒドロ
キシジフェニルメタンの製造方法を提供することにあ
る。
The object of the present invention has an isomer component composition having an improved selectivity of 4,4'-form as a low-viscosity epoxy resin raw material, which has not been satisfied by the prior art, Another object of the present invention is to provide a method for producing high-purity dihydroxydiphenylmethane that does not contain impurities such as a catalyst.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上述した
如き従来技術の問題点を解決するために鋭意検討した結
果、反応触媒として実質的に水、有機溶剤に不溶である
酸性陽イオン交換樹脂をアミノ酸誘導体で中和し、酸性
陽イオン交換樹脂を改良することによって従来法より、
4,4’−体の選択率を向上させ、且つ触媒等の不純物
を含まない高純度なエポキシ樹脂用途として好適な成分
組成を有するビスフェノールFが得られることを見出
し、本発明を完成するに到ったものである。
Means for Solving the Problems As a result of intensive studies for solving the above-mentioned problems of the prior art, the present inventors have found that an acidic cation which is substantially insoluble in water and an organic solvent as a reaction catalyst. By neutralizing the exchange resin with an amino acid derivative and improving the acidic cation exchange resin,
It was found that bisphenol F having an ingredient composition suitable for high-purity epoxy resin use which does not contain impurities such as a catalyst can be obtained by improving the selectivity of 4,4′-form, and has completed the present invention. It is a thing.

【0012】即ち、本発明の要旨は、フェノールとホル
ムアルデヒドを触媒の存在下縮合反応させてビスフェノ
ールFを得るに際し、触媒としてアミノ酸誘導体で中和
された酸性陽イオン交換樹脂を用て、フェノールとホル
ムアルデヒドとを反応させることを特徴とするビスフェ
ノールFの製造方法であり、更にはこれに用いられる触
媒である。
That is, the gist of the present invention is to obtain a bisphenol F by subjecting phenol and formaldehyde to a condensation reaction in the presence of a catalyst to obtain a bisphenol F by using an acidic cation exchange resin neutralized with an amino acid derivative as a catalyst. It is a method for producing bisphenol F, which is characterized by reacting with and a catalyst used therefor.

【0013】本発明において酸性陽イオン交換樹脂を部
分的に中和するアミノ酸誘導体は、下記一般式(1)
〔化2〕でされ、
In the present invention, the amino acid derivative that partially neutralizes the acidic cation exchange resin is represented by the following general formula (1)
[Chemical 2]

【化2】 (但し、式(1)中のR1 〜R5 はH、又はアルキル基
である。)具体的には、グリシンアミド、グリシルグリ
シン、グリシル−L−アラニンなどが挙げられる。
[Chemical 2] (However, R 1 to R 5 in the formula (1) are H or an alkyl group.) Specific examples include glycinamide, glycylglycine, and glycyl-L-alanine.

【0014】またアミノ酸誘導体に中和される酸性陽イ
オン交換樹脂としては交換基がスルホン酸であるゲル
型、マクロポーラス型などの酸性陽イオン交換樹脂が挙
げられる。
Examples of the acidic cation exchange resin neutralized with the amino acid derivative include acidic cation exchange resins such as gel type and macroporous type whose exchange group is sulfonic acid.

【0015】アミノ酸誘導体による酸性陽イオン交換樹
脂の中和の程度は特に制限はないが、より十分な効果を
発揮させるためには、中和処理前の酸性度に対し、5%
以上中和せしめる、即ち部分的に中和せしめるのが望ま
しい。
The degree of neutralization of the acidic cation exchange resin with the amino acid derivative is not particularly limited, but in order to exert a more sufficient effect, it is 5% relative to the acidity before the neutralization treatment.
It is desirable to neutralize the above, that is, to partially neutralize.

【0016】本発明における改良された酸性陽イオン交
換樹脂の使用量は特に限定されない。例えば回分方式に
おいて使用される触媒量はフェノールの重量に対して5
〜20重量%が好ましい。触媒量が5%重量未満では反応
速度が遅くなり、また20重量%を越えると当該樹脂に
吸着されるビスフェノールF等が増えるため収率を低下
させる原因となる。
The amount of the improved acidic cation exchange resin used in the present invention is not particularly limited. For example, the amount of catalyst used in the batch system is 5 with respect to the weight of phenol.
-20% by weight is preferred. When the amount of the catalyst is less than 5% by weight, the reaction rate becomes slow, and when it exceeds 20% by weight, the amount of bisphenol F adsorbed on the resin increases, which causes the yield to decrease.

【0017】本発明においては、フェノール(P)とホ
ルムアルデヒド(F)とのモル比(P/F)を2〜10
0の範囲で縮合反応させることが好ましい。特に好まし
くは10〜40の範囲である。モル比が2を超えると高
次縮合物が多くなり、また100未満では高次縮合物は
少なくなるがビスフェノールFの収量も少なくなる。
In the present invention, the molar ratio (P / F) of phenol (P) and formaldehyde (F) is 2-10.
It is preferable to carry out the condensation reaction in the range of 0. Particularly preferably, it is in the range of 10-40. When the molar ratio exceeds 2, the amount of high-order condensate increases, and when it is less than 100, the amount of high-order condensate decreases but the yield of bisphenol F also decreases.

【0018】また、縮合反応の温度としては、50〜9
0℃が好ましく、さらに好ましくは60〜80℃であ
る。反応温度が90℃を超えると当該樹脂の劣化が早ま
り好ましくなく、50℃未満では反応速度が遅くなり生
産性が悪くなる。
The temperature of the condensation reaction is 50 to 9
0 degreeC is preferable, More preferably, it is 60-80 degreeC. If the reaction temperature is higher than 90 ° C, the resin is deteriorated rapidly, which is not preferable.

【0019】本発明において改良された酸性陽イオン交
換樹脂の存在下におけるフェノールとホルムアルデヒド
との反応態様として特に制限はなく、例えば、3者の混
合物を混合攪拌で反応させる方法等の回分式、または改
良された酸性陽イオン交換樹脂の固定層に出発原料の混
合物を通過させて反応させる方法等の連続式が挙げられ
る。
In the present invention, there is no particular limitation on the reaction mode of phenol and formaldehyde in the presence of the improved acidic cation exchange resin, and for example, a batch method such as a method of reacting a mixture of the three by mixing and stirring, or A continuous method such as a method of allowing a mixture of starting materials to pass through a fixed bed of an improved acidic cation exchange resin to carry out a reaction can be mentioned.

【0020】回分反応後の生成物と当該樹脂の分離方法
としては特に制限はなく、反応の形態に応じて従来から
の公知の分離操作に従って実施すればよい。
The method of separating the product after the batch reaction from the resin is not particularly limited, and may be carried out according to a conventionally known separation operation depending on the reaction form.

【0021】触媒を分離後、過剰なフェノール、生成水
を蒸留によって除去する。蒸留操作として特に制限はな
く、公知の常圧蒸留、減圧蒸留のいずれであってもよ
く、また残留フェノールをより減少させるため水蒸気蒸
留を行ってもよい。蒸留によって回収したフェノールは
再び原料として使用することが出来る。
After separating the catalyst, excess phenol and water produced are removed by distillation. The distillation operation is not particularly limited and may be any of known atmospheric distillation and vacuum distillation, and steam distillation may be performed to further reduce residual phenol. The phenol recovered by distillation can be reused as a raw material.

【0022】他方、この方法で製造された汎用ビスフェ
ノールFを用い、減圧蒸留等により2核体成分を取り出
すことで4,4’−体の含有率を向上させた高純度ビス
フェノールFが製造できることは勿論である。
On the other hand, using the general-purpose bisphenol F produced by this method, it is possible to produce a high-purity bisphenol F having an improved content of 4,4'-form by taking out the binuclear component by distillation under reduced pressure. Of course.

【0023】[0023]

【実施例】以下、実施例により本発明を説明するが、本
発明はこれらの実施例によって限定されるものではな
い。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0024】実施例1 触媒製造 乾燥状態で4.33meq/gの酸性度を有する酸性陽
イオン交換樹脂 (バイエルキャタリスト K−2611
西独バイエル社製)50gに対し等量の蒸留水、5.
5gのグリシンアミド塩酸塩を加え、80℃で6時間保
ち交換基を部分中和せしめた。改良された酸性陽イオン
交換樹脂は乾燥後3.34meq/gの酸性度であり、
部分中和前の酸性度に対し77.1%であった。これは
グリシンアミドによる部分中和に相当する。
Example 1 Catalyst Preparation An acidic cation exchange resin having an acidity of 4.33 meq / g in the dry state (Bayer Catalyst K-2611).
4. Equal amount of distilled water for 50 g of West Germany Bayer Co., Ltd., 5.
5 g of glycinamide hydrochloride was added and the mixture was kept at 80 ° C. for 6 hours to partially neutralize the exchange group. The improved acidic cation exchange resin has an acidity of 3.34 meq / g after drying,
It was 77.1% of the acidity before partial neutralization. This corresponds to partial neutralization with glycinamide.

【0025】実施例2 コンデンサー、攪拌機を備えたフラスコにフェノール1
00gと実施例1で製造した、部分中和された酸性陽イ
オン交換樹脂を5g入れ、内温を80℃に保ち1時間攪
拌後、37重量%のホルマリン8.6gを装入し3時間
攪拌した。ついで酸性陽イオン交換樹脂を濾別した。濾
液から過剰な水、フェノールを蒸留し、ビスフェノール
F20gを得た。得られたビスフェノールFの2核体含
有率、異性体成分の含有率の値を表1に示す。
Example 2 Phenol 1 was added to a flask equipped with a condenser and a stirrer.
00 g and 5 g of the partially neutralized acidic cation exchange resin prepared in Example 1 were added, the internal temperature was kept at 80 ° C. and the mixture was stirred for 1 hour, then 37% by weight of formalin 8.6 g was charged and the mixture was stirred for 3 hours. did. Then, the acidic cation exchange resin was filtered off. Excess water and phenol were distilled from the filtrate to obtain 20 g of bisphenol F. Table 1 shows the binuclear content of the bisphenol F and the content of the isomer component.

【0026】実施例3 コンデンサー、攪拌機を備えたフラスコにフェノール1
00gと実施例1で製造した、部分中和された酸性陽イ
オン交換樹脂を5g入れ、内温を80℃に保ち1時間攪
拌後、37重量%のホルマリン4.3gを装入し3時間
攪拌した。ついで酸性陽イオン交換樹脂を濾別した。濾
液から過剰な水、フェノールを蒸留し、ビスフェノール
F12gを得た。得られたビスフェノールFの2核体含
有率、異性体成分の含有率の値を表1に示す。
Example 3 Phenol 1 was added to a flask equipped with a condenser and a stirrer.
00 g and 5 g of the partially neutralized acidic cation exchange resin prepared in Example 1 were added, the internal temperature was kept at 80 ° C. and the mixture was stirred for 1 hour, then 37 g of formalin (4.3% by weight) was charged and the mixture was stirred for 3 hours. did. Then, the acidic cation exchange resin was filtered off. Excess water and phenol were distilled from the filtrate to obtain 12 g of bisphenol F. Table 1 shows the binuclear content of the bisphenol F and the content of the isomer component.

【0027】比較例1 コンデンサー、攪拌機を備えたフラスコにフェノール1
00gとシュウ酸0.28gを入れ、内温を80に保ち
30分攪拌後、37重量%のホルマリン8.6gを1時
間かけて滴下し、その後3時間攪拌した。ついで過剰な
水、フェノールを蒸留し、ビスフェノールF20gを得
た。得られたビスフェノールFの2核体含有量、異性体
成分の含有率の値を表1に示す。
Comparative Example 1 Phenol 1 was added to a flask equipped with a condenser and a stirrer.
00 g and 0.28 g of oxalic acid were added, the internal temperature was kept at 80, the mixture was stirred for 30 minutes, 8.6 g of 37% by weight formalin was added dropwise over 1 hour, and then the mixture was stirred for 3 hours. Then, excess water and phenol were distilled to obtain 20 g of bisphenol F. Table 1 shows the binuclear content of the obtained bisphenol F and the content rate of the isomer component.

【0028】比較例2 コンデンサー、攪拌機を備えたフラスコにフェノール1
00gと酸性陽イオン交換樹脂(バイエルキャタリスト
K−2611 西独バイエル社製)を5g入れ、内温
を80℃に保ち1時間攪拌後、37重量%のホルマリン
8.6gを装入し3時間攪拌した。ついで酸性陽イオン
交換樹脂を濾別した。濾液から過剰な水、フェノールを
蒸留し、ビスフェノールF19gを得た。得られたビス
フェノールFの2核体含有率、異性体成分の含有率の値
を表1に示す。
Comparative Example 2 Phenol 1 was added to a flask equipped with a condenser and a stirrer.
00g and 5g of acidic cation exchange resin (Bayer Catalyst K-2611, manufactured by Bayer Bayer GmbH) were added, the internal temperature was kept at 80 ° C, and the mixture was stirred for 1 hour. Then, 37% by weight of formalin 8.6g was charged and stirred for 3 hours. did. Then, the acidic cation exchange resin was filtered off. Excess water and phenol were distilled from the filtrate to obtain 19 g of bisphenol F. Table 1 shows the binuclear content of the bisphenol F and the content of the isomer component.

【0029】[0029]

【表1】 2核体含有率、異性体成分(Wt%) は高速液体クロマトグ
ラフィー分析による。
[Table 1] The binuclear content and the isomer component (Wt%) are determined by high performance liquid chromatography analysis.

【0030】[0030]

【発明の効果】本発明はフェノールとホルムアルデヒド
との縮合反応の際、アミノ酸誘導体で中和された酸性陽
イオン交換樹脂を触媒として用いることで、触媒等の不
純物を含まない高純度なビスフェノールFが得られ、さ
らに、改良された酸性陽イオン交換樹脂の効果により、
ビスフェノールF中の4,4’−体含有率を向上させし
めた低粘度エポキシ樹脂の原料として有用なビスフェノ
ールFが提供される。
INDUSTRIAL APPLICABILITY According to the present invention, by using an acidic cation exchange resin neutralized with an amino acid derivative as a catalyst during the condensation reaction of phenol and formaldehyde, high-purity bisphenol F containing no impurities such as a catalyst can be obtained. Obtained, and further, by the effect of the improved acidic cation exchange resin,
Provided is bisphenol F useful as a raw material for a low-viscosity epoxy resin having an improved content of 4,4′-form in bisphenol F.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 下記一般式(1)〔化1〕で示される構
造のアミノ酸誘導体で中和された酸性陽イオン交換樹脂
からなることを特徴とするビスフェノールF製造用触
媒。 【化1】 (但し、式(1)中、R1 〜R5 はH、又はアルキル基
である。)
1. A catalyst for producing bisphenol F, comprising an acidic cation exchange resin neutralized with an amino acid derivative having a structure represented by the following general formula (1) [Chemical formula 1]. [Chemical 1] (However, in the formula (1), R 1 to R 5 are H or an alkyl group.)
【請求項2】 アミノ酸誘導体がグリシンアミド、グリ
シルグリシン、グリシル−L−アラニンから選ばれたも
のであることを特徴とする請求項1のビスフェノールF
製造用触媒。
2. The bisphenol F according to claim 1, wherein the amino acid derivative is selected from glycinamide, glycylglycine and glycyl-L-alanine.
Production catalyst.
【請求項3】 請求項1記載のアミノ酸誘導体で中和さ
れた酸性陽イオン交換樹脂の存在下にフェノールとホル
ムアルデヒドとを反応させることを特徴とするビスフェ
ノールFの製造方法
3. A method for producing bisphenol F, which comprises reacting phenol and formaldehyde in the presence of an acidic cation exchange resin neutralized with the amino acid derivative according to claim 1.
【請求項4】 フェノール(P)とホルムアルデヒド
(F)とのモル比(P/F)が2〜100の範囲である
条件下に縮合反応を行うことを特徴とする請求項3記載
のビスフェノールFの製造方法。
4. The bisphenol F according to claim 3, wherein the condensation reaction is carried out under the condition that the molar ratio (P / F) of phenol (P) and formaldehyde (F) is in the range of 2 to 100. Manufacturing method.
【請求項5】 縮合反応を50〜90℃で行うことを特
徴とする請求項3または4記載のビスフェノールFの製
造方法。
5. The method for producing bisphenol F according to claim 3 or 4, wherein the condensation reaction is carried out at 50 to 90 ° C.
JP5198140A 1993-08-10 1993-08-10 Catalyst for producing bisphenol f and production of bisphenol f Pending JPH0747281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5198140A JPH0747281A (en) 1993-08-10 1993-08-10 Catalyst for producing bisphenol f and production of bisphenol f

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5198140A JPH0747281A (en) 1993-08-10 1993-08-10 Catalyst for producing bisphenol f and production of bisphenol f

Publications (1)

Publication Number Publication Date
JPH0747281A true JPH0747281A (en) 1995-02-21

Family

ID=16386124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5198140A Pending JPH0747281A (en) 1993-08-10 1993-08-10 Catalyst for producing bisphenol f and production of bisphenol f

Country Status (1)

Country Link
JP (1) JPH0747281A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436055B2 (en) 2003-09-30 2013-05-07 Mitsui Chemicals, Inc. Modified acidic ion-exchange resin and method for preparing bisphenol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8436055B2 (en) 2003-09-30 2013-05-07 Mitsui Chemicals, Inc. Modified acidic ion-exchange resin and method for preparing bisphenol

Similar Documents

Publication Publication Date Title
KR101764477B1 (en) Method for producing polyalkylene glycol derivative having amino group at end, with narrow molecular weight distribution
JPH08319248A (en) Production of bisphenol a
DE69915987T2 (en) Process for recycling silicone compounds
US3426072A (en) Preparation of amine ethers
JPH0747281A (en) Catalyst for producing bisphenol f and production of bisphenol f
JP2001233812A (en) Method for producing bisphenol a
Coleman et al. The Addition of Primary and Secondary Amines to Ethylenimine in the Presence of Aluminum Chloride
JP2548427B2 (en) Method for producing dihydroxydiphenylmethane
JP3731909B2 (en) Method for producing hydroxyoxaalkylmelamine
US4968839A (en) Synthetic process for the preparation of N,N dimethyl glycine (DMG)
JPS63190862A (en) Recovery of n-vinylformamide
EP0346250A1 (en) Process for the hydroxylation of phenols and phenol ethers
EA000043B1 (en) Improved process for manufacturing methylene bis-(dibutyl-dithiocarbamate) with astm colour less than 2
JPH0741462A (en) Production of 2-hydroxymethylmercaptobutyric acid
CN111269255A (en) Preparation method of isopropenyloxysilane
EP0215964B1 (en) Process for preparing cyclic urea derivatives
CA2015434A1 (en) Process for the purification of alkylene oxide adducts
US3014967A (en) Preparation and hydrogenation of schiff's bases
JPH06179633A (en) Production of arylethylene glycol
BE727474A (en)
JPS647982B2 (en)
JP2993727B2 (en) Method for producing phenolic polymer
JPS63253040A (en) Production of cycloalkanol
JPH0233021B2 (en)
US3904610A (en) Method of preparing an ' -amino-'7 -lactam

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106