JPH0747082B2 - Pressure fractional crystallization method - Google Patents
Pressure fractional crystallization methodInfo
- Publication number
- JPH0747082B2 JPH0747082B2 JP27233187A JP27233187A JPH0747082B2 JP H0747082 B2 JPH0747082 B2 JP H0747082B2 JP 27233187 A JP27233187 A JP 27233187A JP 27233187 A JP27233187 A JP 27233187A JP H0747082 B2 JPH0747082 B2 JP H0747082B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- liquid
- solid
- crystallization method
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は2種以上の成分からなる混合物を高圧容器内で
加圧して固液共存状態となし、続いて、これを固液分離
して固体状製品を得た後、該固体状製品を流動可能な状
態にして管路を通じて系外に取り出す圧力分別晶析法に
関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention pressurizes a mixture of two or more components in a high-pressure container to form a solid-liquid coexisting state, and then solid-liquid separates the mixture. The present invention relates to a pressure fractional crystallization method in which, after obtaining a solid product, the solid product is brought into a fluid state and taken out of the system through a pipe.
(従来の技術) この種、圧力分別晶析法はピストンおよび高圧室を有す
る圧力分別晶析装置により、加圧固化操作、および固液
分離操作の組み合わせなどにより、2種以上の成分から
なる原料混合物中の目的成分を固体状製品に分離精製す
るものであって、該固体状製品を高圧室より取り出す手
段として、高圧容器に加熱装置を配置し、該加熱装置
で固体状製品を融解した後、液状で取り出す手段、およ
び圧力分別晶析装置の構成を、高圧室を有する高圧容
器と下蓋とを分離可能とし、少なくともその一方を可動
部材とする装置を用い、分離精製した固体を機械的に取
り出す手段が知られている。(Prior Art) This type of pressure fractional crystallization method uses a pressure fractional crystallizer having a piston and a high-pressure chamber, and a raw material composed of two or more components by a combination of pressure solidification operation and solid-liquid separation operation. A method for separating and refining a target component in a mixture into a solid product, wherein a heating device is arranged in a high-pressure container as a means for taking out the solid product from a high-pressure chamber, and the solid product is melted by the heating device. The means for extracting in liquid form and the structure of the pressure-separation crystallization apparatus are such that a high-pressure container having a high-pressure chamber and a lower lid can be separated, and at least one of them is used as a movable member to mechanically separate and purify solids. It is known to take it out.
ところが、前記の手段では高圧容器内に攪拌機構を設
置できないなどの機構上の制約などから融解に長時間を
要するため、試験設備としての利用域を脱しえない。他
方、前記の手段では装置の構成上、自動連続運転を可
能とするためにプツシヤー、シユウターなどの固体状製
品自動取り出し装置等の付帯設備が不可欠となるなどの
問題がある。However, with the above-mentioned means, it takes a long time to melt due to mechanical restrictions such as the fact that a stirring mechanism cannot be installed in the high-pressure container, so that it cannot be excluded from the range of use as test equipment. On the other hand, the above-mentioned means has a problem in that, due to the structure of the apparatus, incidental equipment such as a solid product automatic take-out apparatus such as a pusher and a shouter is indispensable for enabling automatic continuous operation.
(発明が解決しようとする問題点) 高圧容器に加熱装置を配置して固体状製品を融解する方
法においては、この固体状製品は固体粒子が圧密された
ケーキ状の固体であり、固体状製品の表面積比が極めて
小さいため熱の移動速度が遅く、その結果として装置の
稼働時間中に占める固体状製品融解のための時間が装置
の生産規模の決定因子となり、装置コストが大幅に上昇
するという問題がある。(Problems to be Solved by the Invention) In a method of melting a solid product by disposing a heating device in a high-pressure container, the solid product is a cake-like solid in which solid particles are consolidated, The surface area ratio is very small, so the heat transfer rate is slow, and as a result, the time taken for the solid product to melt during the operating time of the device becomes a determinant factor of the production scale of the device, and the device cost will rise significantly. There's a problem.
また、高圧容器内にて大きな温度分布が生じることによ
り、装置ならびに製品に対して悪影響を及ぼすという問
題もある。There is also a problem that a large temperature distribution is generated in the high pressure container, which adversely affects the device and the product.
一方、高圧容器から固体状製品のまま取り出す方法にお
いては、圧力分別晶析装置本体ならびにその周辺付帯装
置に多くの駆動機構ならびに駆動装置が必要となり、ま
た前記付帯装置が装置コストに占める割合が大きなもの
となるという問題がある。On the other hand, in the method of taking out the solid product as it is from the high-pressure container, many pressure-resolving crystallization apparatus main bodies and their peripheral auxiliary devices require many driving mechanisms and driving devices, and the auxiliary devices occupy a large part of the device cost. There is a problem of becoming a thing.
また、圧力分別晶析装置本体だけを取り上げてみても、
その駆動部分が増すために高圧容器の摺動部分などにお
いてトラブルの発生する確率が高くなるという装置保全
上の問題もある。Also, if you take only the pressure-separation crystallizer body,
Since the number of drive parts increases, there is also a problem in device maintenance that the probability of occurrence of trouble in the sliding part of the high-pressure container increases.
また、空気、光などの存在によって製品が反応する場合
には、製品品質上の問題も生じ、圧力分別晶析装置全体
のガスシール、光遮断などの対策を講じることが必要と
なる。In addition, when the product reacts due to the presence of air, light, etc., there arises a problem in product quality, and it is necessary to take measures such as gas sealing and light blocking of the entire pressure fractionation crystallizer.
本件発明は、これらの問題点を解決しようとするもので
ある。The present invention is intended to solve these problems.
(問題点を解決するための手段) 前記の問題点を解決するために本発明は次のように構成
した。すなわち、圧力分別晶析法において、2種以上の
成分からなる混合物を高圧容器内で加圧して固液共存状
態となし、続いて液相分を該容器外に排出する事によ
り、該容器内に固体状製品を生成する圧力分別晶析法に
おいて、前記固体状製品を溶解又は融解させる液体もし
くはガスを前記高圧容器内に供給して該固体状製品と直
接接触させてこれを、液状又はスラリー状の流動状態と
なし、しかる後にこれを、高圧容器外に取り出すもので
ある。(Means for Solving Problems) In order to solve the above problems, the present invention has the following configuration. That is, in the pressure-separation crystallization method, a mixture of two or more components is pressurized in a high-pressure container to form a solid-liquid coexisting state, and then the liquid phase component is discharged to the outside of the container. In the pressure fractional crystallization method for producing a solid product, a liquid or gas that dissolves or melts the solid product is supplied into the high-pressure container and is brought into direct contact with the solid product to form a liquid or slurry. It is brought into a state of fluid flow and then taken out of the high-pressure container.
(実施例および作用) 本発明の実施例を第1図および第2図にもとづいて以下
に説明する。(Embodiment and Action) An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
第1図は本発明の実施例を示し、(1)は原料供給管
路、(2)、(4)、(9)、(10)、(11)、(1
2)、(13)はバルブ、(3)は製品回収管路、(5)
は原料槽、(6)、(22)は送給ポンプ、(7)は高圧
容器、(14)はピストン、(15)は排液流出管路、(1
6)はガス抜き管路、(17)は排液圧力調整機構、(1
8)は排液槽、(20)は融解液供給管路、(21)は製品
槽、(23)は加熱器である。FIG. 1 shows an embodiment of the present invention, in which (1) is a raw material supply pipe, (2), (4), (9), (10), (11) and (1
2), (13) are valves, (3) are product collection lines, (5)
Is a raw material tank, (6) and (22) are feed pumps, (7) is a high-pressure container, (14) is a piston, (15) is a drainage outflow line, and (1)
6) is a degassing line, (17) is a drainage pressure adjusting mechanism, and (1
8) is a drainage tank, (20) is a melt supply pipeline, (21) is a product tank, and (23) is a heater.
本発明実施例にある圧力分別晶析法において、固体を融
解状態で取り出す手段を以下に詳述する。In the pressure fractional crystallization method according to the embodiment of the present invention, the means for extracting the solid in a molten state will be described in detail below.
まず、原料供給管路(1)のバルブ(2)およびガス抜
き管路(16)のバルブ(13)を開き、製品回収管路
(3)のバルブ(4)および排液流出管路(15)のバル
ブ(10)、(11)を閉じ、原料槽(5)より原料混合物
を送給ポンプ(6)により原料供給管路(1)を経て圧
力分別晶析装置の高圧容器(7)の内部に供給する。First, the valve (2) of the raw material supply pipeline (1) and the valve (13) of the degassing pipeline (16) are opened, and the valve (4) of the product recovery pipeline (3) and the drainage outflow pipeline (15). ) Valves (10) and (11) are closed, and the raw material mixture is fed from the raw material tank (5) by the feed pump (6) through the raw material supply pipe (1) to the high pressure vessel (7) of the pressure fractional crystallization device. Supply inside.
原料混合物の供給が終わるとバルブ(2)および(13)
を閉じ、ピストン(14)を下降させながら加圧を行う。
加圧によって特定成分としての固体の結晶化が進むと排
液流出管路(15)に設けられているバルブ(10)、(1
1)を開き、排液圧力調整機構(17)の調整を行い、固
体の結晶以外の液相を排液槽(18)に排出させる。Valves (2) and (13) when the feed of the raw material mixture is complete
Close, and pressurize while lowering the piston (14).
When the crystallization of the solid as a specific component proceeds due to pressurization, the valves (10), (1
1) is opened, the drainage pressure adjusting mechanism (17) is adjusted, and the liquid phase other than solid crystals is discharged to the drainage tank (18).
さらに、高圧容器(7)内に残った固体に圧搾を加え、
固体粒子間の液相の圧力を低下させて固体の表面を一部
融解し、液相の濃度を高めることにより固体全体として
の純度を向上させる。Furthermore, pressing is applied to the solid remaining in the high-pressure container (7),
The pressure of the liquid phase between the solid particles is lowered to partially melt the surface of the solid, and the concentration of the liquid phase is increased to improve the purity of the solid as a whole.
次に製品回収管路(3)に設けられたバルブ(4)、お
よび融解液供給管路(20)に設けられたバルブ(9)を
開き(バルブ(2)、(10)、(11)、(12)、(13)
はとじてある)、製品槽(21)より固体と同一成分であ
る製品の融解液を送給ポンプ(22)により流量調整して
融解液供給管路(20)に送りだし、該融解液供給管路
(20)の途中に設けられた加熱器(23)によりさらに加
熱し、これをピストン(14)下面に開口部を有する既設
のガス抜き管路(16)より高圧容器(7)内に供給す
る。Next, open the valve (4) provided in the product recovery pipeline (3) and the valve (9) provided in the melt supply pipeline (20) (valves (2), (10), (11)). , (12), (13)
The melt of the product having the same composition as the solid is discharged from the product tank (21) to the melt supply pipe (20) with its flow rate adjusted by the feed pump (22). It is further heated by a heater (23) provided in the middle of the passage (20), and this is supplied into the high-pressure container (7) from an existing degassing pipe passage (16) having an opening on the lower surface of the piston (14). To do.
そして、過熱した融解液を固体に直接接触させて融解さ
せながら固体の融解量に対応させてピストン(14)を進
行させ、高圧容器(7)内における固体の上面とピスト
ン(14)下面との間隔を一定に保ちながら該ピストン
(14)を降下させる。供給した融解液と該供給液により
融解された固体の融解液との混合液、または、これに残
存する固体の一部を含んだスラリー混合物は、高圧容器
(7)の下部に配設されている製品回収管路(3)を経
て製品槽(21)に流出することにより回収される。Then, the superheated molten liquid is brought into direct contact with the solid to be melted, and the piston (14) is advanced in accordance with the melting amount of the solid so that the upper surface of the solid in the high pressure container (7) and the lower surface of the piston (14) The piston (14) is lowered while keeping the interval constant. A mixed liquid of the supplied melted liquid and a melted solid melted by the supplied liquid, or a slurry mixture containing a part of the solid remaining in the melted liquid is disposed in the lower part of the high pressure container (7). It is recovered by flowing out to the product tank (21) through the existing product recovery pipeline (3).
第2図は過熱した融解液を供給する際、排液流出管路を
利用した場合の実施例を示すフロー図であり、該フロー
図に示した符号は第1図に示した符号と同一である。FIG. 2 is a flow chart showing an embodiment in which a drainage outflow conduit is used when supplying a superheated melt, and the reference numerals shown in the flow chart are the same as those shown in FIG. is there.
即ち、高圧容器(7)内の固体に過熱した融解液を供給
する際、該過熱した融解液を融解液供給管路(20)より
排液流出管路(15)を経て前記高圧容器(7)の下部か
ら該高圧容器(7)の内部に供給し、固体を融解する。
その後、融解されて液状もしくはスラリー状となした固
体はピストン(14)に設けられたガス抜き管路(16)を
経て製品回収管路(3)を流下させることによって該固
体を回収することができる。That is, when the overheated melt is supplied to the solid in the high pressure container (7), the overheated melt is passed from the melt supply pipe (20) through the drainage outflow pipe (15) to the high pressure container (7). ) Is supplied to the inside of the high pressure vessel (7) from below to melt the solid.
After that, the solid that is melted into a liquid or slurry state can be recovered by flowing down the product recovery conduit (3) through the gas vent conduit (16) provided in the piston (14). it can.
次に、高圧容器内で得られた固体の全量を融解するのに
必要な所要時間についての比較例を以下に示す。Next, a comparative example of the time required for melting all the solids obtained in the high-pressure container is shown below.
の例は本発明の有用性を実証するために実験したもの
であって、これを従来技術とし、の従来技術にたいし
て本発明の実験例を、で示す。温度調整用の機能
を有するジヤケツトが設けられた内径80mmの高圧容器を
有する圧力晶析パイロツト試験装置にて、分離精製した
高さ80mmのp−クレゾールの固体を融解するにあたり、
高圧容器の温度を50℃に維持して固体の全量を融解する
に要する時間は約80分であった。The above example is an experiment for demonstrating the usefulness of the present invention, which is the prior art, and the experimental example of the present invention is shown by the prior art. In melting a solid of p-cresol having a height of 80 mm separated and purified with a pressure crystallization pilot test apparatus having a high-pressure container having an inner diameter of 80 mm provided with a jacket having a function for temperature adjustment,
It took about 80 minutes to maintain the temperature of the high pressure vessel at 50 ° C. and melt all the solids.
内径80mmの高圧容器を有する圧力晶析パイロツト試験
装置にて、分離精製した高さ80mmのp−クレゾールの固
体を融解するにあたり、50℃に過熱したp−クレゾール
液を6l/分の割合で高圧容器内に供給して固体の全量を
融解するに要する時間は約11分であった。Using a pressure crystallization pilot tester equipped with a high-pressure container with an inner diameter of 80 mm, when melting the separated and purified solid of p-cresol with a height of 80 mm, p-cresol solution heated to 50 ° C. was pressurized at a rate of 6 l / min. The time required to supply all of the solid in the container and melt the whole solid was about 11 minutes.
上記符号の条件下において、さらに15mm/分の割合
でピストンを進行させたところ、固体の全量を融解する
に要する時間は約4分であった。Under the conditions of the above signs, when the piston was further advanced at a rate of 15 mm / min, the time required to melt the entire solid amount was about 4 minutes.
既に融解された液を熱交換器を用いて加熱するから供給
する液の温度制御は容易であり、装置ならびに製品の温
度を制限温度以下に制御することが可能となり、また加
熱媒体を流動状態下において固体状製品に直接接触させ
るために、熱の移動速度が飛躍的に大きくなる。Since the already melted liquid is heated using a heat exchanger, it is easy to control the temperature of the liquid to be supplied, and it is possible to control the temperature of the device and the product below the limit temperature. In this case, since the solid product is brought into direct contact with the solid product, the heat transfer rate is significantly increased.
また、固体の粒子が分散化した状態においてはスラリー
液として流出することになり、必ずしも固体の全量を融
解させる必要性がないので高圧容器内での所要融解時間
はさらに短縮が図られる。Further, in the state where the solid particles are dispersed, it will flow out as a slurry liquid, and it is not always necessary to melt the entire amount of the solid, so the required melting time in the high-pressure container can be further shortened.
また、過熱された融解液の代替品として前記固体状製品
成分と分離可能な液体を用いる方法においては、供給液
の温度は必ずしも固体状製品の融点より高く設定する必
要がなく混合後の液の融点以上に保つことによりその目
的が達成される。したがって、融解あるいは溶解に要す
る熱エネルギーを大幅に削減することが可能であり、極
端な場合には不要となる場合もある。さらに、固体状製
品が融点近傍において昇華あるいは化学変化を伴う物質
である場合においては、該固体状製品を加熱融解して取
り出すことが困難あるいは不可能となるが、本件方法を
採用することにより、この固体状製品を液状またはスラ
リー状態で抜き出すことが可能となる。なお、この方法
を採用する場合においては、再分離の必要があり、固体
状製品である物質毎に最も適した熱媒あるいは溶媒を選
択する。Further, in the method of using a liquid that is separable from the solid product components as a substitute for the overheated molten liquid, the temperature of the supply liquid does not necessarily need to be set higher than the melting point of the solid product, The purpose is achieved by keeping the melting point or higher. Therefore, it is possible to significantly reduce the thermal energy required for melting or melting, and in some extreme cases it may not be necessary. Furthermore, when the solid product is a substance that undergoes sublimation or a chemical change in the vicinity of the melting point, it becomes difficult or impossible to take out the solid product by heating and melting, but by adopting the present method, This solid product can be extracted in a liquid or slurry state. In addition, when this method is adopted, it is necessary to re-separate, and the most suitable heating medium or solvent is selected for each substance that is a solid product.
また、高圧容器内に得られた固体状製品に、前記固体状
製品に対して不活性な成分のガスを直接接触させて、こ
れを液状またはスラリー状態となし、高圧容器外に取り
出すことも可能である。It is also possible to bring the solid product obtained in the high-pressure container into direct contact with a gas that is an ingredient inert to the solid product to form a liquid or slurry and take it out of the high-pressure container. Is.
また、高圧容器内に供給する液体またはガスが当該圧力
分別晶析法で生産された製品と、次工程で混合または反
応させる成分の物質である時においては再分離が不必要
であり、製品の過熱融解液を用いる方法と同等もしく
は、それ以上容易に実施することが可能である。Further, when the liquid or gas supplied into the high pressure container is a substance that is a component to be mixed or reacted with the product produced by the pressure fractional crystallization method in the next step, re-separation is unnecessary, and It can be carried out as easily as or more than the method using a superheated melt.
(発明の効果) 本発明は、圧力晶析法において高圧容器内に得られる固
体状製品を溶解または融解して高圧容器内から取り出す
ための所要時間を大幅に短縮する。(Effects of the Invention) The present invention significantly shortens the time required to dissolve or melt a solid product obtained in a high-pressure vessel and take it out from the high-pressure vessel in the pressure crystallization method.
また、圧力分別晶析装置本体の付帯装置、駆動機構なら
びに駆動装置を不必要となし、前記圧力分別晶析装置自
身が簡素化し装置コストが低下させることになる。Further, the accessory device, the drive mechanism and the drive device of the main body of the pressure fractional crystallizer are not required, and the pressure fractional crystallizer itself is simplified and the cost of the apparatus is reduced.
また、高圧容器を開閉する機構を不要とし、空気、光
(紫外線)の影響を排除し、製品の品質劣化、純度低下
などの問題を防止することができるなど従来の技術にて
は期待することができない効果をも生じさせるものであ
る。In addition, it does not require a mechanism to open and close the high-pressure container, eliminates the effects of air and light (ultraviolet rays), and can prevent problems such as product quality deterioration and purity deterioration. It also produces an effect that cannot be achieved.
第1図は本発明の融解液を供給する際、ガス抜き管路を
利用した場合の実施例を示すフロー図であり、第2図は
本発明の融解液を供給する際、排液流出管路を利用した
場合の実施例を示すフロー図である。 (3)……製品回収管路、(7)……高圧容器、(14)
……ピストン、(15)……排液流出管路、(16)……ガ
ス抜き管路、(20)……融解液供給管路、(23)……加
熱器。FIG. 1 is a flow chart showing an embodiment in which a gas venting pipe is used when supplying the melt of the present invention, and FIG. 2 is a drainage pipe when supplying the melt of the present invention. It is a flow figure showing an example when a road is used. (3) …… Product recovery line, (7) …… High-pressure container, (14)
...... Piston, (15) …… Drainage outflow line, (16) …… Gas release line, (20) …… Melting liquid supply line, (23) …… Heating device.
Claims (5)
内で加圧して固液共存状態となし、続いて液相分を該容
器外に排出する事により、該容器内に固体状製品を生成
する圧力分別晶析法において、前記固体状製品を溶解又
は融解させる液体もしくはガスを前記高圧容器内に供給
して該固体状製品と直接接触させてこれを液状又はスラ
リー状の流動状態となし、しかる後にこれを、高圧容器
外に取り出すことを特徴とする圧力分別晶析法。1. A solid product in a container by pressurizing a mixture of two or more components in a high-pressure container to bring it into a solid-liquid coexisting state, and then discharging the liquid phase component outside the container. In the pressure-separation crystallization method for producing, a liquid or gas that dissolves or melts the solid product is supplied into the high-pressure container and brought into direct contact with the solid product so that it is in a liquid or slurry fluid state. None, after which, the pressure fractional crystallization method is characterized in that it is taken out of the high-pressure vessel.
に取り出された流動状態のものを過熱した融解液である
特許請求の範囲第(1)項に記載の圧力分別晶析法。2. The pressure fractional crystallization method according to claim 1, wherein the liquid supplied into the high-pressure container is a molten liquid taken out of the high-pressure container and heated in a fluidized state.
に取り出された後において、前記固体状製品成分と分離
可能な成分の物質である特許請求の範囲第(1)項に記
載の圧力分別晶析法。3. The liquid according to claim 1, wherein the liquid supplied into the high-pressure container is a substance that is a component that is separable from the solid product component after being taken out of the high-pressure container. Pressure fractional crystallization method.
製品成分に対して不活性な成分のガスである特許請求の
範囲第(1)項に記載の圧力分別晶析法。4. The pressure fractional crystallization method according to claim 1, wherein the gas supplied into the high-pressure container is a gas which is an inert gas component with respect to the solid product components.
該圧力分別晶析法で生産された製品と、次工程で混合又
は反応させる成分の物質である特許請求の範囲第(1)
項に記載の圧力分別晶析法。5. The liquid or gas supplied into the high-pressure container is a substance as a component to be mixed or reacted with the product produced by the pressure fractional crystallization method in the next step.
The pressure fractional crystallization method as described in the above item.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27233187A JPH0747082B2 (en) | 1987-10-28 | 1987-10-28 | Pressure fractional crystallization method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27233187A JPH0747082B2 (en) | 1987-10-28 | 1987-10-28 | Pressure fractional crystallization method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01115404A JPH01115404A (en) | 1989-05-08 |
JPH0747082B2 true JPH0747082B2 (en) | 1995-05-24 |
Family
ID=17512399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27233187A Expired - Fee Related JPH0747082B2 (en) | 1987-10-28 | 1987-10-28 | Pressure fractional crystallization method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0747082B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4313121C1 (en) * | 1993-04-22 | 1994-08-11 | Hoechst Ag | Process for separation and purification of substances by melt crystallisation |
DE4313101C1 (en) * | 1993-04-22 | 1994-08-11 | Hoechst Ag | Process for separating and purifying substances by melt crystallisation at high pressures |
-
1987
- 1987-10-28 JP JP27233187A patent/JPH0747082B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH01115404A (en) | 1989-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ZA200504060B (en) | Separation system of metal powder from slurry and process | |
US6224648B1 (en) | Method and device for separating metals and/or metal alloys of different melting points | |
ZA200601558B (en) | A solid-liquid separation process | |
US2921969A (en) | Process and apparatus for crystal recovery employing an automatically controlled centrifuge | |
JPH0747082B2 (en) | Pressure fractional crystallization method | |
US3226102A (en) | Continuous vacuum and inert gas apparatus for treating and processing titanium and other metals | |
GB787608A (en) | Improvements in crystallization procedure and apparatus | |
US4342638A (en) | Flashed-down residue treatment including filtering and solvent repulping | |
CA1228208A (en) | Process for manufacturing metal products | |
KR0141364B1 (en) | Process for working-up the raffinate fraction obtained in the extractine distillation of hydrocarbon mixtures | |
US2130886A (en) | Method of and apparatus for vaporization | |
US4572818A (en) | Process for purifying metal compositions | |
US4952750A (en) | Process for making p-xylene with a purity of at least 99.5% | |
EP0475836A2 (en) | Process for separating 2,7-dimethylnaphthalene under pressure | |
JP4106078B2 (en) | Method for producing crystalline maltitol | |
SU1030352A1 (en) | Method for isolating xylene | |
JPS5810121B2 (en) | Substance separation and purification equipment | |
US478907A (en) | Process of reducing metals | |
JPS63218205A (en) | Pressure crystallization method | |
US2029921A (en) | Apparatus for producing substantially pure magnesium | |
US2160969A (en) | Process of producing pure magnesium | |
US2882215A (en) | Fractional crystallization process | |
CN117259732A (en) | High-purity material melting sedimentation centrifugal preparation device | |
US4966978A (en) | Process for separating indole in refined form | |
JPS5932577Y2 (en) | high pressure gas liquid separator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |