JPH0746736B2 - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPH0746736B2
JPH0746736B2 JP61239123A JP23912386A JPH0746736B2 JP H0746736 B2 JPH0746736 B2 JP H0746736B2 JP 61239123 A JP61239123 A JP 61239123A JP 23912386 A JP23912386 A JP 23912386A JP H0746736 B2 JPH0746736 B2 JP H0746736B2
Authority
JP
Japan
Prior art keywords
window
temperature
laser light
laser device
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61239123A
Other languages
Japanese (ja)
Other versions
JPS6394694A (en
Inventor
滋 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61239123A priority Critical patent/JPH0746736B2/en
Publication of JPS6394694A publication Critical patent/JPS6394694A/en
Publication of JPH0746736B2 publication Critical patent/JPH0746736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0401Arrangements for thermal management of optical elements being part of laser resonator, e.g. windows, mirrors, lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、レーザ光取出用の窓もしくは出力ミラーの劣
化状態を検知することを可能とし、かつ、対称性のよい
モードのレーザ光を取出すことを可能とした大出力の気
体レーザ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Industrial field of application) The present invention makes it possible to detect a deteriorated state of a window for extracting laser light or an output mirror, and a mode with good symmetry. The present invention relates to a high-power gas laser device capable of extracting the laser light of.

(従来の技術) 従来の気体レーザ装置の一例として、大出力の炭酸ガス
レーザ装置(以下CO2レーザ装置と称する)の不安定形
共振器におけるレーザ光取出窓(以後窓と称する)を説
明する。第2図に不安定形共振器の概略構成の一例を示
す。凸面ミラー8と凹面ミラー10によりレーザ発振・増
幅された光Lは、45゜ミラー9により、方向を90゜変
え、窓1から外部へ取出される。大出力CO2レーザ装置
においては、レーザガス圧が30〜100Torr前後の低圧に
保たれているため、不安定形共振器により発振した光を
外部へ取出すためには、CO2レーザ光の波長10.6μmに
対する透過性の優れた窓1が必要となる。出力1kw〜10k
wクラスの大出力CO2レーザ装置用窓材には、セレン化亜
鉛(ZnSe)が最もよく使われている。ZnSe製の窓は両面
に無反射コーティングを施すことによりCO2レーザ光を
初期値として、99%以上透過させることができる。しか
し、大出力になると、1%下の吸収でもかなりの発熱源
となり、温度上昇を来たすため、窓1を冷却する必要が
ある。従来の窓1の冷却構造の一例を第8図に示す。窓
1は冷却ジジャケット2に取付けられており、一端面外
周部を冷却水Wにより間接冷却される。外部とのシール
は、Oリング3により周辺端で密閉されており、Oリン
グ3は、Oリング押さえ6により固定されている。窓1
はパッキン7を介し止め輪5で保持される。
(Prior Art) As an example of a conventional gas laser device, a laser light extraction window (hereinafter referred to as a window) in an unstable resonator of a high-power carbon dioxide gas laser device (hereinafter referred to as a CO 2 laser device) will be described. FIG. 2 shows an example of a schematic configuration of an unstable resonator. The light L oscillated and amplified by the convex mirror 8 and the concave mirror 10 changes its direction by 90 ° by the 45 ° mirror 9, and is extracted from the window 1 to the outside. In the high-power CO 2 laser device, the laser gas pressure is kept at a low pressure of around 30 to 100 Torr. Therefore, in order to take out the light oscillated by the unstable resonator to the outside, the wavelength of the CO 2 laser light is 10.6 μm. The window 1 having excellent transparency is required. Output 1kw ~ 10k
Zinc selenide (ZnSe) is most commonly used for window materials for high-power CO 2 laser devices in the w class. By applying anti-reflection coating on both sides of the window made of ZnSe, CO 2 laser light can be transmitted by 99% or more as an initial value. However, when the output becomes large, even if the absorption is reduced by 1%, it becomes a considerable heat source and the temperature rises. Therefore, it is necessary to cool the window 1. FIG. 8 shows an example of a conventional cooling structure for the window 1. The window 1 is attached to the cooling jacket 2, and the outer peripheral portion of the one end face is indirectly cooled by the cooling water W. The seal with the outside is sealed by the O-ring 3 at the peripheral end, and the O-ring 3 is fixed by the O-ring retainer 6. Window 1
Is retained by the retaining ring 5 via the packing 7.

なお、安定形共振器の場合は、概略構成を第3図に示し
たが、出力ミラー11を部分透過性ミラーとすることによ
り、共振器内部でレーザ発振・増幅された光の一部を出
力ミラー11から取出す。この場合も、大出力用出力ミラ
ーには、共振器内側面に部分反射コーティング(もしく
は、コーティングなし)、外側の面に無反射コーティン
グを施したZnSeが最も良く使われている。出力ミラー11
の冷却も窓1の冷却構造と同様であり、第8図におい
て、窓1の代わりに出力ミラー11を設けた構造となって
いる。
In the case of the stable resonator, the schematic configuration is shown in FIG. 3, but by using the output mirror 11 as a partially transmissive mirror, a part of the light oscillated and amplified in the resonator is output. Take out from the mirror 11. Also in this case, ZnSe having a partially reflective coating (or no coating) on the inner surface of the resonator and a non-reflective coating on the outer surface is most often used for the output mirror for high power. Output mirror 11
The cooling is the same as the cooling structure of the window 1. In FIG. 8, the output mirror 11 is provided instead of the window 1.

(発明が解決しょうとする問題点) ZnSe製の窓は、CO2レーザ光(λ=10.6μm)に対する
透過性に優れており、初期値としては、両面に無反射コ
ーティングを施すことにより、総吸収率を0.2%程度に
押えることができる。しかし、使用時間が増すにつれ
て、表面の劣化及び汚れにより総吸収率が増大してく
る。ZnSeのような半導体は吸収係数が温度上昇とともに
急激に増加するフリーキャリア吸収が支配的であり、吸
収係数の温度依存性が正で、室温以上での熱伝導度の温
度依存性が負なために、わずかな温度上昇によって加速
度的に温度が上昇する可能性(熱暴走効果)がある。Zn
Seはこの臨界温度が300〜400℃の範囲にある。
(Problems to be solved by the invention) The window made of ZnSe has excellent transmissivity for CO 2 laser light (λ = 10.6 μm), and the initial value is Absorption rate can be suppressed to about 0.2%. However, as the usage time increases, the total absorption rate increases due to surface deterioration and dirt. Semiconductors such as ZnSe are dominated by free carrier absorption, where the absorption coefficient rapidly increases with increasing temperature, and the temperature dependence of the absorption coefficient is positive and the temperature dependence of thermal conductivity above room temperature is negative. In addition, there is a possibility that the temperature rises at an accelerated rate due to a slight temperature rise (thermal runaway effect). Zn
Se has a critical temperature in the range of 300 to 400 ° C.

また、上記熱的破壊の問題の他に、レーザ光通過により
生じる窓の不均一分布は、光路長に変化を生じ、もと平
板であった窓はレンズになり、レーザ光のモードを乱す
原因となる。この光学的ひずみは一般に熱的破壊よりも
低いパワーレベル、すなわちより低い総吸収率において
起こる。(昭和60年2月、レーザー研究,第13巻,第2
号,P143)ところが、総吸収率の経時変化は、窓の使用
環境や使用頻度,透過出力パワーによって異なり、ま
た、許容される光路差の大きさも窓材の使用目的によっ
て異なるので、レーザー出力の臨界値及び窓の清掃もし
くは交換時期を一義的には定義できなかった。いずれに
しても何らかの形で、窓の劣化,汚れ状況すなわち総吸
収率の経時変化を把握しておく必要があった。
In addition to the above-mentioned problem of thermal destruction, the non-uniform distribution of windows caused by passage of laser light causes a change in the optical path length, and the originally flat window becomes a lens, causing the disturbance of the laser light mode. Becomes This optical distortion generally occurs at lower power levels than thermal breakdown, i.e. at lower total absorption. (February 1985, Laser Research, Volume 13, No. 2
However, the change over time in the total absorptance differs depending on the environment in which the window is used, the frequency of use, and the transmitted output power, and the allowable optical path difference also differs depending on the intended use of the window material. The critical value and the window cleaning or replacement time could not be unambiguously defined. In any case, it was necessary to understand the deterioration and fouling of the window, that is, the change over time in the total absorption rate, in some form or another.

ところで、レーザ光のモードは一般に対称性が良い程加
工性能率等、応用面に優れた光となるため、レーザ光と
しては、対称性と安定性が要求される。しかし、運転当
初調整されたモードも、運転途中の共振器ミラーのアラ
イメント(光軸調整)のズレ等により対称性が失われ、
再度微調整が必要となる。そして、このモードの狂いを
検知するには、レーザ光伝送路に特殊なモードモニター
を設けたり、アクリル板のバーンパターン採取等、特別
に配慮が必要であった。
By the way, in general, the better the symmetry of the laser light mode, the more excellent the application is, such as the processing performance rate. Therefore, the laser light is required to have symmetry and stability. However, even in the mode adjusted at the beginning of operation, symmetry is lost due to misalignment of the resonator mirror alignment (optical axis adjustment) during operation,
Fine adjustment is needed again. Then, in order to detect the deviation of the mode, special consideration is required such as providing a special mode monitor on the laser light transmission path or collecting a burn pattern of the acrylic plate.

なお、安定形共振器における出力ミラーについてもまっ
たく同様の問題をかかえていた。
The output mirror in the stable resonator had the same problem.

本発明は、上記に鑑み成されてもので、窓や出力ミラー
の総吸収率の経時変化を定量的に把握し、かつ対称性の
良いモードのレーザ光を取出すことを可能とした気体レ
ーザ装置を提供することを目的とする。
Since the present invention has been made in view of the above, it is possible to quantitatively grasp a temporal change in the total absorptance of windows and output mirrors, and to extract a laser beam in a mode with good symmetry. The purpose is to provide.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 上記目的を達成するために、本発明は窓もしくは出力ミ
ラーの冷却されていない他端面外周部に温度測定用のセ
ンサーを設けたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention is characterized in that a temperature measuring sensor is provided on the outer peripheral portion of the uncooled end of the window or the output mirror.

(作 用) 窓や出力ミラーの総吸収率の増大に伴ない、他端面外周
部の温度上昇値も大きくなるため、総吸収率の経時変化
を定量的に把握することが可能となる。
(Operation) As the total absorptance of the window and output mirror increases, the temperature rise value of the outer peripheral surface of the other end also increases, making it possible to quantitatively grasp the temporal change in the total absorptivity.

また、複数個のセンサーにより測定された温度のバラツ
キを監視すれば、モードの狂いをリアルタイムに管理で
き、これを均一化するようにアライメントすることによ
り、対称性のよいモードのレーザ光を取出すことが可能
となる。
In addition, by monitoring the variations in temperature measured by multiple sensors, it is possible to manage mode deviations in real time, and by aligning them to make them uniform, laser light with good symmetry can be extracted. Is possible.

(実施例) 本発明の一実施例を第1図乃至第7図に基づいて説明す
る。第1図には、窓の冷却構造の概略を示しており、第
8図に示した同一または同等部分については同一記号を
付し、詳細な説明を省略する。
(Embodiment) An embodiment of the present invention will be described with reference to FIGS. 1 to 7. FIG. 1 shows an outline of a window cooling structure, and the same or equivalent portions shown in FIG. 8 are designated by the same reference numerals and detailed description thereof will be omitted.

本実施例は、窓1の冷却面と反対側の外周部に熱電対4
を単数もしくは複数個設けたことを特徴とする。共振器
の構成は第2図に示す通りで詳細な説明は省略する。
In this embodiment, the thermocouple 4 is provided on the outer peripheral portion of the window 1 opposite to the cooling surface.
Is provided singularly or plurally. The structure of the resonator is as shown in FIG. 2 and its detailed description is omitted.

第5図及び第6図は、窓1に、第4図に示すような半径
rに対するパワー密度Pのレーザ光(リング状平面液)
が照射された場合の、窓内部の温度分布を2次元軸対称
モデルによる有限要素法により熱解析した結果で、トー
タル入射パワーは10kwで、第5図は総吸収率が0.2%の
場合、第6図は総吸収率が0.5%の場合を示している。
第1図に示した様に、窓1の冷却面は一端面外周部のみ
のため、冷却面と反対側の外周部(図中A点)の温度
は、総吸収率の増大に伴ない高くなる。図中の温度は、
冷却面からの温度上昇値を示している。第7図に、前記
条件における総吸収率ζ(%)に対するA点の温度上昇
値ΔT(℃)の関係を示した。窓1の他端面外周部(A
点)の温度を監視していれば、総吸収率の経時変化が定
量的に把握できることが分る。実際に際しては、それぞ
れのレーザ出力・モードに対して、窓の総吸収率と他端
面外周部の温度上昇値を実測すれば、第7図の関係がよ
り精度よく把握できる。また、いったん第7図の関係が
決まれば、窓他端面外周部(A点)の温度を監視するこ
とにより、窓1の清掃もしくは交換時期を管理すること
が可能となり、常に期待通りのレーザ光を得ることがで
きる。また、複数個の熱電対により、温度を測定してい
る場合には、そのバラツキを常に一定の範囲におさまる
ように管理すれば、常に対称性のよいモードのレーザ光
を得ることができる。
FIGS. 5 and 6 show laser light (ring-shaped plane liquid) having a power density P with respect to a radius r as shown in FIG.
The result of thermal analysis of the temperature distribution inside the window when radiated by the finite element method with a two-dimensional axisymmetric model shows that the total incident power is 10 kW and Fig. 5 shows that when the total absorption rate is 0.2%, Figure 6 shows the case where the total absorption rate is 0.5%.
As shown in FIG. 1, since the cooling surface of the window 1 is only the outer peripheral portion of the one end surface, the temperature of the outer peripheral portion (point A in the figure) on the side opposite to the cooling surface becomes higher as the total absorption rate increases. Become. The temperature in the figure is
The temperature rise value from the cooling surface is shown. FIG. 7 shows the relationship of the temperature increase value ΔT (° C.) at the point A with respect to the total absorption rate ζ (%) under the above conditions. Outer peripheral portion of the other end surface of the window 1 (A
It can be seen that by monitoring the temperature of (point), the change with time of the total absorption rate can be quantitatively grasped. In practice, the relationship in FIG. 7 can be more accurately grasped by actually measuring the total absorptance of the window and the temperature rise value of the outer peripheral portion of the other end surface for each laser output / mode. Further, once the relationship in FIG. 7 is determined, it becomes possible to control the cleaning or replacement time of the window 1 by monitoring the temperature of the outer peripheral portion (point A) of the other end surface of the window, and the laser light is always as expected. Can be obtained. Further, when the temperature is measured by a plurality of thermocouples, it is possible to always obtain a laser beam in a mode with good symmetry, by managing the variation so that it is always within a certain range.

安定形共振器においても、出力ミラーの冷却面と反対側
の外周部に熱電対を単数もしくは複数個設け、温度を測
定することにより、不安定形共振器の場合と同様の効果
が得られる。
Also in the stable resonator, the same effect as in the unstable resonator can be obtained by providing one or more thermocouples on the outer peripheral portion of the output mirror opposite to the cooling surface and measuring the temperature.

なお、本実施例は、大出力CO2レーザ装置を例に、ZnSe
製の窓及び出力ミラーについて述べたが、他の気体レー
ザ及び窓材についても適用できることは言うまでもな
い。
Note that this embodiment, as an example a large output CO 2 laser device, ZnSe
Although the window and the output mirror made of the same have been described, it goes without saying that they can be applied to other gas lasers and window materials.

〔発明の効果) 以上のように、本発明によれば窓、もしくは出カミラー
の冷却面の反対側の外周部に温度測定用のセンサーを単
数もしくは複数個設けることにより、窓もしくは出力ミ
ラーにおける1%未満の総吸収率の経時変化を定量的に
把握可能で、かつ、常に対称性のよいモードのレーザ光
を取出すことが可能な気体レーザ装置を提供することが
できる。なお、この温度監視は窓や出力ミラーの保守周
期・時期を管理するのに非常に有効である。
[Effect of the Invention] As described above, according to the present invention, by providing a single or a plurality of temperature measuring sensors on the outer peripheral portion of the window or the output mirror on the side opposite to the cooling surface, the It is possible to provide a gas laser device capable of quantitatively grasping the change with time of the total absorptance of less than%, and capable of constantly extracting a laser beam in a mode with good symmetry. It should be noted that this temperature monitoring is very effective for controlling the maintenance cycle / time of windows and output mirrors.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例を示す窓用冷却ジャケット
の断面図、第2図は不安定形共振器の概略構成図、第3
図は安定形共振器の概略構成図、第4図は熱解析用の入
射レーザパワー密度分布図、第5図は総吸収率が0.2%
の場合の窓内の温度解析結果、第6図は総吸収率が0.5
%の場合の窓内の温度解析結果、第7図は、窓の総吸収
率に対するA点の温度上昇値の関係、第8図は従来の窓
の冷却ジャケットの断面図である。 1……窓、2……冷却ジャケット、 3……Oリング、4……熱電対、 5……止め輪、6……Oリング押さえ、 7……パッキン、8……凸面ミラー、 9……45゜ミラー、10……凹面ミラー、 11……出力ミラー。
FIG. 1 is a cross-sectional view of a window cooling jacket showing an embodiment of the present invention, FIG. 2 is a schematic configuration diagram of an unstable resonator, and FIG.
Fig. 4 is a schematic diagram of a stable resonator, Fig. 4 is a distribution diagram of incident laser power density for thermal analysis, and Fig. 5 is a total absorption rate of 0.2%.
In the case of, the temperature analysis result in the window is shown in Fig. 6, and the total absorption rate is 0.5.
As a result of temperature analysis in the window in the case of%, FIG. 7 is a relation of the temperature rise value at the point A to the total absorption rate of the window, and FIG. 8 is a sectional view of the conventional cooling jacket of the window. 1 ... Window, 2 ... Cooling jacket, 3 ... O-ring, 4 ... Thermocouple, 5 ... Retaining ring, 6 ... O-ring holder, 7 ... Packing, 8 ... Convex mirror, 9 ... 45 ° mirror, 10 …… concave mirror, 11 …… output mirror.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】共振器を構成するレーザ光取出窓もしくは
出力ミラーの一端面外周部を間接冷却する気体レーザ装
置において、 前記レーザ光取出窓もしくは前記出力ミラーの他端面外
周部に温度測定用のセンサを少なくとも1つ配設したこ
とを特徴とする気体レーザ装置。
1. A gas laser device for indirectly cooling an outer peripheral portion of one end surface of a laser light extraction window or an output mirror constituting a resonator, wherein a temperature measurement is performed on the laser light extraction window or the other end surface outer periphery of the output mirror. A gas laser device comprising at least one sensor.
JP61239123A 1986-10-09 1986-10-09 Gas laser device Expired - Lifetime JPH0746736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61239123A JPH0746736B2 (en) 1986-10-09 1986-10-09 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61239123A JPH0746736B2 (en) 1986-10-09 1986-10-09 Gas laser device

Publications (2)

Publication Number Publication Date
JPS6394694A JPS6394694A (en) 1988-04-25
JPH0746736B2 true JPH0746736B2 (en) 1995-05-17

Family

ID=17040131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61239123A Expired - Lifetime JPH0746736B2 (en) 1986-10-09 1986-10-09 Gas laser device

Country Status (1)

Country Link
JP (1) JPH0746736B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10151587A1 (en) * 2001-10-23 2003-05-22 Trumpf Lasertechnik Gmbh Device for beam guidance of a laser beam
JP5964383B2 (en) 2014-10-16 2016-08-03 ファナック株式会社 Elastic seal member mounting jig

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524475A (en) * 1978-08-10 1980-02-21 Mitsubishi Electric Corp Laser oscillator
JPH0624266B2 (en) * 1983-11-28 1994-03-30 三菱電機株式会社 Laser equipment

Also Published As

Publication number Publication date
JPS6394694A (en) 1988-04-25

Similar Documents

Publication Publication Date Title
KR0130191B1 (en) Conductive face-cooled laser crystal
EP0338011B1 (en) Laser optical element mounting arrangement and method
JPH0151933B2 (en)
WO2017004528A1 (en) Power-scalable nonlinear optical wavelength converter
JPH0746736B2 (en) Gas laser device
DE19528094C2 (en) IR modulator and thermal imaging device with this
JP2000284334A (en) Crystal holding device
EP1257860A1 (en) Method and device for the measuring of the optical power loss in a fiber optical contact means
Locke et al. Performance of an unstable oscillator on a 30-kW CW gas dynamic laser
JP3600873B2 (en) Substrate temperature measurement unit
US5005177A (en) Laser optics quality monitoring
Sitter et al. Exact determination of the real substrate temperature and film thickness in vacuum epitaxial growth systems by visible laser interferometry
Cimrman et al. Lasing performance of Yb: YAG thin-disk with crystalline coatings directly bonded onto silicon carbide heatsink
US20240120701A1 (en) All-solid-state single-frequency continuous wave laser
JPH0268501A (en) Solid etalon
JPH0322579A (en) Slab type solid-state laser
JPH04181787A (en) Laser device
JPS6135492B2 (en)
Xiong et al. Investigation of damage induced by high-power continuous wave laser on SiC-based film
JPH057045A (en) Wavelength control equipment
JPH01312877A (en) Laser equipment
Harris et al. Thermo-Optic Coefficient (∂ n/∂ T) of 1.3 μm Laser Window Materials
Molander Frequency doubling of copper lasers using temperature-tuned ADP
JP2014219498A (en) Optical deflector and laser source including the same
JPS6133539Y2 (en)