JPH0746729Y2 - Engine cooling water temperature control device for engine stop - Google Patents

Engine cooling water temperature control device for engine stop

Info

Publication number
JPH0746729Y2
JPH0746729Y2 JP6576089U JP6576089U JPH0746729Y2 JP H0746729 Y2 JPH0746729 Y2 JP H0746729Y2 JP 6576089 U JP6576089 U JP 6576089U JP 6576089 U JP6576089 U JP 6576089U JP H0746729 Y2 JPH0746729 Y2 JP H0746729Y2
Authority
JP
Japan
Prior art keywords
engine
cooling water
engine cooling
radiator
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6576089U
Other languages
Japanese (ja)
Other versions
JPH036020U (en
Inventor
清一 羽白
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP6576089U priority Critical patent/JPH0746729Y2/en
Publication of JPH036020U publication Critical patent/JPH036020U/ja
Application granted granted Critical
Publication of JPH0746729Y2 publication Critical patent/JPH0746729Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、コンデンスタンクを備えたラジエータで水冷
圧力強制循環式のエンジン冷却を行なう車両に適用され
るエンジン停止時用エンジン冷却水温制御装置に関し、
特に、電子制御燃料噴射装置を構成するインジェクタの
温度上昇防止に有効なエンジン停止時用エンジン冷却水
温制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of the Invention The present invention relates to an engine cooling water temperature control device for an engine stop time, which is applied to a vehicle that performs water cooling pressure forced circulation type engine cooling with a radiator equipped with a condensation tank,
In particular, the present invention relates to an engine cooling water temperature control device for engine stop, which is effective in preventing a temperature rise of an injector that constitutes an electronically controlled fuel injection device.

従来の技術 近年の自動車用エンジンには一般的に水冷圧力強制循環
式の冷却装置が採用されており、そのラジエータ側を第
6図ないし第9図に基づいて説明する。図によれば、図
示省略のエンジンに接続されてエンジン冷却水を供給す
るラジエータ3が連結パイプ9を介してコンデンスタン
ク4と連結されており、ラジエータ4上端のエンジン冷
却水注入ノズル8に取付けたキャップ7の圧力調整機構
が作動することによってエンジン冷却水はラジエータ3
からコンデンスタンク4へ、あるいは逆にコンデンスタ
ンク4からラジエータ3へと流れ、冷却装置の内圧を大
気圧より高めに保ってエンジン冷却水の沸点が高くなる
ように構成されている。そこで、キャップ7に設けられ
た圧力調整機構をさらに詳しく説明すると、圧力調整機
構は加圧弁12及び減圧弁14より成り、通常は第7図に示
す如く両弁共ばね13,18の力で閉じた状態となって約0.9
kg/cm2の内圧を保持している。このため、エンジン冷却
水の沸点は約18℃高くなり、冷却装置にとっては有利に
なる。しかし、ラジエータ3の内圧が0.9kg/cm2よりさ
らに上昇すると、第8図に示す如く、加圧弁12はその圧
力でばね13が収縮して押し上げられ、ラジエータ3内の
エンジン冷却水は連結パイプ9を通って大気開放のコン
デンスタンク4へ流出する。このため、ラジエータ3の
内圧は低下し、約0.9kg/cm2まで下がった時点で加圧弁1
2が閉じてその圧力を保持する。また、エンジン冷却水
の温度が下がってラジエータ3の内圧も低下した場合に
は、ラジエータ内の負圧で減圧弁14がばね18を収縮させ
て開き、エンジン冷却水がコンデンスタンク4からラジ
エータ3へと流入して適切な内圧を維持する。このよう
に、水冷圧力強制循環式の冷却装置ではエンジン冷却に
有利となるため内圧を上げて沸点を高く保っているが、
沸点が高い分だけラジエータ本体やエンジン冷却水の循
環路も高温となる。しかも、走行をやめてエンジンを停
止した場合には、エンジンルーム内に冷たい空気が強制
的に供給されることはなくなり、高温のラジエータ3な
どが自然に冷却されるのを待つのが現状である。
2. Description of the Related Art A water-cooled pressure forced circulation type cooling device is generally adopted in recent automobile engines, and its radiator side will be described with reference to FIGS. 6 to 9. According to the drawing, a radiator 3 which is connected to an engine (not shown) and supplies engine cooling water is connected to a condensation tank 4 via a connecting pipe 9, and is attached to an engine cooling water injection nozzle 8 at the upper end of the radiator 4. By operating the pressure adjusting mechanism of the cap 7, the engine cooling water is cooled by the radiator 3
From the condensation tank 4 to the radiator 3 and vice versa, so that the internal pressure of the cooling device is kept higher than the atmospheric pressure to raise the boiling point of the engine cooling water. Therefore, the pressure adjusting mechanism provided on the cap 7 will be described in more detail. The pressure adjusting mechanism includes a pressurizing valve 12 and a pressure reducing valve 14, and normally both valves are closed by the force of the springs 13 and 18 as shown in FIG. Is about 0.9
The internal pressure of kg / cm 2 is maintained. Therefore, the boiling point of the engine cooling water is increased by about 18 ° C, which is advantageous for the cooling device. However, when the internal pressure of the radiator 3 further rises above 0.9 kg / cm 2 , as shown in FIG. 8, the pressurizing valve 12 is pushed up by the spring 13 contracted by the pressure, and the engine cooling water in the radiator 3 is connected to the connecting pipe. It flows through 9 to the condensation tank 4 which is open to the atmosphere. For this reason, the internal pressure of the radiator 3 drops, and when it falls to about 0.9 kg / cm 2 , the pressurizing valve 1
2 closes and holds its pressure. Further, when the temperature of the engine cooling water decreases and the internal pressure of the radiator 3 also decreases, the negative pressure in the radiator causes the pressure reducing valve 14 to contract and open the spring 18, and the engine cooling water from the condensation tank 4 to the radiator 3. To maintain an appropriate internal pressure. In this way, in the water-cooled pressure forced circulation type cooling device, the internal pressure is raised to keep the boiling point high because it is advantageous for engine cooling.
Due to the high boiling point, the radiator itself and the circulation path of the engine cooling water also become hot. Moreover, when the engine is stopped after the vehicle stops running, the cold air is no longer forcibly supplied into the engine room, and the current situation is to wait until the high temperature radiator 3 and the like are naturally cooled.

考案が解決しようとする課題 ところで、近年エンジンへの燃料供給システムとして電
子制御燃料噴射装置が急速に増加しており、そのインジ
ェクタはエンジンのインテークマニホールドに取付けら
れている。このため、インジェクタはエンジン冷却水温
の影響を受けやすく、たとえば第5図に示す如く、実線
で示したエンジン冷却水と一点鎖線で示したインジェク
タとの間には、走行中エンジンルーム内を空気が流通す
るため、温度差が生じている。しかし、真夏などに過酷
な走行をした後にエンジンを停止すると、エンジンルー
ム内への空気の流入がなくなるため熱がこもり、エンジ
ン冷却水の温度は一端上昇して110℃以上がかなり続い
た後に徐々に自然冷却されることになる。一方、インジ
ェクタや他の部品もエンジン停止と同時にエンジン冷却
水温の影響を受けて温度が上がりはじめ、時間の経過に
応じてエンジン冷却水温と漸近することになる。従っ
て、エンジン停止後に短時間放置して再始動すると、特
にインジェクタが高温となっている場合には、インジェ
クタによる燃料噴射を思い通り制御できなくなる不都合
があった。また、110℃以上の高温が続くことは他の部
品にとっても好ましいことではなかった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention By the way, in recent years, an electronically controlled fuel injection device has been rapidly increasing as a fuel supply system to an engine, and its injector is attached to an intake manifold of the engine. For this reason, the injector is easily affected by the engine cooling water temperature, and as shown in FIG. 5, for example, between the engine cooling water shown by the solid line and the injector shown by the alternate long and short dash line, air does not flow in the engine room during traveling. Due to distribution, there is a temperature difference. However, if the engine is stopped after running harshly in the midsummer, heat will be retained because the air will not flow into the engine room, and the temperature of the engine cooling water will rise once and gradually rise above 110 ° C, then gradually. It will be naturally cooled. On the other hand, the injectors and other parts also start to rise in temperature under the influence of the engine cooling water temperature at the same time when the engine is stopped, and gradually approach the engine cooling water temperature with the passage of time. Therefore, if the engine is left for a short time and restarted after the engine is stopped, there is a disadvantage that the fuel injection by the injector cannot be controlled as desired, especially when the temperature of the injector is high. Further, the continued high temperature of 110 ° C. or higher was not preferable for other parts.

課題を解決するための手段 本考案は、前述の課題を解決するもので、コンデンスタ
ンクを備えたラジエータで水冷圧力強制循環式のエンジ
ン冷却を行なう車両のエンジン停止時用エンジン冷却水
温制御装置において、エンジン冷却水の温度を測定する
水温センサと、エンジン停止後の時間を測定するタイマ
と、ラジエータ内のエンジン冷却水循環流路から分岐し
て前記コンデンスタンクへ連通する減圧流路に設けた電
磁開閉弁とを具備し、エンジン停止後に所定の時間を経
過してもエンジン冷却水が所定の温度以上ある場合には
前記電磁開閉弁を開いてラジエータ内の圧力を低下させ
るように構成したことを特徴とするエンジン停止時用エ
ンジン冷却水温制御装置である。
Means for Solving the Problems The present invention is to solve the above-mentioned problems, and in an engine cooling water temperature control device for an engine stop time of a vehicle that performs water cooling pressure forced circulation type engine cooling with a radiator equipped with a condensation tank, A water temperature sensor that measures the temperature of the engine cooling water, a timer that measures the time after the engine is stopped, and an electromagnetic on-off valve provided in the pressure reducing channel that branches from the engine cooling water circulation channel in the radiator and communicates with the condensation tank. When the engine cooling water is equal to or higher than a predetermined temperature even after a predetermined time elapses after the engine is stopped, the electromagnetic opening / closing valve is opened to reduce the pressure in the radiator. It is an engine cooling water temperature control device for engine stop.

作用 前述の手段によれば、エンジン停止後に所定の時間を経
過した時点でエンジン冷却水が所定の温度以上ある場
合、ラジエータ内のエンジン冷却水循環経路から分岐し
てコンデンスタンクへ連通する減圧流路に設けた電磁開
閉弁を開くことにより、ラジエータ内で高温高圧となっ
ているエンジン冷却水は減圧流路を通ってコンデンスタ
ンクへ流れ込む。このため、ラジエータ内の圧力は低下
してエンジン冷却水の沸点が下がり、エンジン冷却水は
大きな気化熱を消費して沸騰するため温度が急激に低下
する。
Action According to the above-mentioned means, when the engine cooling water has a temperature equal to or higher than the predetermined temperature when the predetermined time has elapsed after the engine is stopped, the depressurizing flow path is branched from the engine cooling water circulation path in the radiator and communicates with the condensation tank. By opening the provided electromagnetic on-off valve, the engine cooling water, which has a high temperature and high pressure in the radiator, flows into the condensation tank through the pressure reducing passage. For this reason, the pressure in the radiator is lowered, the boiling point of the engine cooling water is lowered, and the engine cooling water consumes a large amount of heat of vaporization and boils, so that the temperature is drastically lowered.

実施例 本考案によるエンジン停止時用エンジン冷却水温制御装
置の一実施例を第1図ないし第5図に基づいて説明する
と、エンジン停止時用エンジン冷却水温制御装置は、エ
ンジン冷却水の温度を測定する水温センサ1と、エンジ
ン停止後の時間を測定するタイマ2と、ラジエータ3内
のエンジン冷却水循環流路から分岐してコンデンスタン
ク4へ連通する減圧流路5に設けた電磁開閉弁6とを具
備し、図示省略のエンジン停止後にタイマ2で所定時間
の経過を測定すると同時に水温センサ1でエンジン冷却
水の温度を測定して、エンジン停止後の所定時間経過時
にエンジン冷却水が所定の温度以上ある場合には電磁開
閉弁6を開いてラジエータ内の圧力を低下させるように
構成されている。なお、7は圧力調整機構を備えたキャ
ップ、8はエンジン冷却水注入ノズル、9は連結パイ
プ、10はオーバーフローパイプ、11はバッテリー電源を
各々示している。
Embodiment An embodiment of the engine cooling water temperature control device for engine stop according to the present invention will be described with reference to FIGS. 1 to 5. The engine cooling water temperature control device for engine stop measures the temperature of engine cooling water. A water temperature sensor 1, a timer 2 for measuring the time after the engine is stopped, and an electromagnetic on-off valve 6 provided in a pressure reducing passage 5 branching from the engine cooling water circulation passage in the radiator 3 and communicating with the condensation tank 4. The temperature of the engine cooling water is measured by the water temperature sensor 1 at the same time as the timer 2 measures the elapse of a predetermined time after the engine is stopped (not shown). In some cases, the solenoid on-off valve 6 is opened to reduce the pressure in the radiator. Reference numeral 7 is a cap provided with a pressure adjusting mechanism, 8 is an engine cooling water injection nozzle, 9 is a connecting pipe, 10 is an overflow pipe, and 11 is a battery power source.

上述した構成のエンジン停止時用エンジン冷却水温制御
装置によれば、通常は第2図に示す如く電磁開閉弁6が
閉じられ、キャップ7の圧力調整機構が作動してラジエ
ータ3の内圧を0.9kg/cm2程度に保っている。そして、
真夏などに過酷な走行をしてエンジンを停止すると、エ
ンジン冷却水の温度は、第5図に示す如く、一端約120
℃まで上昇してから徐々に自然冷却されて下がりはじめ
る。そこで、このエンジン冷却水温を水温センサ1で測
定すると同時にエンジン停止後の時間をタイマ2で測定
し、たとえばエンジン停止後10分経過した時点でエンジ
ン冷却水温が100℃以上ある場合に電磁開閉弁6を開
く。すると、高温高圧のエンジン冷却水は、第1図に矢
印で示す如く、ラジエータ3から減圧流路5を通って大
気開放のコンデンスタンク4へ流れ込む。この結果、ラ
ジエータ3の内圧が下がってエンジン冷却水の沸点は低
下するので、エンジン冷却水は大きな気化熱を消費して
沸騰する。このため、エンジン冷却水の温度は、第5図
に破線で示す如く、エンジン停止後10分経過した時点で
急激に下がり、以後ゆっくりと自然冷却される。従っ
て、インテークマニホールド上に取付けられてエンジン
冷却水温の影響を受ける電子制御燃料噴射装置用インジ
ェクタの温度は、第5図に二点鎖線で示す如く、エンジ
ン停止後10分経過した時点でエンジン冷却水との温度差
が小さくなったためその上昇勾配も小さくなり、従来よ
り低いエンジン冷却水温に漸近するのでインジェクタの
温度上昇を低くおさえることができる。なお、エンジン
停止直後に電磁開閉弁6を開かないのはエンジン冷却水
の沸騰量が多すぎるためであり、しかも、インジェクタ
の温度上昇はゆっくりしているため10分程度の時間を経
過させてもその効果に大きな差はない。
According to the engine cooling water temperature control device for engine stop having the above-described configuration, the electromagnetic opening / closing valve 6 is normally closed as shown in FIG. 2, the pressure adjusting mechanism of the cap 7 is operated, and the internal pressure of the radiator 3 is 0.9 kg. / cm 2 is kept. And
When the engine is stopped by running harshly in midsummer, the temperature of the engine cooling water will be about 120 ° C as shown in Fig. 5.
After the temperature rises to ℃, it gradually cools down and begins to fall. Therefore, the engine cooling water temperature is measured by the water temperature sensor 1, and at the same time, the time after the engine is stopped is measured by the timer 2. For example, when the engine cooling water temperature is 100 ° C. or higher 10 minutes after the engine is stopped, the electromagnetic opening / closing valve 6 open. Then, the high-temperature and high-pressure engine cooling water flows from the radiator 3 through the depressurization flow path 5 into the condensation tank 4 which is open to the atmosphere, as shown by the arrow in FIG. As a result, the internal pressure of the radiator 3 is lowered and the boiling point of the engine cooling water is lowered, so that the engine cooling water consumes large heat of vaporization and boils. For this reason, the temperature of the engine cooling water drops sharply 10 minutes after the engine is stopped, as shown by the broken line in FIG. Therefore, the temperature of the injector for the electronically controlled fuel injection device, which is mounted on the intake manifold and is affected by the engine cooling water temperature, is 10 minutes after the engine is stopped, as shown by the chain double-dashed line in FIG. Since the temperature difference between and is small, the rising gradient is also small, and the engine cooling water temperature is asymptotically lower than in the past, so the temperature rise of the injector can be suppressed low. The reason why the electromagnetic on-off valve 6 is not opened immediately after the engine is stopped is because the boiling amount of the engine cooling water is too large, and moreover, since the temperature rise of the injector is slow, even after about 10 minutes have elapsed. There is no big difference in the effect.

また、第3図及び第4図はキャップ7の圧力調整機構を
利用した第2,第3の実施例を示している。第3図の第2
実施例では、キャップ7′の加圧弁12に電磁石19を設け
ておき、エンジン停止後に所定時間を経過した時点でエ
ンジン冷却水が所定温度以上の場合には、電磁石19に通
電して加圧弁12を引き上げるように構成されている。こ
の加圧弁12が引き上げられると、ラジエータ3内にある
高温高圧のエンジン冷却水は連結パイプ9を通ってコン
デンスタンク4へ流れ込み、ラジエータ内圧が下がって
沸点も低下する。なお、加圧弁12は通常ばね13の作用に
よってラジエータ3の内圧を約0.9kg/cm2に保ってい
る。次に、第4図の第3実施例を説明すると、キャップ
7″の減圧弁14と一体の圧力室15を設け、その中にばね
16をセットする。さらに、圧力室15にタイマ2′及びチ
ェック弁16を介してインテークマニホールドの負圧が作
用するように連通管17を設け、エンジンが停止して圧力
室15に作用していた負圧がオリフィス状のタイマ2′か
らゆっくりぬけてなくなった時点でばね16がラジエータ
3の内圧に打ち勝って開くように構成されている。そし
て、減圧弁14が開いたことによって、高温高圧のエンジ
ン冷却水は矢印で示す如く減圧弁14から連結パイプ9を
通ってコンデンスタンク4へ流れ込み、ラジエータ内圧
が下がって沸点も低下する。なお、減圧弁14は、通常の
走行時にはインテークマニホールドの負圧を受けて閉じ
ているが、エンジン冷却水の温度が下がってラジエータ
内に負圧が生じた場合も当然開き、従来と同様にラジエ
ータ3を適切な内圧に維持する作用がある。なお、第5
図に示したエンジン水温及びインジェクタの温度変化は
説明を容易にするもので、気温やその他の条件で変化す
るのは言うまでもない。
Further, FIGS. 3 and 4 show second and third embodiments utilizing the pressure adjusting mechanism of the cap 7. Second of FIG. 3
In the embodiment, an electromagnet 19 is provided on the pressurizing valve 12 of the cap 7 ', and when the engine cooling water is at a predetermined temperature or higher after a predetermined time elapses after the engine is stopped, the electromagnet 19 is energized to pressurize the valve 12. Is configured to pull up. When the pressurizing valve 12 is pulled up, the high-temperature and high-pressure engine cooling water in the radiator 3 flows into the condensation tank 4 through the connecting pipe 9, and the radiator internal pressure lowers and the boiling point also lowers. The pressurizing valve 12 normally maintains the internal pressure of the radiator 3 at about 0.9 kg / cm 2 by the action of the spring 13. Next, referring to the third embodiment of FIG. 4, a pressure chamber 15 integrated with the pressure reducing valve 14 of the cap 7 ″ is provided, and a spring is provided therein.
Set 16 Further, a communication pipe 17 is provided in the pressure chamber 15 via the timer 2'and the check valve 16 so that the negative pressure of the intake manifold acts, and the negative pressure acting on the pressure chamber 15 when the engine is stopped causes the negative pressure to act as an orifice. The spring 16 is constructed so as to overcome the internal pressure of the radiator 3 and open at the time when it slowly disappears from the timer 2 '. When the pressure reducing valve 14 is opened, the high-temperature and high-pressure engine cooling water flows from the pressure reducing valve 14 through the connecting pipe 9 into the condensation tank 4 as indicated by the arrow, and the internal pressure of the radiator is lowered and the boiling point is also lowered. Although the pressure reducing valve 14 is closed under the negative pressure of the intake manifold during normal traveling, it naturally opens when the temperature of the engine cooling water drops and a negative pressure is generated in the radiator. 3 has the effect of maintaining an appropriate internal pressure. The fifth
The changes in the engine water temperature and the temperature of the injector shown in the figure facilitate the explanation, and it goes without saying that they change depending on the temperature and other conditions.

考案の効果 前述の本考案によれば、真夏に過酷な走行をするといっ
た厳しい条件であっても、エンジン停止後のエンジン冷
却水温上昇を低くおさえることができる。このため、エ
ンジン冷却水温の影響を受けるインジェクタや他のエン
ジン周辺部品の温度上昇も低くなり、インジェクタが再
始動時の燃料噴射制御に悪影響を与える程高温となるの
を防止できる効果がある。
Effect of the Invention According to the above-described present invention, the engine cooling water temperature rise after the engine is stopped can be suppressed to a low level even under severe conditions such as driving harshly in the midsummer. Therefore, the temperature rise of the injectors and other parts around the engine that are affected by the engine cooling water temperature is also reduced, and it is possible to prevent the injectors from becoming so hot as to adversely affect the fuel injection control at the time of restart.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は本考案によるエンジン停止時用エン
ジン冷却水温制御装置の一実施例を示す系統図で、第1
図は電磁開閉弁が開いた状態を示す図、第2図は電磁開
閉弁が閉じた状態を示す図、第3図は本考案の第2実施
例を示す図、第4図は本考案の第3実施例を示す図、第
5図はエンジン冷却水及びインジェクタのエンジン停止
後の温度変化を示す図、第6図は従来例を示す系統図、
第7図ないし第9図は第6図のVII部を拡大してキャッ
プの圧力調整機構を示した図で、第7図は加圧弁及び減
圧弁が共に閉じた通常の状態を示す図、第8図はラジエ
ータ内が高温高圧となって加圧弁を開いた状態を示す
図、第9図はラジエータ内の圧力が低下して減圧弁を開
いた状態を示す図である。 1……水温センサ、2,2′……タイマ、3……ラジエー
タ、4……コンデンスタンク、5……減圧流路、6……
電磁開閉弁、7,7′,7″……キャップ、8……エンジン
冷却水注入ノズル、9……連結パイプ、10……オーバー
フローパイプ、11……バッテリー電源、12……加圧弁、
13,18……ばね、14……減圧弁、15……圧力室、16……
チェック弁、17……連通管。
1 and 2 are system diagrams showing an embodiment of an engine cooling water temperature control device for engine stop according to the present invention.
The figure shows a state in which the solenoid on-off valve is opened, FIG. 2 shows the state in which the solenoid on-off valve is closed, FIG. 3 shows the second embodiment of the present invention, and FIG. 4 shows the present invention. FIG. 5 is a diagram showing a third embodiment, FIG. 5 is a diagram showing changes in temperature of engine cooling water and an injector after the engine is stopped, and FIG. 6 is a system diagram showing a conventional example,
7 to 9 are enlarged views of the portion VII of FIG. 6 showing the pressure adjusting mechanism of the cap, and FIG. 7 is a view showing a normal state in which both the pressurizing valve and the pressure reducing valve are closed, FIG. 8 is a diagram showing a state in which the inside of the radiator has become high temperature and high pressure and the pressurizing valve is opened, and FIG. 9 is a diagram showing a state in which the pressure inside the radiator is lowered and the pressure reducing valve is opened. 1 ... Water temperature sensor, 2, 2 '... Timer, 3 ... Radiator, 4 ... Condensation tank, 5 ... Decompression flow path, 6 ...
Electromagnetic on-off valve, 7,7 ', 7 "... Cap, 8 ... Engine cooling water injection nozzle, 9 ... Connection pipe, 10 ... Overflow pipe, 11 ... Battery power supply, 12 ... Pressure valve,
13,18 ... Spring, 14 ... Reducing valve, 15 ... Pressure chamber, 16 ...
Check valve, 17 ... Communication pipe.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】コンデンスタンクを備えたラジエータで水
冷圧力強制循環式のエンジン冷却を行なう車両のエンジ
ン停止時用エンジン冷却水温制御装置において、エンジ
ン冷却水の温度を測定する水温センサと、エンジン停止
後の時間を測定するタイマと、ラジエータ内のエンジン
冷却水循環流路から分岐して前記コンデンスタンクへ連
通する減圧流路に設けた電磁開閉弁とを具備し、エンジ
ン停止後に所定の時間を経過してもエンジン冷却水が所
定の温度以上ある場合には前記電磁開閉弁を開いてラジ
エータ内の圧力を低下させるように構成したことを特徴
とするエンジン停止時用エンジン冷却水温制御装置。
Claims: 1. An engine cooling water temperature control device for stopping an engine of a vehicle in which a radiator equipped with a condensation tank is used to perform water cooling pressure forced circulation type engine cooling; a water temperature sensor for measuring the temperature of the engine cooling water; A timer for measuring the time, and an electromagnetic on-off valve provided in the pressure reducing flow path that branches from the engine cooling water circulation flow path in the radiator and communicates with the condensation tank, and a predetermined time elapses after the engine is stopped. Also, when the engine cooling water is at a predetermined temperature or higher, the electromagnetic on-off valve is opened to reduce the pressure inside the radiator, and the engine cooling water temperature control device for engine stop is characterized.
JP6576089U 1989-06-07 1989-06-07 Engine cooling water temperature control device for engine stop Expired - Lifetime JPH0746729Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6576089U JPH0746729Y2 (en) 1989-06-07 1989-06-07 Engine cooling water temperature control device for engine stop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6576089U JPH0746729Y2 (en) 1989-06-07 1989-06-07 Engine cooling water temperature control device for engine stop

Publications (2)

Publication Number Publication Date
JPH036020U JPH036020U (en) 1991-01-22
JPH0746729Y2 true JPH0746729Y2 (en) 1995-10-25

Family

ID=31597876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6576089U Expired - Lifetime JPH0746729Y2 (en) 1989-06-07 1989-06-07 Engine cooling water temperature control device for engine stop

Country Status (1)

Country Link
JP (1) JPH0746729Y2 (en)

Also Published As

Publication number Publication date
JPH036020U (en) 1991-01-22

Similar Documents

Publication Publication Date Title
CA2405350C (en) Liquid cooled fuel injection valve and method of operating a liquid cooled fuel injection valve
US6289879B1 (en) Air eliminating return fuel recirculation valve
JPH08338339A (en) Diesel engine
JPH0746729Y2 (en) Engine cooling water temperature control device for engine stop
CN210564740U (en) Electric control cooling nozzle
US4432328A (en) Vapor lock and percolation phenomena inhibiting system
US2801645A (en) Carburetor fuel inlet valve
US3186470A (en) Thermostatic valve for fuel pumps
JP2002070652A (en) Pressure regulator in liquefied gas feeding device for engine
JPS6316160A (en) Fuel pressure control device
JPS6145067B2 (en)
JPS6218675Y2 (en)
JPH0647663U (en) Fuel supply device for internal combustion engine
JPH09177630A (en) High pressure fuel injection device
JPS6275182A (en) Solenoid valve
JP2539155Y2 (en) Vaporizer heating device
JPH05133295A (en) Fuel supply device for vehicle engine
JPS6024929Y2 (en) carburetor fuel system
JPS6135365B2 (en)
JPH0244055Y2 (en)
JPH0749006Y2 (en) Fuel filter device for diesel engine
JPS6228648Y2 (en)
JPS61167155A (en) Pressure regulator for internal-combustion engine
US1886910A (en) Carburetor
JPS6240100Y2 (en)