JPH0746680B2 - Exposure equipment - Google Patents

Exposure equipment

Info

Publication number
JPH0746680B2
JPH0746680B2 JP61223659A JP22365986A JPH0746680B2 JP H0746680 B2 JPH0746680 B2 JP H0746680B2 JP 61223659 A JP61223659 A JP 61223659A JP 22365986 A JP22365986 A JP 22365986A JP H0746680 B2 JPH0746680 B2 JP H0746680B2
Authority
JP
Japan
Prior art keywords
light
reticle
wafer
projection lens
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61223659A
Other languages
Japanese (ja)
Other versions
JPS6380530A (en
Inventor
和夫 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61223659A priority Critical patent/JPH0746680B2/en
Publication of JPS6380530A publication Critical patent/JPS6380530A/en
Publication of JPH0746680B2 publication Critical patent/JPH0746680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • G03F9/7026Focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ICおよびLSI等の半導体装置の製造工程の
内、ホトリソグラフィ工程において使用される露光装置
に関する。
Description: TECHNICAL FIELD The present invention relates to an exposure apparatus used in a photolithography process among manufacturing processes of semiconductor devices such as IC and LSI.

具体例としては、投影光学系を用いてレチクル上のパタ
ーンを半導体基板(ウエハ)上に投影露光する装置であ
って、レチクル上のパターンと半導体基板上のパターン
との位置整合のためのアライメント光学系と、投影光学
系を含む装置全体とをマッチングさせた露光装置に関す
る。
As a specific example, there is an apparatus for projecting and exposing a pattern on a reticle onto a semiconductor substrate (wafer) by using a projection optical system, and an alignment optical for aligning the pattern on the reticle and the pattern on the semiconductor substrate. The present invention relates to an exposure apparatus in which a system and the entire apparatus including a projection optical system are matched.

[従来技術] 従来、この種の、レーザを用いてウエハとレチクルを投
影レンズを介して重ね合わせた状態で相対位置決めする
装置においては、レチクルのマークの透過像と反射像お
よびウエハのマークの反射像とが検出され、レチクルか
らの一方の像が他方の像に干渉したり、またはウエハか
らの像に干渉したりして、ウエハとレチクルの相対位置
関係を検出する際に悪影響を及ぼしていた。それを防止
するための一例として、投影レンズ内にλ/4板を入れ、
レチクル信号とウエハ信号を偏光方向で分離して観察す
るものがある。
[Prior Art] Conventionally, in this type of apparatus for relatively positioning a wafer and a reticle by using a laser in a state of being superposed through a projection lens, a transmission image and a reflection image of the reticle mark and a reflection of the wafer mark are reflected. Image is detected, and one image from the reticle interferes with the other image or the image from the wafer, which adversely affects the detection of the relative positional relationship between the wafer and the reticle. . As an example to prevent it, put a λ / 4 plate in the projection lens,
There is one in which the reticle signal and the wafer signal are separated in the polarization direction and observed.

[発明が解決しようとする問題点] しかしながら、このような従来技術によれば、レチクル
系(以下MD系と称す)とウエハ系(以下MW系と称す)の
2系統の信号光処理光学系をそれぞれ左右2眼ずつもた
なければならなかった。
[Problems to be Solved by the Invention] However, according to such a conventional technique, a signal light processing optical system having two systems of a reticle system (hereinafter referred to as MD system) and a wafer system (hereinafter referred to as MW system) is provided. I had to have two eyes on each side.

また、従来の方法ではレチクルの厚みは観察光学系の設
計パラメータになっているので、レチクルの厚みが変わ
るとそれに対応して観察光学系を適正な位置(レチクル
と観察光学系間の最適距離)に合せなければならず、レ
チクル厚の標準厚との違いが露光装置の仕様を特注化し
ていた。
Also, in the conventional method, the reticle thickness is a design parameter of the observation optical system, so when the reticle thickness changes, the observation optical system is placed at the appropriate position (the optimum distance between the reticle and the observation optical system). The difference between the reticle thickness and the standard thickness made the specifications of the exposure apparatus custom-ordered.

本発明は、上述従来例にあるMD系およびMW系の各別個の
信号処理系を必要とせずすなわち各信号を分離する必要
がなく、従って投影レンズ内のλ/4板を取り去ることが
でき、より簡素でローコストなアライメント系および投
影レンズを有する露光装置を提供することを目的とす
る。
The present invention does not require separate signal processing systems of the MD system and the MW system in the above-mentioned conventional example, that is, it is not necessary to separate each signal, and therefore, the λ / 4 plate in the projection lens can be removed, It is an object of the present invention to provide an exposure apparatus having a simpler and lower cost alignment system and a projection lens.

[問題点を解決するための手段および作用] この目的を達成するため本発明の露光装置は、レチクル
上のパターンをレジストが塗布されたウエハ上に投影露
光する投影レンズと、非露光波長光である光束を2つの
光束に分離する光束分離手段と、分離された一方の光束
で前記レチクル上のマークを照射し、他方の光束で前記
ウエハ上のマークを前記投影レンズを介して照射し、そ
れぞれの反射光をそれぞれ元の光路に戻し、前記光束分
離手段で合成して、観察する手段とを有し、前記他方の
光束が前記投影レンズを通過する際発生する非点結像及
びコマ収差を補正するためのアスコマ補正光学系を前記
他方の光束の光路内に設けたことを特徴とする。
[Means and Actions for Solving Problems] In order to achieve this object, the exposure apparatus of the present invention uses a projection lens for projecting and exposing a pattern on a reticle onto a resist-coated wafer, and a non-exposure wavelength light. A light beam separating means for separating a certain light beam into two light beams, one of the separated light beams to illuminate a mark on the reticle, and the other light beam to illuminate a mark on the wafer through the projection lens. Of the reflected light of each of them is returned to the original optical path, combined by the light beam separating means, and observed, and the astigmatism and coma aberration generated when the other light beam passes through the projection lens. An ascoma correction optical system for correction is provided in the optical path of the other light beam.

これによれば、非露光波長光である光束を2つの光束に
分離し、各光束でそれぞれレチクルおよびウエハ上のマ
ークを照射し、各反射光を再び合成して観察するように
したため、各マークからの信号光は、互いに他方のマー
クを介することなく、干渉せずに観察される。そして特
に、ウエハ上のマークを検出する光束の光路内に、その
光束が投影レンズを通過する際発生する非点結像及びコ
マ収差を補正するためのアスコマ補正光学系を設けるよ
うにしたため、非露光波長の光束で投影レンズの軸外を
介して観察されるウエハのマークの反射像が忠実に結像
する。その結果、ウエハ上のレジストを感光させること
もなく、レチクルおよびウエハのマークの像が互いに干
渉せずに良好に結像して観察され、しかもひとつの検出
系で直接レチクルおよびウエハの位置関係が検出され
る。したがって、レチクルとウエハの高精度な位置合せ
が簡素でローコストなアライメント系で達成される。
According to this method, the light flux which is the non-exposure wavelength light is separated into two light fluxes, and each light flux irradiates the marks on the reticle and the wafer, and the reflected lights are combined again for observation. The signal lights from the two are observed without interfering with each other and without being interfered with each other. In particular, an ascoma correction optical system for correcting astigmatism and coma generated when the light flux passes through the projection lens is provided in the optical path of the light flux that detects the mark on the wafer. With the light flux of the exposure wavelength, the reflected image of the mark on the wafer observed via the off-axis of the projection lens is faithfully formed. As a result, without exposing the resist on the wafer, the images of the marks on the reticle and the wafer can be well formed and observed without interfering with each other, and the positional relationship between the reticle and the wafer can be directly observed by one detection system. To be detected. Therefore, highly accurate alignment between the reticle and the wafer can be achieved with a simple and low-cost alignment system.

[実施例] 以下、図面を用いて本発明の実施例を説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図〜第3図は本発明の一実施例を示す。第1図を参
照して、1はレチクル、2は投影レンズ、3はウエハ、
4は可動ミラー、5a,5bはミラー、6は対物レンズ、7
は照明レンズ、8は光ファイバ、9a,9bはハーフプリズ
ム、10はリレーレンズ、11はエレクタ、12は空間フィル
タ、13はCCDカメラである。第3図に示す15はアスコマ
補正光学系である。第2,3図の16はウエハ側スクライブ
線上のアライメントマークに合せる従来のレチクル側合
せマーク相当位置、17,17aは本実施例におけるレチクル
側合せマーク位置である。第1図の19はXYステージであ
る。
1 to 3 show an embodiment of the present invention. Referring to FIG. 1, 1 is a reticle, 2 is a projection lens, 3 is a wafer,
4 is a movable mirror, 5a and 5b are mirrors, 6 is an objective lens, 7
Is an illumination lens, 8 is an optical fiber, 9a and 9b are half prisms, 10 is a relay lens, 11 is an elector, 12 is a spatial filter, and 13 is a CCD camera. Reference numeral 15 shown in FIG. 3 is an ascoma correction optical system. Reference numerals 16 and 17 in FIGS. 2 and 3 denote positions corresponding to the conventional reticle side alignment mark aligned with the alignment mark on the wafer side scribe line, and 17 and 17a are reticle side alignment mark positions in this embodiment. 19 in FIG. 1 is an XY stage.

第1図の概念図を用いて本実施例の光路および信号光の
経路について簡単に説明する。
The optical path and the signal light path of this embodiment will be briefly described with reference to the conceptual diagram of FIG.

図中ファイバ8を光源とする露光光と同一波長の照明光
は、照明レンズ7、ハーフプリズム9a、ミラー5aおよび
対物レンズ6を経てハーフプリズム9bに入射し、ここで
反射光と透過光とに分岐される。反射光は、ミラー5bを
通り可動ミラー4に入射し可動ミラー4で折り曲げられ
た後、投影レンズ2を介してレンズ像面側(ウエハ)に
到達する。このようにして到達した光はウエハ側のマー
クを照射し、その結果得られるウエハ側観察信号光は前
述の光路を逆にたどり可動ミラー4、ミラー5b、ハーフ
プリズム9b、対物レンズ6およびミラー5aを経てハーフ
プリズム9aを透過し、リレーレンズ10、エレクタ11およ
び空間フィルタ12を経てCCDカメラ13に入る。
Illumination light having the same wavelength as the exposure light using the fiber 8 as a light source in the figure enters the half prism 9b through the illumination lens 7, the half prism 9a, the mirror 5a and the objective lens 6, and is converted into reflected light and transmitted light. Branched. The reflected light enters the movable mirror 4 through the mirror 5b, is bent by the movable mirror 4, and then reaches the lens image plane side (wafer) via the projection lens 2. The light thus reached illuminates the mark on the wafer side, and the resulting wafer-side observation signal light traces the above optical path in the reverse direction, and the movable mirror 4, the mirror 5b, the half prism 9b, the objective lens 6 and the mirror 5a. After passing through the half prism 9a, the light passes through the relay lens 10, the elector 11 and the spatial filter 12, and enters the CCD camera 13.

一方、ハーフプリズム9bを透過した照明光はそのままレ
チクルのパターン面側を照射し、その観察信号光は同じ
くハーフプリズム9bを透過し、対物レンズ6およびミラ
ー5aを経てハーフプリズム9aを透過し、リレーレンズ1
0、エレクタ11および空間フィルタ12を経てCCDカメラ13
に入る。
On the other hand, the illumination light that has passed through the half prism 9b irradiates the pattern surface side of the reticle as it is, and the observation signal light also passes through the half prism 9b, then passes through the objective lens 6 and the mirror 5a, and then through the half prism 9a. Lens 1
CCD camera 13 through 0, erector 11 and spatial filter 12
to go into.

図示しない画像処理装置においては、このCCDカメラ13
から出力される映像信号を受信しウエハ3とレチクル1
の相対合せ状況を調べるための画像処理を行なう。
In the image processing device (not shown), the CCD camera 13
The video signal output from the wafer 3 and the reticle 1 are received.
Image processing is performed to check the relative alignment state of.

つまり、本実施例では、ウエハ観察のための光束とレチ
クル観察のための光束を分離し、相互の信号の干渉を防
止している。
That is, in the present embodiment, the light beam for wafer observation and the light beam for reticle observation are separated to prevent mutual signal interference.

第2図は、第1図に示す本実施例のレチクル1の周辺に
ついて展開している説明図である。同図では、説明の都
合上可動ミラー4とハーフプリズム9bの間のミラー5bを
外し、横方向に展開している。また、可動ミラー4は露
光光束内に投入されている状態を図示してあるが、相対
位置合せ終了後は露光光束をさえぎらないように破線4b
の位置まで退避する。
FIG. 2 is an explanatory view developed around the reticle 1 of this embodiment shown in FIG. In the figure, for convenience of description, the mirror 5b between the movable mirror 4 and the half prism 9b is removed, and it is expanded in the lateral direction. Further, although the movable mirror 4 is shown in the state in which it is thrown into the exposure light flux, the broken line 4b is shown so as not to interrupt the exposure light flux after the completion of the relative alignment.
Retreat to the position.

第2図の状態で、露光光束内に投入された可動ミラー4
によりできる光路を第1の分岐光路とし、その第1の分
岐光路上に配置されたハーフプリズム9bによりできる光
路を第2の分岐光路と称す。
In the state shown in FIG. 2, the movable mirror 4 put into the exposure light beam.
The optical path formed by the above is referred to as a first branched optical path, and the optical path formed by the half prism 9b arranged on the first branched optical path is referred to as a second branched optical path.

前述のように、対物レンズ6を通って入射した照明光は
ハーフプリズム9bのハーフミラー面により2つに分けら
れる。そのうちの一方のハーフミラー面により折り曲げ
られた部分は第1の分岐光路上を進み、その光路上の対
物レンズ6の焦点位置で結像する。また、可動ミラー4
の露光光束内への投入により、結像面から投影レンズ2
の物体面側(レチクル側)へ来た光束の一部は可動ミラ
ー4により折り曲げられ第1の分岐光路上を進み、投影
レンズ2の物体面側焦点位置に相当する位置で結像す
る。この両結像点を合致させることでウエハ上のマーク
を照明し観察することができる。
As described above, the illumination light incident through the objective lens 6 is divided into two by the half mirror surface of the half prism 9b. A portion of the one half mirror surface that is bent advances along the first branched optical path and forms an image at the focal position of the objective lens 6 on the optical path. In addition, the movable mirror 4
Of the projection lens 2 from the image plane to the projection lens 2
A part of the light flux that has come to the object plane side (reticle side) is bent by the movable mirror 4 and travels on the first branch optical path to form an image at a position corresponding to the object plane side focal position of the projection lens 2. The marks on the wafer can be illuminated and observed by matching these two imaging points.

また、ハーフプリズム9bのハーフミラー面をそのまま透
過した部分は、前記第2の分岐光路上を進む。ここで、
この光路上の対物レンズ6の焦点をレチクル1のパター
ン面側に合わせることにより、レチクル側位置合せマー
クを照明し観察することができる。
Further, the portion of the half prism 9b that has directly transmitted through the half mirror surface travels on the second branch optical path. here,
By aligning the focus of the objective lens 6 on the optical path with the pattern surface side of the reticle 1, the reticle side alignment mark can be illuminated and observed.

すなわち、本実施例では、ハーフプリズム9bはキューブ
形状であるので、第2図のように可動ミラー4の光束中
心からレチクル1のパターン面までの距離をL1とする
と、可動ミラー4の光束中心から可動ミラー4により折
り曲げられた投影レンズ2から来た光束の結像点までの
距離、ハーフプリズム9b内光束中心から第1の分岐光路
上の対物レンズ6の焦点までの距離およびハーフプリズ
ム9b内の光束中心から第2の分岐光路上の対物レンズ6
の焦点までの距離(つまり、ハーフプリズム9bからレチ
クル1のパターン面までの距離)は全てL1に等しく、ま
た、そうなるようにそれぞれの位置を合せている。
That is, in this embodiment, since the half prism 9b has a cube shape, if the distance from the center of the luminous flux of the movable mirror 4 to the pattern surface of the reticle 1 is L 1 as shown in FIG. From the projection lens 2 bent by the movable mirror 4 to the image forming point of the light beam, the distance from the center of the light beam in the half prism 9b to the focus of the objective lens 6 on the first branch optical path, and in the half prism 9b. Objective lens 6 on the second branch optical path from the center of the luminous flux of
The distance to the focus (i.e., the distance from the half prism 9b to the pattern surface of the reticle 1) are all equal to L 1, also combined the positions to make it so.

[実施例の変形例] 上述の実施例では露光波長光を観察光として用いた観察
光学系について示したが、本発明は第3図に示すように
露光光と異った波長の光を用いた観察方式にも容易に適
応できる。この場合、前記第1の分岐光路内の可動ミラ
ー4からハーフプリズム9bまでの間に、観察に使用する
波長の光と投影レンズ2の関係から発生する非点結像や
コマ収差を補正するための光学系15を加える。また、観
察光と投影レンズ2の関係から発生するもう1つの収差
である軸上色収差ΔLは、同図に示すように第1の分岐
光路内で吸収するように各部を配置すれば良い。この変
形例のように観察光を非露光波長光にすればウエハ側の
マーク保存は完全であり、またg線吸収レジスト等を使
用する場合等のプロセスがらみの条件に対しても対応で
きる。
[Modification of Example] Although the observation optical system using the exposure wavelength light as the observation light has been described in the above-mentioned embodiments, the present invention uses light having a wavelength different from that of the exposure light as shown in FIG. It can be easily adapted to the existing observation method. In this case, in order to correct astigmatism and coma generated between the movable mirror 4 and the half prism 9b in the first branch optical path due to the relationship between the light of the wavelength used for observation and the projection lens 2. Add optical system 15 of. Further, as shown in the figure, the respective components may be arranged so that axial chromatic aberration ΔL, which is another aberration caused by the relationship between the observation light and the projection lens 2, is absorbed in the first branched optical path. If the observation light is a non-exposure wavelength light as in this modified example, the mark preservation on the wafer side is complete, and it is possible to cope with the condition that the process is involved such as when using a g-ray absorbing resist.

[発明の効果] 以上説明したように本発明によれば、レチクルおよびウ
エハのマークを、簡単な構成により、信号光の干渉や投
影レンズによる収差の影響なしに、正確な位置関係にお
いて観察することができる。したがって、レチクルとウ
エハの高精度な位置合せを簡素でローコストなアライメ
ント系で達成することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to observe marks on a reticle and a wafer in a precise positional relationship with a simple structure without interference of signal light or aberration of a projection lens. You can Therefore, highly accurate alignment between the reticle and the wafer can be achieved with a simple and low-cost alignment system.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例に係る概念図、 第2図は、第1図の実施例の説明図、 第3図は、第2図の部分の変形例である。 1:レチクル、2:投影レンズ、3:ウエハ、4:可動ミラー、
5a,5b:ミラー、6:対物レンズ、7:照明レンズ、8:光ファ
イバ、9a,9b:ハーフプリズム、10:リレーレンズ、11:エ
レクタ、12:空間フィルタ、13:CCDカメラ、16:従来のレ
チクル側合せマーク位置、17,17a:本発明によるレチク
ル側合せマーク位置。
FIG. 1 is a conceptual diagram according to one embodiment of the present invention, FIG. 2 is an explanatory diagram of the embodiment of FIG. 1, and FIG. 3 is a modification of the portion of FIG. 1: reticle, 2: projection lens, 3: wafer, 4: movable mirror,
5a, 5b: Mirror, 6: Objective lens, 7: Illumination lens, 8: Optical fiber, 9a, 9b: Half prism, 10: Relay lens, 11: Electa, 12: Spatial filter, 13: CCD camera, 16: Conventional Reticle-side alignment mark positions 17, 17a: reticle-side alignment mark positions according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】レチクル上のパターンをレジストが塗布さ
れたウエハ上に投影露光する投影レンズと、非露光波長
光である光束を2つの光束に分離する光束分離手段と、
分離された一方の光束で前記レチクル上のマークを照射
し、他方の光束で前記ウエハ上のマークを前記投影レン
ズを介して照射し、それぞれの反射光をそれぞれ元の光
路に戻し、前記光束分離手段で合成して、観察する手段
とを有し、前記他方の光束が前記投影レンズを通過する
際発生する非点結像及びコマ収差を補正するためのアス
コマ補正光学系を前記他方の光束の光路内に設けたこと
を特徴とする露光装置。
1. A projection lens for projecting and exposing a pattern on a reticle onto a resist-coated wafer, and a light beam separating means for separating a light beam which is a non-exposure wavelength light into two light beams.
The separated light flux illuminates the mark on the reticle, the other light flux illuminates the mark on the wafer through the projection lens, and returns each reflected light to the original optical path to separate the light flux. An ascoma correction optical system for correcting astigmatism and coma generated when the other light flux passes through the projection lens. An exposure apparatus provided in the optical path.
JP61223659A 1986-09-24 1986-09-24 Exposure equipment Expired - Fee Related JPH0746680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61223659A JPH0746680B2 (en) 1986-09-24 1986-09-24 Exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61223659A JPH0746680B2 (en) 1986-09-24 1986-09-24 Exposure equipment

Publications (2)

Publication Number Publication Date
JPS6380530A JPS6380530A (en) 1988-04-11
JPH0746680B2 true JPH0746680B2 (en) 1995-05-17

Family

ID=16801640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61223659A Expired - Fee Related JPH0746680B2 (en) 1986-09-24 1986-09-24 Exposure equipment

Country Status (1)

Country Link
JP (1) JPH0746680B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2472209A1 (en) * 1979-12-18 1981-06-26 Thomson Csf TWO-REASON AUTOMATIC ALIGNMENT OPTICAL SYSTEM COMPRISING ALTERNATIVES OF THE NETWORK TYPE, PARTICULARLY IN DIRECT PHOTO-REPETITION ON SILICON
JPS5972728A (en) * 1982-10-20 1984-04-24 Canon Inc Automatic alignment device
JPS6018917A (en) * 1983-07-13 1985-01-31 Hitachi Ltd Projection exposure apparatus
JPS60178628A (en) * 1984-02-24 1985-09-12 Nippon Kogaku Kk <Nikon> Mask for exposure

Also Published As

Publication number Publication date
JPS6380530A (en) 1988-04-11

Similar Documents

Publication Publication Date Title
US4645924A (en) Observation apparatus with selective light diffusion
JPS6313330A (en) Alignment device
JP2009115515A (en) Position detector, position detection method, exposure apparatus, and method of manufacturing device
JP2000138164A (en) Position detector and aligner using it
JPH11265847A (en) Detection of position and position detecting device
JPH0245324B2 (en)
JPS5825638A (en) Exposing device
JP2633028B2 (en) Observation method and observation device
JPS62188316A (en) Projection exposure device
JPH02206706A (en) Position detector
JPH0746680B2 (en) Exposure equipment
US6313916B1 (en) Position detecting system and projection exposure apparatus with the same
JP2021067880A (en) Measurement apparatus, lithography apparatus, and method of producing article
JPH0359568B2 (en)
JP7418112B2 (en) Pattern forming device and article manufacturing method
JP3352161B2 (en) Exposure apparatus and method of manufacturing semiconductor chip using the same
JPH05226224A (en) Alignment device of aligner
JP2819592B2 (en) Positioning device
JPH01209721A (en) Projection aligner
JPS6242112A (en) Optical compensation system for length of optical path
JPH07106231A (en) Proximity aligner
JPH06241726A (en) Position detection device
JPH01198019A (en) Aligner
JPH01200620A (en) Pattern position detecting apparatus and method thereof
JPS6376427A (en) Exposure equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees