JPH0746662B2 - Oil-filled static induction - Google Patents

Oil-filled static induction

Info

Publication number
JPH0746662B2
JPH0746662B2 JP60061984A JP6198485A JPH0746662B2 JP H0746662 B2 JPH0746662 B2 JP H0746662B2 JP 60061984 A JP60061984 A JP 60061984A JP 6198485 A JP6198485 A JP 6198485A JP H0746662 B2 JPH0746662 B2 JP H0746662B2
Authority
JP
Japan
Prior art keywords
winding
oil
voltage
insulation
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60061984A
Other languages
Japanese (ja)
Other versions
JPS61222211A (en
Inventor
和民 吉幸
優 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60061984A priority Critical patent/JPH0746662B2/en
Publication of JPS61222211A publication Critical patent/JPS61222211A/en
Publication of JPH0746662B2 publication Critical patent/JPH0746662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/324Insulation between coil and core, between different winding sections, around the coil; Other insulation structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Insulating Of Coils (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、固体絶縁物と絶縁油との複合絶縁体により絶
縁構成される変圧器、リアクトル等の静止誘導電器に係
り、特に絶縁寸法を縮少化するのに好適な絶縁構成を持
つ油入静止誘導電器に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static induction electric generator such as a transformer or a reactor which is insulated by a composite insulator of a solid insulator and insulating oil, and has a reduced insulation dimension. The present invention relates to an oil-filled static induction electric machine having an insulating structure suitable for reducing the number of oil-fired electric machines.

〔発明の背景〕[Background of the Invention]

油入静止誘導電器、例えば電力用変圧器の絶縁構成は、
通常絶縁紙と絶縁油との複合絶縁で構成されている。絶
縁紙の比誘電率は絶縁油の比誘電率に比べ高く、このた
め、この複合絶縁構成中の電界分布は、比誘電率の低い
絶縁油中側が高い。従つて、絶縁油質または絶縁紙中に
以上がない限り、絶縁耐力の低い油隙部分から絶縁破壊
が生ずる。このため、通常、変圧器の絶縁設計は、前記
絶縁油隙の絶縁強度を高めるよう、所定の油隙幅を決定
し、これにより絶縁幅寸法が定まるため、絶縁寸法の縮
少化ひいては静止誘導電器の縮少化を達成することが困
難であつた。
The insulation configuration of an oil-filled static induction generator, such as a power transformer,
It is usually composed of composite insulation of insulating paper and insulating oil. The relative permittivity of the insulating paper is higher than the relative permittivity of the insulating oil, and therefore, the electric field distribution in this composite insulating structure is high in the insulating oil inside where the relative permittivity is low. Therefore, unless the insulating oil quality or the insulating paper is higher than that, dielectric breakdown occurs from the oil gap portion having low dielectric strength. Therefore, the insulation design of a transformer usually determines a predetermined oil gap width so as to increase the insulation strength of the insulation oil gap, and the insulation width dimension is determined by this. It was difficult to achieve the reduction of electric appliances.

これを打開する構成として、日立評論VoL.65,No.5(198
3−5)第5頁乃至第10頁に掲載されている“電力用変
圧器の技術動向”の3,3ハイブリツト絶縁が述べられて
いる。このハイブリツト絶縁は、誘導電器の各部位のデ
ータを横断的に整理統合し、油隙を絶縁紙層で分割する
油隙細分割方式と誘電体で油隙を充填する充填絶縁方式
とを組合わせ、両者の最も良い配分により構造を合理化
するものである。しかし、前記ハイブリツト絶縁寸法の
縮少化にも限界があり、更に絶縁寸法の縮少化を計り、
静止誘導電器自体の寸法を縮少化することは困難であつ
た。
As a configuration to overcome this, Hitachi Review VoL.65, No.5 (198
3-5) "3. 3 hybrid insulation" in "Technical Trends of Power Transformers" on pages 5 to 10 is mentioned. In this hybrid insulation, the data of each part of the induction electric device is cross-organized and integrated, and the oil gap subdivision method that divides the oil gap by the insulating paper layer and the filling insulation method that fills the oil gap with the dielectric are combined. , The rationalization of the structure by the best allocation of both. However, there is a limit to the reduction of the hybrid insulation dimension, and the insulation dimension is further reduced.
It was difficult to reduce the size of the static induction machine itself.

〔発明の目的〕[Object of the Invention]

本発明の目的は、前記した従来技術の欠点を除き、固体
絶縁物と絶縁油とからなる複合絶縁構成について合理的
にその絶縁寸法を縮少できるようにした油入静止誘導電
器を提供することにある。
An object of the present invention is to provide an oil-filled static induction electric device which can reasonably reduce the insulation dimension of a composite insulation structure composed of a solid insulation material and insulation oil, except for the above-mentioned drawbacks of the prior art. It is in.

〔発明の概要〕[Outline of Invention]

この目的を達成するため、本発明は、固体絶縁物と絶縁
油とで構成される複合絶縁構成において、前記固体絶縁
物の線路側端子近傍を前記絶縁油の比誘導電率とほぼ等
しいか、それ以下の比誘電率をもつ絶縁物で構成したこ
とを特徴とする。
In order to achieve this object, the present invention, in a composite insulation structure composed of a solid insulator and insulating oil, the solid insulating material near the line side terminal is substantially equal to the specific induction rate of the insulating oil, It is characterized by being composed of an insulator having a relative permittivity lower than that.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を図面によつて詳細に説明す
る。第1図は、上下両端から端子を引出した典型的な二
巻線変圧器に本発明を適用した実施例を示す。磁気鉄心
1に巻回配置した低圧巻線2と高圧巻線3間に主絶縁が
配置されている。
An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows an embodiment in which the present invention is applied to a typical two-winding transformer in which terminals are drawn from both upper and lower ends. Main insulation is arranged between the low voltage winding 2 and the high voltage winding 3 wound around the magnetic core 1.

この主絶縁は、図の実施例では、三層の固体絶縁体4a,4
b,4cと、これら固体絶縁体間および固体絶縁体と各巻線
との間に形成される油隙5a〜5dから構成される。2a,2b
は低圧巻線2の端子でその内2aは線路側端子、3a,3bは
高圧巻線3の端子でその内3aは線路側端子を示す。6a,6
bおよび7a,7bはそれぞれ低圧巻線の上下両端に配置した
シールドリングである。低圧巻線2と磁気鉄心1間およ
び高圧巻線3と磁気鉄心1間には、それぞれ固体のL形
絶縁体8および9を配置してある。
This main insulation consists of three layers of solid insulators 4a, 4 in the illustrated embodiment.
b and 4c, and oil gaps 5a to 5d formed between these solid insulators and between the solid insulators and each winding. 2a, 2b
Is a terminal of the low voltage winding 2, 2a of which is a line side terminal, 3a and 3b are terminals of a high voltage winding 3, and 3a of which is a line side terminal. 6a, 6
b and 7a, 7b are shield rings arranged at the upper and lower ends of the low voltage winding, respectively. Solid L-shaped insulators 8 and 9 are arranged between the low voltage winding 2 and the magnetic core 1 and between the high voltage winding 3 and the magnetic core 1, respectively.

これら低圧巻線2および高圧巻線3の巻線高さ方向の電
圧分布は、第2図に示すように分布される。
The voltage distribution in the winding height direction of the low voltage winding 2 and the high voltage winding 3 is distributed as shown in FIG.

すなわち高圧巻線3の電圧分布Ehでは線路端子3a側の最
高電圧をE1、低圧巻線2の電圧分布Elでは線路端子2a側
の最高圧をE2としたとき、主絶縁部分で、最も電圧分担
の大きい部分は、前記電圧E1とE2の差電圧、E3を分担す
る部位すなわち線路端子2a,3aの引出される巻線上部近
傍となる。
That E 1 a maximum voltage of the voltage distribution Eh In line terminal 3a side of the high voltage winding 3, when the highest pressure of the voltage distribution E l The line terminal 2a side of the low-voltage winding 2 and the E 2, the main insulating section, The portion having the largest voltage sharing is the portion sharing the voltage difference E 3 between the voltages E 1 and E 2 , that is, the vicinity of the upper portion of the winding where the line terminals 2a and 3a are drawn.

一般に、異なつた電圧が誘起される巻線間隙では構成さ
れる絶縁物の比誘電率に逆比例して各構成要素毎の分担
電圧が決まる。つまり比誘電率の異なる複数個の絶縁材
料で構成される部位では、比誘電率が低い程その分担電
圧が大となる。従つて所要の絶縁寸法は、低比誘電率材
料の絶縁耐力によつて決まる。
In general, in a winding gap in which different voltages are induced, the shared voltage for each component is determined in inverse proportion to the relative permittivity of the insulating material. In other words, in a portion composed of a plurality of insulating materials having different relative permittivities, the lower the relative permittivity, the greater the shared voltage. Therefore, the required insulation dimension is determined by the dielectric strength of the low relative dielectric constant material.

今、第1図の主絶縁構成を第3図に示すようにモデル化
した場合、各固体絶縁体4a〜4cの厚さをl1、それらの比
誘電率をε、絶縁油隙5a〜5dの厚さをl2、それらの比
誘電率をεとし、主絶縁の厚さすなわち高低圧巻線間
の幅寸法をl0、固体絶縁体4の合計した厚さをl10、油
隙5の合計した厚さをl20、主絶縁部分に加わる差電圧
をVとすると、 l0=l10+l20 ……(1) 固体絶縁体4の分担電圧をV1とし、絶縁油隙5の分担電
圧をV2とすれば、 V=V1+V2 ……(2) ここで、前記したように各絶縁構成要素の分担電圧は比
誘電率に逆比例して決まるため、 (3)式から この(4)式から、明白なように、ε≦εすなわち
固体絶縁体4の比誘電率を絶縁油隙5の比誘電率とほぼ
同じか小さくすることにより にすることができる。
When the main insulation structure of FIG. 1 is modeled as shown in FIG. 3, the thickness of each solid insulator 4a to 4c is l 1 , their relative permittivity is ε 1 , the insulating oil gap 5a to The thickness of 5d is l 2 , their relative permittivity is ε 2 , the thickness of the main insulation, that is, the width dimension between the high and low voltage windings is l 0 , the total thickness of the solid insulator 4 is l 10 , the oil gap Let l 20 be the total thickness of 5 and V be the differential voltage applied to the main insulating part. L 0 = l 10 + l 20 (1) The shared voltage of the solid insulator 4 is V 1 and the insulating oil gap 5 if the divided voltage and V 2, where V = V 1 + V 2 ...... (2), since the shared voltage of the insulating component as described above is determined in inverse proportion to dielectric constant, From equation (3) As is clear from this equation (4), by setting ε 1 ≦ ε 2, that is, by making the relative permittivity of the solid insulator 4 approximately equal to or smaller than the relative permittivity of the insulating oil gap 5. Can be

通常、変圧器の主絶縁寸法は、分担電圧が最大となる部
位における の値で必要絶縁寸法が決まる。従つて本実施例において
は少なくとも線路端子側の巻線上部に位置する部位の固
体絶縁体4a〜4cの上部4a1〜4c1部分を低比誘電率の固体
絶縁物、例えば、メチルペンテン、テトラフロロエチレ
ン等の高分子繊維とパルプ繊維とを適当な密度で混抄し
た絶縁物を使用する。
Normally, the main insulation dimension of the transformer is the one in the part where the shared voltage is maximum. The required insulation dimension is determined by the value of. Low dielectric constant of the solid insulator top 4a 1 ~4c 1 part of the solid insulator 4a~4c of sites located windings top of at least the line terminal side in accordance connexion present embodiment, for example, methylpentene, tetra An insulating material obtained by mixing polymer fibers such as fluoroethylene and pulp fibers at an appropriate density is used.

勿論、固体絶縁体4全体を前記混抄絶縁物としてもよ
い。
Of course, the solid insulator 4 as a whole may be the mixed insulating material.

通常、絶縁油の比誘電率は2.2〜2.3であり、また絶縁体
を構成するプレスボードの比誘電率は3.5〜4.5である
が、前記メチルペンテン、テトラフロロエチレン等の高
分子繊維とパルプ繊維との混抄した絶縁物の比誘電率は
2前後に構成することができる。
Usually, the dielectric constant of the insulating oil is 2.2 to 2.3, and the dielectric constant of the pressboard constituting the insulator is 3.5 to 4.5, but the polymer fibers such as methylpentene and tetrafluoroethylene and pulp fibers The relative permittivity of the insulating material mixed with and can be set to about 2.

従つて本実施例によれば、主絶縁内における分担電圧を
絶縁油に比べて絶縁耐力の高い、固体絶縁体側に多く分
担させることができるので、固体絶縁体の厚さを低減す
ることができ、この分だけ主絶縁物の厚さすなわち幅寸
法を縮少することができ、変圧器を小形化できる。
Therefore, according to the present embodiment, since the shared voltage in the main insulation can be distributed more to the solid insulator side, which has a higher dielectric strength than the insulating oil, it is possible to reduce the thickness of the solid insulator. The thickness, that is, the width dimension of the main insulator can be reduced by this amount, and the transformer can be downsized.

第4図は高圧巻線3の線路側端子3aを巻線3の中央部か
ら引出すようにした上下並列巻線構造に本発明を適用し
た実施例を示す。
FIG. 4 shows an embodiment in which the present invention is applied to an upper and lower parallel winding structure in which the line side terminal 3a of the high voltage winding 3 is drawn out from the central portion of the winding 3.

この第4図の巻線構成では第5図に示したように巻線高
さ方向の電圧分担は、主絶縁内における最大差電圧E4
ほぼ中央部に位置するため、少なくともこの主絶縁中央
部近傍の固体絶縁体4a〜4cに前記した高分子繊維とパル
プ繊維とを混抄した低比電率の絶縁物を配置したもので
ある。
In the winding configuration of FIG. 4, as shown in FIG. 5, the voltage sharing in the winding height direction is such that at least the maximum difference voltage E 4 in the main insulation is located in the central portion, so In this case, the solid insulators 4a to 4c in the vicinity of the parts are arranged with an insulator having a low specific electric conductivity, which is a mixture of the above-mentioned polymer fibers and pulp fibers.

以上の実施例においては、変圧器の主絶縁部分に本発明
を適用した場合を例示したが、巻線の端部と鉄心間に介
在されるL形絶縁物に適用しても同等の効果を得ること
ができるもので、その詳細説明は省略する。
In the above embodiments, the case where the present invention is applied to the main insulating portion of the transformer is illustrated, but the same effect can be obtained even when applied to the L-shaped insulator interposed between the end of the winding and the iron core. However, detailed description thereof will be omitted.

また、変圧器以外の油入誘導電器であるリアクトル、P
T、PCT等の絶縁についても本発明が適用できることは勿
論である。
In addition, reactors that are oil-filled induction devices other than transformers, P
Needless to say, the present invention can be applied to insulation of T, PCT and the like.

〔発明の効果〕〔The invention's effect〕

以上、実施例によつて詳細に説明したように、本発明に
よれば、固体絶縁体と油隙との複合絶縁構成において、
絶縁強度の高い固体絶縁体部分での分担電圧を高め、絶
縁寸法を縮少することができるため、電器の寸法を縮少
できる油入静止誘導電器を提供することができる。
As described above in detail with reference to the embodiments, according to the present invention, in the composite insulation structure of the solid insulator and the oil gap,
Since it is possible to increase the sharing voltage in the solid insulator portion having high insulation strength and reduce the insulation size, it is possible to provide an oil-filled static induction electric device in which the size of the electric device can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図および第4図は、本発明による変圧器巻線および
その絶縁構成の縦断面図、第3図は主絶縁部分のモデル
化図、第2図および第5図は、それぞれ第1図および第
4図の変圧器巻線の高さ方向の電圧分布を示す図であ
る。 1:磁気鉄心、2:低圧巻線、3:高圧巻線、4:固体絶縁体、
5::絶縁油隙
1 and 4 are longitudinal sectional views of a transformer winding and its insulation structure according to the present invention, FIG. 3 is a modeled view of a main insulating portion, and FIGS. 2 and 5 are respectively FIG. FIG. 5 is a diagram showing a voltage distribution in the height direction of the transformer winding of FIG. 4. 1: Magnetic iron core, 2: Low voltage winding, 3: High voltage winding, 4: Solid insulator,
5 :: insulating oil gap

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】磁気鉄心と、この磁気鉄心に巻回された少
なくとも1個の巻線とを有し、これら巻線相互間または
巻線と磁気鉄心間を固体絶縁物および絶縁油により電気
的に絶縁した静止誘導電器において、 前記固体絶縁物の線路側端子近傍を前記絶縁油の比誘電
率以下の比誘電率をもつ絶縁物で構成したことを特徴と
する油入静止誘導電器。
1. A magnetic iron core, and at least one winding wound around the magnetic iron core, and electrically between the windings or between the winding and the magnetic iron core by a solid insulator and insulating oil. The static induction inductor insulated according to claim 1, wherein the vicinity of the line side terminal of the solid insulator is made of an insulator having a relative permittivity lower than that of the insulating oil.
【請求項2】前記線路側端子近傍が、少なくとも低圧巻
線及び高圧巻線の巻線高さ方向の上部から引き出した部
分であることを特徴とする特許請求の範囲第1項記載の
油入静止誘導電器。
2. The oil fill according to claim 1, wherein the vicinity of the line-side terminal is a portion drawn out from at least upper portions of the low-voltage winding and the high-voltage winding in a winding height direction. Stationary induction device.
【請求項3】前記線路側端子近傍が、少なくとも高圧側
巻線の巻線方向中央部から引き出した部分であることを
特徴とする特許請求の範囲第1項記載の油入静止誘導電
器。
3. The oil-filled static induction machine according to claim 1, wherein the vicinity of the line-side terminal is at least a portion drawn out from a central portion in the winding direction of the high-voltage side winding.
JP60061984A 1985-03-28 1985-03-28 Oil-filled static induction Expired - Fee Related JPH0746662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60061984A JPH0746662B2 (en) 1985-03-28 1985-03-28 Oil-filled static induction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60061984A JPH0746662B2 (en) 1985-03-28 1985-03-28 Oil-filled static induction

Publications (2)

Publication Number Publication Date
JPS61222211A JPS61222211A (en) 1986-10-02
JPH0746662B2 true JPH0746662B2 (en) 1995-05-17

Family

ID=13186957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60061984A Expired - Fee Related JPH0746662B2 (en) 1985-03-28 1985-03-28 Oil-filled static induction

Country Status (1)

Country Link
JP (1) JPH0746662B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858314U (en) * 1981-10-16 1983-04-20 株式会社日立製作所 Transformer end insulation structure

Also Published As

Publication number Publication date
JPS61222211A (en) 1986-10-02

Similar Documents

Publication Publication Date Title
US20020046867A1 (en) Insulated conductor for high-voltage windings and a method of manufacturing the same
GB1594550A (en) Winding and insulating system for high voltage electrical machine
KR20010032572A (en) Transformer
US2817066A (en) Electric transformer
JP2000173836A (en) Electrostatic induction equipment
US3996544A (en) Cylindrical winding for induction electrical apparatus
JPS6260801B2 (en)
US4571570A (en) Winding for static induction apparatus
US3585552A (en) Electrical apparatus
JPH0746662B2 (en) Oil-filled static induction
JPH0677061A (en) Stationary induction apparatus
US3621427A (en) Electrical reactor
US3845436A (en) Power transformer having shields for shaping the electric field in the major insulation spaces
JP3272799B2 (en) Stationary induction appliance
JPH05291060A (en) Transformer winding wire
EP1034607B1 (en) Insulated conductor for high-voltage machine windings
JP2728162B2 (en) Transformer for DC transmission
JP2001093749A (en) Electric apparatus
JP2001196237A (en) Disc winding for stationary induction electric appliance
JPS58157350A (en) Insulated coil for rotary electric machine
JPS5926582Y2 (en) oil-filled electrical equipment
JPH05190354A (en) Stationary induction machine
US3011012A (en) Shielded electrical leads
JPH0782947B2 (en) Oil-filled induction winding
JPH025526Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees