JPH074610A - Boiler with furnace desulphurization device - Google Patents

Boiler with furnace desulphurization device

Info

Publication number
JPH074610A
JPH074610A JP14482093A JP14482093A JPH074610A JP H074610 A JPH074610 A JP H074610A JP 14482093 A JP14482093 A JP 14482093A JP 14482093 A JP14482093 A JP 14482093A JP H074610 A JPH074610 A JP H074610A
Authority
JP
Japan
Prior art keywords
furnace
limestone
nozzle
desulfurization
desulphurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14482093A
Other languages
Japanese (ja)
Other versions
JP3073366B2 (en
Inventor
Hideaki Ota
英明 太田
Hachiro Kawashima
八郎 川島
Toshimitsu Ichinose
利光 一ノ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP05144820A priority Critical patent/JP3073366B2/en
Publication of JPH074610A publication Critical patent/JPH074610A/en
Application granted granted Critical
Publication of JP3073366B2 publication Critical patent/JP3073366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)

Abstract

PURPOSE:To improve desulphurization efficiencies in furnace desulphurization by disposing a limestone powder feed nozzle along a furnace wall surface at an angle outwardly biased with respect to the blowoff angle of an after-air(AA) feed nozzle. CONSTITUTION:A limestone nozzle 5 is disposed outwardly from the blowoff angle of an AA nozzle 4, and the imaginary circle of the nozzle 5 is expanded to, for example, 2-4 times the imaginary circle of the AA nozzle 4. The imaginary circle of the limestone nozzle is equivalent to 1/2-1/4 times the inside width of a furnace. And the blowoff velocity of the limestone is 1.5-3 times higher than the velocity of after air(AA), whereby wall-surface reaching ratio of the limestone is improved by the centrifugal forces of the limestone. Under such conditions the limestones are supplied, whereby desulphurization ratio of 90% or more can be obtained. As described above, limestone powders can be selectively formed into a slag over the wall of the furnace, and hence nearly 100% of the limestone powders in the form of slag can be converted to quick lime which contributes to desulphurization reactions, thereby improving furnace desulphurization efficiencies.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炉内脱硫装置を備えたボ
イラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a boiler equipped with a desulfurization device in a furnace.

【0002】[0002]

【従来の技術】従来のボイラ炉内脱硫と炉外排煙の脱硫
を行う簡易排煙脱硫方式の系統図を図3によって説明す
る。図3において、1はボイラ火炉、2は燃料(例えば
微粉炭)と空気をボイラ火炉に供給する主バーナ風箱、
3は主バーナ風箱2によって形成される火炎中に石灰石
(CaCO3 )粉とアーフタエア(以下、AAと略す)
を吹込むAA風箱、6は集じん装置、7はミキシングタ
ンク、8はポンプを示す。この方式はAA風箱3より吹
込まれるCaCO3 粉による炉内脱硫と、集じん装置6
で回収された未反応生石灰(CaO)及び灰分をミキシ
ングタンク内で水を加えて生成させたスラリをポンプ8
で排ガス煙道内に注入して脱硫する2段脱硫を行なわせ
る方式である。
2. Description of the Related Art A conventional flue gas desulfurization system for desulfurizing a boiler inside a furnace and flue gas outside the furnace will be described with reference to FIG. In FIG. 3, 1 is a boiler furnace, 2 is a main burner wind box that supplies fuel (for example, pulverized coal) and air to the boiler furnace,
3 is limestone (CaCO 3 ) powder and after-air (hereinafter abbreviated as AA) in the flame formed by the main burner wind box 2.
Is an AA air box, 6 is a dust collector, 7 is a mixing tank, and 8 is a pump. This method uses desulfurization inside the furnace by CaCO 3 powder blown from the AA wind box 3 and dust collector 6
The unreacted quick lime (CaO) and ash collected in step 3 was added with water in a mixing tank to generate a slurry, which was pumped.
This is a method of performing two-stage desulfurization, in which it is injected into the exhaust gas flue and desulfurized.

【0003】この図3のII−II断面矢視図を図2に示
す。図2は図1のボイラ火炉1におけるボイラ火炉1内
へのCaCO3 粉の投入方法を説明するものであり、C
aCO 3 粉はAA風箱3内に設けた石灰石ノズル5から
AAと同一方向にボイラ火炉1に投入している。
FIG. 2 is a sectional view taken along line II-II of FIG.
You FIG. 2 shows the inside of the boiler furnace 1 in the boiler furnace 1 of FIG.
To CaCO3The method of adding powder is described below.
aCO 3The powder is from the limestone nozzle 5 provided in the AA wind box 3.
It is charged into the boiler furnace 1 in the same direction as AA.

【0004】炉内脱硫では次の反応が行なわれていると
推定される。 CaCO3 → CaO + CO2 CaO + SO2 + 1/2O2 → CaSO4 ここでの未反応CaOは集じん装置6により回収され、
水と混合してスラリとすることで、CaO+H2 O→C
a(OH)2 の反応により水酸化カルシウムを主成分と
するスラリとなる。
It is presumed that the following reactions are carried out in desulfurization in a furnace. CaCO 3 → CaO + CO 2 CaO + SO 2 + 1 / 2O 2 → CaSO 4 The unreacted CaO here is recovered by the dust collector 6,
By mixing with water to make a slurry, CaO + H 2 O → C
The reaction of a (OH) 2 produces a slurry containing calcium hydroxide as a main component.

【0005】次に、このスラリをボイラ火炉1後流の脱
硫煙道中に噴霧して2次脱硫を行なう。ここでは次の3
種類の反応が行なわれていると推定される。 Ca(OH)2 +SO2 + 1/2O2 → CaSO4 +H2 O −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ca(OH)2 + SO2 → CaSO3 + H2 O CaSO3 + 1/2O2 → CaSO4 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− H2 O + SO2 → H2 SO3 2 SO3 + CaO → CaSO3 + H2 O CaSO3 + 1/2O2 → CaSO4
Next, this slurry is sprayed into the desulfurization flue downstream of the boiler furnace 1 for secondary desulfurization. Here is the next 3
It is estimated that some kind of reaction is taking place. Ca (OH) 2 + SO 2 + 1 / 2O 2 → CaSO 4 + H 2 O −−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Ca ( OH) 2 + SO 2 → CaSO 3 + H 2 O CaSO 3 + 1 / 2O 2 → CaSO 4 −−−−−−−−−−−−−−−−−−−−−−−−−−−− --- H 2 O + SO 2 → H 2 SO 3 H 2 SO 3 + CaO → CaSO 3 + H 2 O CaSO 3 + 1 / 2O 2 → CaSO 4

【0006】[0006]

【発明が解決しようとする課題】従来の簡易脱硫方式は
実験結果から火炉内脱硫率30〜40%と排ガス煙道で
の脱硫率60〜70%の組み合わせにより全体脱硫率7
0〜80%となっている。この方式は一般に普及してい
る脱硫率90〜95%の湿式石灰・石こう法と比較して
経済性では断然有利であるものの、製品化・市場拡大す
るには更に脱硫効率を向上する必要がある。
According to the experimental results, the conventional simple desulfurization system has a total desulfurization rate of 7 by combining a desulfurization rate of 30 to 40% in the furnace and a desulfurization rate of 60 to 70% in the exhaust gas flue.
It is 0 to 80%. Although this method is far more economical than the wet lime / gypsum method with a desulfurization rate of 90 to 95%, which is widely used, it is necessary to further improve the desulfurization efficiency in order to commercialize and expand the market. .

【0007】本発明は上記技術水準及び要望に応じ、特
に炉内脱硫における脱硫効率を向上しうる炉内脱硫装置
を備えたボイラを提供しようとするものである。
According to the above-mentioned state of the art and demands, the present invention intends to provide a boiler equipped with an in-furnace desulfurization device which can improve desulfurization efficiency particularly in in-furnace desulfurization.

【0008】[0008]

【課題を解決するための手段】本発明はボイラ火炉内燃
焼火炎中に、アーフタエアと石灰石粉を定量投入して炉
内で発生する硫黄酸化物を除去する炉内脱硫装置を備え
たボイラにおいて、石灰石粉投入ノズルをアーフタエア
投入ノズルの吹出し角度よりも火炉壁面に沿うように外
向角度に配設してなることを特徴とする炉内脱硫装置を
備えたボイラである。
Means for Solving the Problems The present invention relates to a boiler equipped with an in-furnace desulfurization device for removing sulfur oxides generated in the furnace by quantitatively introducing arft air and limestone powder into a combustion flame in a boiler furnace, A boiler equipped with an in-furnace desulfurization device, characterized in that the limestone powder charging nozzle is arranged at an outward angle so as to follow the wall surface of the furnace rather than at the blowing angle of the after-air charging nozzle.

【0009】[0009]

【作用】炉内脱硫率は反応領域の温度、酸素濃度、滞留
時間に影響し、過去の経験からAA領域にCaCO3
を投入する場合が最も高い脱硫率が得られることが判っ
ている。又、従来例で述べた炉内脱硫反応式から、Ca
CO3 がCaOに転換する割合が高い程、脱硫率が高く
なることは容易に推定できる。従来法の火炉出口灰の分
析結果から、2次脱硫反応に寄与しないCaO以外の未
反応CaCO3 は20〜40%含まれることが判ってお
り、この未反応CaCO3 を何如に減少させるかが炉内
脱硫率向上のポイントとなる。
The function of desulfurization in the furnace affects the temperature, oxygen concentration and residence time in the reaction region, and it has been known from the past experience that the highest desulfurization ratio can be obtained when CaCO 3 powder is added to the AA region. In addition, according to the in-furnace desulfurization reaction formula described in the conventional example, Ca
It can be easily estimated that the higher the rate of conversion of CO 3 to CaO, the higher the desulfurization rate. From the analysis result of the conventional furnace outlet ash, it is known that unreacted CaCO 3 other than CaO that does not contribute to the secondary desulfurization reaction is contained in 20 to 40%, and how to reduce this unreacted CaCO 3 This is the key to improving the desulfurization rate in the furnace.

【0010】そこで1つの極端なケーススタディとして
図4に示す反応管モデルにて炉内脱硫率の調査を行なっ
た結果、図5の排ガス分析結果に示すように炉内脱硫率
が90%以上となった。このモデルは電気ヒータにて反
応管温度を制御し、反応管上部から燃料を供給し、Ca
CO3 粉は反応管中央部からAAと共に連続定量供給し
たもので、反応管底部は図示のようにテーパで絞ってい
る。反応管壁面及びテーパ部に付着堆積(スラッギン
グ)したCaCO3 粉の滞留時間は燃焼ガスの滞留時間
よりもはるかに長く、スラッギングしたCaCO3 のほ
ぼ100%がCaOに転換したことで炉内脱硫率が向上
したものと推定される。本発明はこの作用を実炉に適用
したものであり、CaCO3 を積極的に火炉壁面にスラ
ッギングさせることにより炉内脱硫率の向上を計るもの
である。
Therefore, as one extreme case study, as a result of investigating the in-furnace desulfurization rate with the reaction tube model shown in FIG. 4, it was found that the in-reactor desulfurization rate was 90% or more as shown in the exhaust gas analysis result of FIG. became. This model controls the temperature of the reaction tube with an electric heater, supplies fuel from the upper part of the reaction tube, and
The CO 3 powder was continuously supplied together with AA from the central part of the reaction tube, and the bottom part of the reaction tube was tapered as shown in the figure. The residence time of CaCO 3 powder that has adhered and deposited (slugging) on the wall of the reaction tube and taper is much longer than the residence time of combustion gas, and almost 100% of the slugged CaCO 3 is converted to CaO. Is estimated to have improved. The present invention applies this action to an actual furnace, and intends to improve the desulfurization rate in the furnace by positively slugging CaCO 3 on the wall surface of the furnace.

【0011】[0011]

【実施例】以下、本発明の一実施例の炉内脱硫装置を備
えたボイラを図1によって説明する。図1は本発明に係
る石灰石投入ノズルの配置を現わす図3のI−I断面矢
視図を示す。石灰石ノズル5はAAノズル4の吹出し角
度よりも外向きに配設しており、その仮想円(図中破
線)はAAノズル4仮想円の2〜4倍に拡げた(石灰石
ノズルによる仮想円は炉内幅の1/2〜1/4に相当す
る。)。また、石灰石の吹き出し流速はAA流速の1.
5〜3倍高くすることで遠心力により石灰石の壁面到達
率を向上させた。従って、実機AA流速が略15m/s
であることから石灰石吹出し流速は20〜50m/sと
なる。このような条件下で石灰石粉を投入することによ
って90%以上の脱硫率が得られる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A boiler equipped with an in-furnace desulfurization apparatus according to an embodiment of the present invention will be described below with reference to FIG. FIG. 1 is a sectional view taken along the line I--I of FIG. 3 showing the arrangement of the limestone charging nozzle according to the present invention. The limestone nozzle 5 is arranged outward from the blowing angle of the AA nozzle 4, and its virtual circle (broken line in the figure) is expanded to 2 to 4 times the virtual circle of the AA nozzle 4 (the virtual circle by the limestone nozzle is It corresponds to 1/2 to 1/4 of the width in the furnace.) The flow rate of limestone is 1.
By increasing it 5 to 3 times, the wall surface arrival rate of limestone was improved by centrifugal force. Therefore, the actual machine AA flow velocity is approximately 15 m / s
Therefore, the flow rate of limestone is 20 to 50 m / s. By adding limestone powder under such conditions, a desulfurization rate of 90% or more can be obtained.

【0012】[0012]

【発明の効果】本発明によれば、石灰石粉を選択的に火
炉壁面へスラッギングさせるようにすることができるの
で、スラッギングした石灰石粉の内、ほぼ100%を脱
硫反応に寄与する生石灰に転換することができ、炉内脱
硫率の向上が図れる。
EFFECTS OF THE INVENTION According to the present invention, limestone powder can be selectively slugged on the wall surface of the furnace, so that almost 100% of the slugged limestone powder is converted into quick lime that contributes to the desulfurization reaction. Therefore, the desulfurization rate in the furnace can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の炉内脱硫装置を備えたボイ
ラの石灰石粉投入の一態様を示す図で後述の図3のI−
I断面矢視図。
FIG. 1 is a diagram showing one mode of charging limestone powder in a boiler equipped with an in-furnace desulfurization device according to one embodiment of the present invention, and is indicated by I- in FIG.
FIG.

【図2】従来の炉内脱硫装置を備えたボイラの石灰石粉
投入の一態様を示す図で後述の図3のII−II断面矢視
図。
FIG. 2 is a view showing an aspect of charging limestone powder in a boiler equipped with a conventional in-furnace desulfurization device, and is a sectional view taken along the line II-II of FIG. 3 described later.

【図3】従来の炉内脱硫装置を備えたボイラ及び炉外脱
硫装置によるボイラの排ガスの脱硫装置の側面図。
FIG. 3 is a side view of a boiler equipped with a conventional in-furnace desulfurization device and a desulfurization device for exhaust gas from a boiler by an out-furnace desulfurization device.

【図4】本発明の炉内脱硫装置を備えたボイラの作用を
説明するための実験装置の説明図。
FIG. 4 is an explanatory view of an experimental device for explaining the operation of the boiler equipped with the in-furnace desulfurization device of the present invention.

【図5】図4の実験装置による脱硫効果を示す図表。5 is a chart showing the desulfurization effect by the experimental apparatus of FIG.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ボイラ火炉内燃焼火炎中に、アーフタエ
アと石灰石粉を定量投入して炉内で発生する硫黄酸化物
を除去する炉内脱硫装置を備えたボイラにおいて、石灰
石粉投入ノズルをアーフタエア投入ノズルの吹出し角度
よりも火炉壁面に沿うように外向角度に配設してなるこ
とを特徴とする炉内脱硫装置を備えたボイラ。
1. In a boiler equipped with an in-furnace desulfurization device for removing sulfur oxides generated in the furnace by quantitatively introducing arftaair and limestone powder into a combustion flame in a boiler furnace, the limestone powder charging nozzle is charged with the aftermath air. A boiler equipped with an in-furnace desulfurization device, which is arranged at an outward angle so as to follow the wall surface of the furnace rather than the blowing angle of the nozzle.
JP05144820A 1993-06-16 1993-06-16 Boiler with in-furnace desulfurizer Expired - Fee Related JP3073366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05144820A JP3073366B2 (en) 1993-06-16 1993-06-16 Boiler with in-furnace desulfurizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05144820A JP3073366B2 (en) 1993-06-16 1993-06-16 Boiler with in-furnace desulfurizer

Publications (2)

Publication Number Publication Date
JPH074610A true JPH074610A (en) 1995-01-10
JP3073366B2 JP3073366B2 (en) 2000-08-07

Family

ID=15371221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05144820A Expired - Fee Related JP3073366B2 (en) 1993-06-16 1993-06-16 Boiler with in-furnace desulfurizer

Country Status (1)

Country Link
JP (1) JP3073366B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012875A (en) * 2009-07-01 2011-01-20 Nippon Steel Engineering Co Ltd Method and device for suppressing generation of hydrogen chloride gas in waste gasification melting furnace
WO2018066080A1 (en) * 2016-10-04 2018-04-12 中国電力株式会社 Method for suppressing elution of harmful trace elements and coal fired power generation system
CN116734265A (en) * 2023-07-17 2023-09-12 中国环境科学研究院 In-furnace control method for acidic pollutants in household garbage co-combustion industrial organic solid waste process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012875A (en) * 2009-07-01 2011-01-20 Nippon Steel Engineering Co Ltd Method and device for suppressing generation of hydrogen chloride gas in waste gasification melting furnace
WO2018066080A1 (en) * 2016-10-04 2018-04-12 中国電力株式会社 Method for suppressing elution of harmful trace elements and coal fired power generation system
JPWO2018066080A1 (en) * 2016-10-04 2018-10-04 中国電力株式会社 Harmful trace element elution suppression method and coal thermal power generation system
CN116734265A (en) * 2023-07-17 2023-09-12 中国环境科学研究院 In-furnace control method for acidic pollutants in household garbage co-combustion industrial organic solid waste process
CN116734265B (en) * 2023-07-17 2024-05-14 中国环境科学研究院 In-furnace control method for acidic pollutants in household garbage co-combustion industrial organic solid waste process

Also Published As

Publication number Publication date
JP3073366B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
US3320906A (en) Fuel burning process and apparatus
JP4685097B2 (en) Method for reducing sulfur dioxide emissions from circulating fluidized bed boilers.
SU1679969A3 (en) Method for removing sulfurous anhydride from flue gases
ATE264706T1 (en) METHOD AND DEVICE FOR BINDING POLLUTANTS IN EXHAUST GASES
CN104807002B (en) A kind of CFBB oxygen-enriched combusting dry method desulfuration system and method
CN104190243B (en) The coal-burning boiler method of carbide slag desulfurization and equipment thereof
CN102363095B (en) Dry flue gas desulfurization process method and dry flue gas desulfurization system thereof
JPH07179871A (en) Desulfurization of carbonaceous fuel
CN106765067A (en) A kind of water-coal-slurry minimum discharge combustion system
US4922840A (en) Sulfur equilibrium desulfurization of sulfur containing products of combustion
CN107726873B (en) A kind of segmentation of sintering flue gas and utilize the method for erecting cold kiln emission reduction sulphur, nitrogen oxides
JPH074610A (en) Boiler with furnace desulphurization device
US5396849A (en) Combustion method producing low levels of pollutants and apparatus for same
JPS63229125A (en) Desulfurization inside oven
EP0629430B1 (en) Method for desulfurizing exhaust gas
EP0156784B1 (en) A method of reducing sulphur-oxide and nitrogen-oxide emission when burning solid fuel on travelling grates
CN207702455U (en) Circulating fluidized bed boiler minimum discharge system integration device
JPH06210128A (en) Dry type stack gas desulfurization
CN101411964A (en) Method of desulfuration using powder dust and flue gas from calcium carbide stove
CN2133353Y (en) Smoke sweetening duster for coal boiler
CN1293935C (en) Compound circulating jet fluidized bed smoke desulfurization method and reaction tower
CN104531225B (en) Multielement duplex gas generating system
JP2846064B2 (en) Exhaust gas desulfurization method and apparatus
CN101619856A (en) Purifying method for boiler fume
JPS59162927A (en) Desulfurization in furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000502

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees