JPH0745752A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0745752A
JPH0745752A JP5183810A JP18381093A JPH0745752A JP H0745752 A JPH0745752 A JP H0745752A JP 5183810 A JP5183810 A JP 5183810A JP 18381093 A JP18381093 A JP 18381093A JP H0745752 A JPH0745752 A JP H0745752A
Authority
JP
Japan
Prior art keywords
inorganic filler
epoxy resin
resin composition
semiconductor device
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5183810A
Other languages
Japanese (ja)
Other versions
JP3014900B2 (en
Inventor
Yoshinobu Nakamura
吉伸 中村
Mutsuko Ota
睦子 太田
Norio Kawamoto
紀雄 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16142275&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0745752(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP5183810A priority Critical patent/JP3014900B2/en
Publication of JPH0745752A publication Critical patent/JPH0745752A/en
Application granted granted Critical
Publication of JP3014900B2 publication Critical patent/JP3014900B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

PURPOSE:To prevent unfilled parts or through-voids from occurring by a method wherein a semiconductor device is sealed with epoxy resin which contains a small amount of inorganic filler having grain diameter equal to or greater than the thinnest part of a sealing resin layer. CONSTITUTION:A semiconductor element 1 is sealed with epoxy resin composition 4 which contains inorganic filler. At this point, provided that the thinnest part of a sealing resin layer is made as thick as xmum (=30 to 100), inorganic filler such as silica 0.9xmum or above in diameter is made 2% or below of all inorganic filler in content. As a semiconductor element is sealed with epoxy resin composition which contains inorganic filler of small grain diameters as an integral component, the grains of inorganic filler are smaller in diameter than thickness of the thinnest part of a sealing resin layer and smoothly filled into the thinnest part of the layer. Therefore, the thinnest part of a sealing resin layer is improved in toughness and hardly cracked, and unfilled parts or through-voids are prevented from occurring in an obtained package.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、薄形の半導体装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin semiconductor device.

【0002】[0002]

【従来の技術】従来の半導体装置は、一般に、パッケー
ジの厚みが2mm以上で、半導体素子上およびダイパッ
ドから下方の各封止樹脂層の厚みも充分にとられてお
り、例えば、トランスファー成形等のような成形用金型
を用いる際の充填可能な封止用樹脂組成物の設定は容易
であった。しかし、半導体パッケージの小形化および薄
形化の傾向が進むに伴い、パッケージ自身の厚みが1m
m以下の薄形パッケージも作製されるようになり、この
ようなパッケージ内の半導体素子上部およびダイパッド
から下方の封止樹脂層の厚みは100μm以下に設定さ
れる場合がある。
2. Description of the Related Art Generally, a conventional semiconductor device has a package thickness of 2 mm or more and a sufficient thickness of each sealing resin layer on the semiconductor element and below the die pad. It was easy to set a filling resin composition for sealing when using such a molding die. However, with the trend toward smaller and thinner semiconductor packages, the thickness of the package itself is 1 m.
A thin package having a thickness of m or less is also manufactured, and the thickness of the sealing resin layer below the semiconductor element upper part and the die pad in such a package may be set to 100 μm or less.

【0003】[0003]

【発明が解決しようとする課題】このようなパッケージ
の作製時において、成形用金型内に充填可能な樹脂組成
物の設定は従来の厚みの厚いパッケージに比べて粘度の
影響を大きく受ける。そのうえ、通常、上記樹脂組成物
内には粒径50〜100μmの無機質充填剤を含有する
ために、充填途中で詰まり等が生じたりして、樹脂組成
物の充填が不充分となる場合がある。このため、従来の
樹脂組成物を用いて上記薄形のパッケージを成形すると
未充填部分や貫通ボイド(空隙)が生じる。このよう
に、従来から用いられている封止用樹脂組成物では、最
近の半導体装置の薄形化に対応できない、すなわちパッ
ケージの厚みが1mm以下で、半導体素子上部およびダ
イパッドから下方の封止樹脂層の厚みが100μm以下
に設定された半導体装置の成形は困難であるのが実情で
ある。
When manufacturing such a package, the setting of the resin composition that can be filled in the molding die is greatly affected by the viscosity as compared with the conventional thick package. In addition, since the resin composition usually contains an inorganic filler having a particle size of 50 to 100 μm, clogging or the like may occur during the filling, and the filling of the resin composition may be insufficient. . Therefore, when the thin package is molded using the conventional resin composition, unfilled portions and through voids (voids) are generated. As described above, the conventionally used sealing resin composition cannot cope with the recent thinning of the semiconductor device, that is, the thickness of the package is 1 mm or less, and the sealing resin above the semiconductor element and below the die pad is used. In reality, it is difficult to form a semiconductor device having a layer thickness of 100 μm or less.

【0004】この発明は、このような事情に鑑みなされ
たもので、封止樹脂層に未充填部分や貫通ボイドのない
薄形の半導体装置の提供をその目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a thin semiconductor device having no unfilled portion or a through void in the sealing resin layer.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
め、この発明の半導体装置は、半導体素子を、無機質充
填剤を含有するエポキシ樹脂組成物によって樹脂封止し
てなる半導体装置であって、封止樹脂層の最薄部分の厚
みをxμm(x=30〜100)に設定したときに、上
記無機質充填剤が下記の(A)を満足するものであると
いう構成をとる。 (A)粒子径0.9xμm以上の無機質充填剤の含有量
が、無機質充填剤全体の2重量%以下に設定されてい
る。
In order to achieve the above object, the semiconductor device of the present invention is a semiconductor device in which a semiconductor element is resin-sealed with an epoxy resin composition containing an inorganic filler. When the thickness of the thinnest portion of the sealing resin layer is set to x μm (x = 30 to 100), the inorganic filler satisfies the following (A). (A) The content of the inorganic filler having a particle diameter of 0.9 × μm or more is set to 2% by weight or less of the whole inorganic filler.

【0006】[0006]

【作用】すなわち、本発明者らは、薄形の半導体装置の
形成時において、未充填部分や貫通ボイドが形成されな
い封止用樹脂組成物を得るために一連の研究を重ねた。
その結果、封止用樹脂組成物の必須成分として、封止樹
脂層の最薄部分の厚みをxμmに設定したときに、その
厚みと略同等以上の大きさの粒径を有する無機質充填剤
を少量含有する無機質充填剤を用いると、小粒径の無機
質充填剤が上記最薄部分に詰まることがなく樹脂組成物
が均一に充填される。このため、得られるパッケージに
は未充填部分や貫通ボイドが形成されない。しかも、上
記粒径の大きな無機質充填剤はパッケージの側部分に分
布するため、パッケージ内部に生じたクラックの伸びが
妨げられ、クラックの成長を防止することが可能となる
ことを見いだしこの発明に到達した。
That is, the present inventors have conducted a series of researches in order to obtain a sealing resin composition in which an unfilled portion and a through void are not formed when a thin semiconductor device is formed.
As a result, as an essential component of the encapsulating resin composition, when the thickness of the thinnest part of the encapsulating resin layer is set to x μm, an inorganic filler having a particle size substantially equal to or larger than the thickness is used. When the inorganic filler contained in a small amount is used, the resin composition is uniformly filled without the inorganic filler having a small particle size clogging the thinnest portion. Therefore, no unfilled portion or through void is formed in the obtained package. Moreover, since the above-mentioned inorganic filler having a large particle size is distributed in the side portion of the package, the growth of cracks generated inside the package is hindered and it is possible to prevent the growth of cracks, and the present invention has been reached. did.

【0007】つぎに、この発明を詳しく説明する。Next, the present invention will be described in detail.

【0008】この発明に用いられるエポキシ樹脂組成物
は、エポキシ樹脂(a成分)と、硬化剤(b成分)と、
特殊な無機質充填剤(c成分)とを用いて得られるもの
であり、通常、粉末状もしくはそれを打錠したタブレッ
ト状になっている。
The epoxy resin composition used in the present invention comprises an epoxy resin (a component), a curing agent (b component),
It is obtained by using a special inorganic filler (component c), and is usually in the form of powder or tablets formed by tableting.

【0009】上記エポキシ樹脂(a成分)としては、2
個以上のエポキシ基を有するものであれば特に分子量,
分子構造等を制限するものではなく従来公知のものが用
いられる。例えば、ビスフェノールA型,ビスフェノー
ル型,クレゾールノボラック型,フェノールノボラック
型,ナフタレン骨格を有するもの,脂環式骨格を有する
もの等各種のエポキシ樹脂を用いることができる。これ
らエポキシ樹脂のなかでも、特に融点が室温を超えてお
り、室温下では固形状もしくは高粘度の液状を示すもの
を用いることが好ましい。さらに、無機質充填剤(c成
分)をより多く含有させるために、エポキシ樹脂(a成
分)は低粘度であることが好ましく、具体的にはI.
C.I.コーン・プレート式粘度計による150℃の粘
度が5ポイズ以下が好ましく、より好ましくは2ポイズ
以下である。上記のような低粘度を満足する代表例とし
て、4,4′−ジヒドロキシテトラメチルビフェニルグ
リシジルエーテルがあげられる。
As the epoxy resin (a component), 2
If it has one or more epoxy groups, the molecular weight is
A conventionally known one is used without limiting the molecular structure and the like. For example, various epoxy resins such as bisphenol A type, bisphenol type, cresol novolac type, phenol novolak type, those having a naphthalene skeleton, and those having an alicyclic skeleton can be used. Among these epoxy resins, it is preferable to use one having a melting point exceeding room temperature and exhibiting a solid state or a highly viscous liquid state at room temperature. Furthermore, the epoxy resin (component a) preferably has a low viscosity in order to contain a larger amount of the inorganic filler (component c).
C. I. The viscosity at 150 ° C. measured by a cone / plate viscometer is preferably 5 poises or less, more preferably 2 poises or less. As a typical example satisfying the above-mentioned low viscosity, 4,4'-dihydroxytetramethylbiphenylglycidyl ether can be mentioned.

【0010】上記硬化剤(b成分)は、上記エポキシ樹
脂(a成分)の硬化剤として作用するものであり、従来
公知のものが用いられる。好ましくは水酸基を有するも
のである。例えば、フェノールノボラック樹脂があげら
れる。具体的には、下記の式で表される繰り返し単位を
有するものを用いることが好ましい。
The curing agent (component b) acts as a curing agent for the epoxy resin (component a), and conventionally known ones are used. It preferably has a hydroxyl group. For example, phenol novolac resin can be mentioned. Specifically, it is preferable to use one having a repeating unit represented by the following formula.

【0011】[0011]

【化1】 [Chemical 1]

【0012】上記エポキシ樹脂(a成分)と硬化剤(b
成分)の配合割合は、エポキシ樹脂中のエポキシ基1当
量あたり、例えば硬化剤(b成分)が水酸基を有するも
のならば水酸基当量が0.5〜2.0当量となるように
配合することが好ましい。より好ましくは0.8〜1.
2当量である。
The epoxy resin (a component) and the curing agent (b)
The blending ratio of the component) may be such that the hydroxyl group equivalent is 0.5 to 2.0 equivalents, for example, if the curing agent (component b) has a hydroxyl group, per 1 equivalent of the epoxy group in the epoxy resin. preferable. More preferably 0.8-1.
It is 2 equivalents.

【0013】上記特殊な無機質充填剤(c成分)では、
その材料としては特に限定するものではなく、通常用い
られるシリカ粉末,アルミナ粉末,石英ガラス粉末等が
あげられる。シリカ粉末を用いる場合、その含有量はエ
ポキシ樹脂組成物全体の50重量%(以下「%」と略
す)以上に設定することが好ましく、より好ましくは7
0%以上、特に好ましくは75〜90%の範囲である。
しかも、無機質充填剤の形状として球状粒子を用いるこ
とがより好ましい。また、無機質充填剤全体の平均粒子
径は5〜25μmに設定することが好ましい。さらに、
下記の(A)を満足する必要がある。特に好ましくは、
粒子径0.9xμm以上の無機質充填剤の含有量が、無
機質充填剤全体の1〜2%の範囲内に設定することであ
る。なお、通常、粒子径の上限値は0.99xμmであ
る。すなわち、粒子径0.9xμm以上の無機質充填剤
の含有量が2%を超えると、上記粒子径0.9xμm以
上の大粒径の無機質充填剤が最薄層部分に分布するよう
になり、樹脂封止時に未充填部分や貫通ボイドが形成さ
れるからである。なお、下記(A)中のxは、半導体装
置の最薄封止樹脂層部分の厚みであり、x=30〜10
0μmである。
In the above special inorganic filler (component c),
The material is not particularly limited, and examples thereof include commonly used silica powder, alumina powder, and quartz glass powder. When silica powder is used, its content is preferably set to 50% by weight (hereinafter abbreviated as “%”) or more of the entire epoxy resin composition, and more preferably 7%.
It is 0% or more, and particularly preferably in the range of 75 to 90%.
Moreover, it is more preferable to use spherical particles as the shape of the inorganic filler. The average particle size of the entire inorganic filler is preferably set to 5 to 25 μm. further,
It is necessary to satisfy the following (A). Particularly preferably,
The content of the inorganic filler having a particle diameter of 0.9 × μm or more is set within the range of 1 to 2% of the whole inorganic filler. In addition, the upper limit of the particle diameter is usually 0.99 × μm. That is, when the content of the inorganic filler having a particle diameter of 0.9xμm or more exceeds 2%, the large-diameter inorganic filler having a particle diameter of 0.9xμm or more comes to be distributed in the thinnest layer portion, and the resin This is because unfilled portions and through voids are formed during sealing. In addition, x in the following (A) is the thickness of the thinnest encapsulating resin layer portion of the semiconductor device, and x = 30 to 10
It is 0 μm.

【0014】(A)粒径0.9xμm以上の無機質充填
剤の含有量が、無機質充填剤全体の2%以下に設定され
る。
(A) The content of the inorganic filler having a particle diameter of 0.9 × μm or more is set to 2% or less of the whole inorganic filler.

【0015】上記無機質充填剤中の粒子径が0.9xμ
m以上のものの含有割合の測定はつぎのようにして行わ
れる。すなわち、JIS規格による標準ふるい(例えば
No.270はふるい目が53μm,No.325はふ
るい目が45μm,No.400はふるい目が38μ
m)、あるいはこれと同様に粒子径0.9xμmに相当
する任意のふるい目に作製したものを用いて、上記無機
質充填剤を乾式あるいは湿式でふるい、そのふるい上に
残った無機質充填剤の重量を測定して評価する。なお、
湿式の場合、上記無機質充填剤と反応しない分散媒(例
えば水,アセトン等)で行う。
The particle size of the inorganic filler is 0.9 × μ
The content ratio of m or more is measured as follows. That is, the standard sieve according to the JIS standard (for example, No. 270 has a sieve of 53 μm, No. 325 has a sieve of 45 μm, and No. 400 has a sieve of 38 μm.
m), or the same as the above, prepared by sieving with an arbitrary sieve having a particle diameter of 0.9 × μm, the above inorganic filler is sieved by a dry method or a wet method, and the weight of the inorganic filler remaining on the sieve. Is measured and evaluated. In addition,
In the case of a wet method, a dispersion medium (for example, water, acetone, etc.) that does not react with the inorganic filler is used.

【0016】そして、このような無機質充填剤(c成
分)全体の粒度分布としては、下記に示すように設定さ
れていることが好ましい。例えば、任意の粒度分布測定
法により得られた粒度分布カーブ(縦軸が累積分布,横
軸が粒子サイズ)において、0.9xμmの分布が98
〜99%、0.5xμmが90〜98%、0.2xμm
が40〜80%、0.05xμmが10〜40%である
ことが望ましい。
The particle size distribution of the entire inorganic filler (component (c)) is preferably set as shown below. For example, in a particle size distribution curve (vertical axis is cumulative distribution, horizontal axis is particle size) obtained by an arbitrary particle size distribution measuring method, a distribution of 0.9 × μm is 98
~ 99%, 0.5xμm is 90-98%, 0.2xμm
Is preferably 40 to 80% and 0.05 × μm is preferably 10 to 40%.

【0017】この発明に用いられるエポキシ樹脂組成物
には、上記a〜c成分以外に、硬化促進剤,シリコンオ
イルやゴム化合物,カーボンブラック等の着色剤,シラ
ンカップリング剤等のカップリング剤,アンチモンやブ
ロム化エポキシ樹脂等の難燃剤等他の添加剤を必要に応
じて配合することができる。
In the epoxy resin composition used in the present invention, in addition to the components a to c, a curing accelerator, a silicone oil or a rubber compound, a coloring agent such as carbon black, a coupling agent such as a silane coupling agent, Other additives such as flame retardants such as antimony and brominated epoxy resin can be blended as necessary.

【0018】この発明に用いられるエポキシ樹脂組成物
は、例えばつぎのようにして得られる。すなわち、上記
a〜c成分および他の添加剤を適宜配合する。この配合
物をミキシングロール機等の混練機にかけて加熱状態で
混練して半硬化状態の樹脂組成物とする。つぎに、これ
を室温に冷却した後公知の手段によって粉砕し、必要に
応じて打錠するという一連の工程により目的とするエポ
キシ樹脂組成物が得られる。
The epoxy resin composition used in the present invention is obtained, for example, as follows. That is, the above components a to c and other additives are appropriately mixed. This mixture is kneaded in a heating state by a kneading machine such as a mixing roll machine to obtain a semi-cured resin composition. Next, the desired epoxy resin composition is obtained by a series of steps in which this is cooled to room temperature, pulverized by a known means, and tableted if necessary.

【0019】このようなエポキシ樹脂組成物を用いての
半導体素子の封止は特に限定するものではなく、通常の
方法、例えばトランスファー成形等の公知のモールド方
法により行うことができる。
The encapsulation of the semiconductor element using such an epoxy resin composition is not particularly limited and can be carried out by a usual method, for example, a known molding method such as transfer molding.

【0020】このとき、封止用エポキシ樹脂組成物とし
ては、成形用金型への溶融圧入のための金型温度(通常
150〜180℃)での溶融粘度が20〜2000ポイ
ズの範囲に設定することが好ましく、具体的には金型温
度が例えば175℃の場合の溶融粘度が20〜1000
ポイズの範囲に設定することが好ましい。通常、無機質
充填剤(c成分)を多く含有すると、エポキシ樹脂組成
物の粘度は上昇するが、この発明の樹脂封止の対象とな
る薄形のICパッケージでは、半導体素子やダイパッド
の短辺が1〜4cm程度なので、上記特定の無機質充填
剤(c成分)を含有するエポキシ樹脂組成物の最薄部分
へ完全に充填させるには成形温度での最小溶融粘度が2
000ポイズ以下であれば特に問題はない。上記最小溶
融粘度は、高化式フローテスターにより測定され、ノズ
ル径は1mmでノズル長さは1cmであればよい。
At this time, as the epoxy resin composition for encapsulation, the melt viscosity at the mold temperature (usually 150 to 180 ° C.) for melt press-fitting into the molding mold is set in the range of 20 to 2000 poise. Specifically, the melt viscosity is 20 to 1000 when the mold temperature is 175 ° C., for example.
It is preferable to set it in the range of poise. Generally, when a large amount of the inorganic filler (component c) is contained, the viscosity of the epoxy resin composition increases, but in the thin IC package targeted for resin encapsulation of the present invention, the short side of the semiconductor element or die pad is Since it is about 1 to 4 cm, the minimum melt viscosity at the molding temperature is 2 in order to completely fill the thinnest part of the epoxy resin composition containing the specific inorganic filler (component c).
If it is 000 poise or less, there is no particular problem. The minimum melt viscosity is measured with a Koka type flow tester, and the nozzle diameter may be 1 mm and the nozzle length may be 1 cm.

【0021】このようにして得られる半導体装置は、そ
の封止樹脂層においてつぎのような効果が得られる。す
なわち、図1に示す半導体装置の側部分(斜線領域P)
には、粒子径の大きい無機質充填剤が分布する。このた
め、内部に生じたクラックの成長(伸び)が妨げられパ
ッケージ4表面に到達するのが防止される。また、半導
体素子1の上方部分およびダイパッド2の下方部分の封
止樹脂層の薄い部分には粒子径の小さな無機質充填剤が
分布する。このため、靱性が向上し、クラックの発生が
防止される。図において、3はリードフレーム、6はボ
ンディングワイヤーである。
The semiconductor device thus obtained has the following effects in the sealing resin layer. That is, the side portion (hatched region P) of the semiconductor device shown in FIG.
An inorganic filler having a large particle size is distributed in the area. For this reason, the growth (extension) of cracks generated inside is prevented and the cracks are prevented from reaching the surface of the package 4. In addition, an inorganic filler having a small particle diameter is distributed in the thin portion of the sealing resin layer in the upper portion of the semiconductor element 1 and the lower portion of the die pad 2. Therefore, toughness is improved and cracks are prevented from occurring. In the figure, 3 is a lead frame, and 6 is a bonding wire.

【0022】[0022]

【発明の効果】以上のように、この発明の半導体装置
は、半導体素子が、封止樹脂層の最薄部分の厚みをxμ
mに設定したときに、その厚みと略同等以上の大きさの
粒径を有する無機質充填剤が極少量含有され、殆どが小
粒径の無機質充填剤を必須成分とするエポキシ樹脂組成
物によって樹脂封止されている。このため、小粒径の無
機質充填剤は、最薄層部分の厚みよりも小さく上記最薄
部分に詰まることなく充填される。したがって、最薄部
分の靱性が向上し、クラックが生じ難い。しかも、得ら
れるパッケージには未充填部分や貫通ボイドが形成され
ない。また、上記粒径の大きな無機質充填剤はパッケー
ジの側部分に分布するため、例えば、パッケージ内部に
クラックが生じた場合、そのクラックの伸びが妨げら
れ、クラックの成長が防止される。このように、この発
明の半導体装置は、パッケージの厚みが1mm以下のよ
うな薄形のものに最適であり、近年の小形化,薄形化に
対応したものである。
As described above, in the semiconductor device of the present invention, the semiconductor element has the thickness of the thinnest portion of the sealing resin layer is xμ.
When it is set to m, a very small amount of an inorganic filler having a particle size substantially equal to or larger than the thickness is contained, and most of them are made of an epoxy resin composition containing an inorganic filler having a small particle size as an essential component. It is sealed. Therefore, the inorganic filler having a small particle size is smaller than the thickness of the thinnest layer portion and is filled in the thinnest portion without clogging. Therefore, the toughness of the thinnest portion is improved and cracks are less likely to occur. Moreover, no unfilled portion or through void is formed in the obtained package. Further, since the inorganic filler having a large particle size is distributed in the side portion of the package, for example, when a crack occurs inside the package, the extension of the crack is hindered and the growth of the crack is prevented. As described above, the semiconductor device of the present invention is most suitable for a thin package having a package thickness of 1 mm or less, and corresponds to recent miniaturization and thinning.

【0023】つぎに、実施例について比較例と併せて説
明する。
Next, examples will be described together with comparative examples.

【0024】まず、実施例に先立って、粒度分布の異な
る無機質充填剤を含有した数種類のエポキシ樹脂組成物
を作製した。
First, prior to the examples, several kinds of epoxy resin compositions containing inorganic fillers having different particle size distributions were prepared.

【0025】〔エポキシ樹脂組成物の作製〕4,4′−
ジヒドロキシテトラメチルビフェニルグリシジルエーテ
ルを20部、フェノールノボラック樹脂を12部、トリ
フェニルホスフィンを1.0部、さらに下記の表1〜表
3に示す粒度分布を有する球状シリカ粒子を配合し、ミ
キシングロール機にかけて加熱状態(約100℃)で混
練して半硬化状態の樹脂組成物とした。つぎに、これを
室温に冷却した後公知の手段によって粉砕することによ
り粉末状のエポキシ樹脂組成物を得た。また、各エポキ
シ樹脂組成物の成形温度(175℃)での最小溶融粘度
を測定し下記の表1〜表3に併せて示した。さらに、半
導体パッケージの封止樹脂部分の厚みの最薄層部分(厚
みxμm)に対して、シリカ粒子全体の粒子径0.9x
μm以上のシリカ粒子の存在確率を測定し、その結果を
下記の表1〜表3に併せて示した。
[Preparation of Epoxy Resin Composition] 4,4′-
20 parts of dihydroxytetramethylbiphenyl glycidyl ether, 12 parts of phenol novolac resin, 1.0 part of triphenylphosphine, and spherical silica particles having a particle size distribution shown in Tables 1 to 3 below are mixed, and a mixing roll machine is used. And kneaded in a heated state (about 100 ° C.) to obtain a semi-cured resin composition. Next, this was cooled to room temperature and then pulverized by a known means to obtain a powdery epoxy resin composition. Further, the minimum melt viscosity of each epoxy resin composition at the molding temperature (175 ° C.) was measured and shown in Tables 1 to 3 below. Further, with respect to the thinnest layer portion (thickness x μm) of the sealing resin portion of the semiconductor package, the particle diameter of the entire silica particles is 0.9x.
The existence probability of silica particles having a size of μm or more was measured, and the results are also shown in Tables 1 to 3 below.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【実施例1〜19、比較例1〜17】このようにして得
られた各エポキシ樹脂組成物を用いて、通常のトランス
ファー成形(成形温度175℃)にて半導体素子を樹脂
封止した。そして、図2に示すように、封止樹脂層5に
おいて、ダイパッド2の下方の封止樹脂層の厚みをx
(x=35μm,53μm,71μm,100μm)に
設定した複数の半導体装置(図2参照)を作製した。図
において、1は半導体素子、3はリードフレームであ
る。上記半導体装置のサイズは、8×18mm、ダイパ
ッド2のサイズは5.8×14.5mmである。
Examples 1 to 19 and Comparative Examples 1 to 17 Using the epoxy resin compositions thus obtained, semiconductor elements were resin-sealed by ordinary transfer molding (molding temperature 175 ° C.). Then, as shown in FIG. 2, in the sealing resin layer 5, the thickness of the sealing resin layer below the die pad 2 is x.
A plurality of semiconductor devices (see FIG. 2) set to (x = 35 μm, 53 μm, 71 μm, 100 μm) were manufactured. In the figure, 1 is a semiconductor element, and 3 is a lead frame. The size of the semiconductor device is 8 × 18 mm, and the size of the die pad 2 is 5.8 × 14.5 mm.

【0030】作製した半導体装置における封止樹脂部分
の最薄層(厚みxμm)に対する充填具合を目視により
判断し評価した。さらに、この部分を研磨して走査型電
子顕微鏡で観察して、設計どおりの粒度分布と量のシリ
カ粒子が存在して完全に充填されたものを○、未充填部
分が形成されたものを×として下記の表4〜表9に示し
た。
The filling degree of the thinnest layer (thickness x μm) of the sealing resin portion in the manufactured semiconductor device was visually judged and evaluated. Furthermore, this portion was polished and observed with a scanning electron microscope, and ○ was completely filled with the presence of silica particles in the particle size distribution and amount as designed, and × was the unfilled portion was formed. Are shown in Tables 4 to 9 below.

【0031】(1)封止樹脂部分の最薄層の厚みxが3
5μmの場合。
(1) The thickness x of the thinnest layer of the sealing resin portion is 3
In case of 5 μm.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】(2)封止樹脂部分の最薄層の厚みxが5
3μmの場合。
(2) The thickness x of the thinnest layer of the sealing resin portion is 5
In case of 3 μm.

【0035】[0035]

【表6】 [Table 6]

【0036】(3)封止樹脂部分の最薄層の厚みxが7
1μmの場合。
(3) The thickness x of the thinnest layer of the sealing resin portion is 7
In case of 1 μm.

【0037】[0037]

【表7】 [Table 7]

【0038】(4)封止樹脂部分の最薄層の厚みxが1
00μmの場合。
(4) The thickness x of the thinnest layer of the sealing resin portion is 1
For 00 μm.

【0039】[0039]

【表8】 [Table 8]

【0040】[0040]

【表9】 [Table 9]

【0041】上記表4〜表9の結果から、実施例品は何
れも未充填部分が形成されることなく完全に最薄層部分
(厚みxμm部分)に樹脂組成物が充填されたことがわ
かる。しかも、実施例品の最薄層部分の靱性が向上し
た。
From the results shown in Tables 4 to 9 above, it can be seen that the thinnest layer portion (thickness x μm portion) was completely filled with the resin composition in each of the example products without forming an unfilled portion. . Moreover, the toughness of the thinnest layer portion of the example product was improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の半導体装置の一実施例を示す斜視図
である。
FIG. 1 is a perspective view showing an embodiment of a semiconductor device of the present invention.

【図2】実施例および比較例で用いられる評価用半導体
装置を示す断面図である。
FIG. 2 is a sectional view showing an evaluation semiconductor device used in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 半導体素子 1 Semiconductor element

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子を、無機質充填剤を含有する
エポキシ樹脂組成物によって樹脂封止してなる半導体装
置であって、封止樹脂層の最薄部分の厚みをxμm(x
=30〜100)に設定したときに、上記無機質充填剤
が下記の(A)を満足するものであることを特徴とする
半導体装置。(A)粒子径0.9xμm以上の無機質充
填剤の含有量が、無機質充填剤全体の2重量%以下に設
定されている。
1. A semiconductor device obtained by resin-sealing a semiconductor element with an epoxy resin composition containing an inorganic filler, wherein the thickness of the thinnest portion of the sealing resin layer is x μm (x
= 30 to 100), the inorganic filler satisfies the following (A). (A) The content of the inorganic filler having a particle diameter of 0.9 × μm or more is set to 2% by weight or less of the whole inorganic filler.
【請求項2】 粒子径0.9xμm以上の無機質充填剤
の含有量が、無機質充填剤全体の1〜2重量%の範囲に
設定されている請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein the content of the inorganic filler having a particle diameter of 0.9 × μm or more is set in the range of 1 to 2% by weight based on the whole inorganic filler.
【請求項3】 無機質充填剤の平均粒子径が5〜25μ
mに設定されている請求項1または2記載の半導体装
置。
3. The average particle size of the inorganic filler is 5 to 25 μm.
The semiconductor device according to claim 1, wherein the semiconductor device is set to m.
【請求項4】 下記の(a)〜(c)成分を含有する半
導体封止用エポキシ樹脂組成物であって、上記(c)成
分である無機質充填剤が、下記の(A)を満足するもの
である半導体封止用エポキシ樹脂組成物。 (a)エポキシ樹脂。 (b)硬化剤。 (c)無機質充填剤。 (A)粒径0.9xμm以上の無機質充填剤の含有量
が、無機質充填剤全体の2重量%以下に設定されている
(ただし、xは半導体素子の樹脂封止後の封止樹脂層の
最薄部分の厚みであって、x=30〜100)。
4. An epoxy resin composition for semiconductor encapsulation containing the following components (a) to (c), wherein the inorganic filler as the component (c) satisfies the following (A): An epoxy resin composition for semiconductor encapsulation. (A) Epoxy resin. (B) Curing agent. (C) Inorganic filler. (A) The content of the inorganic filler having a particle size of 0.9 × μm or more is set to 2% by weight or less of the entire inorganic filler (where x is the sealing resin layer after resin sealing of the semiconductor element). The thickness of the thinnest portion, x = 30 to 100).
【請求項5】 粒子径0.9xμm以上の無機質充填剤
の含有量が、無機質充填剤全体の1〜2重量%の範囲に
設定されている請求項4記載の半導体封止用エポキシ樹
脂組成物。
5. The epoxy resin composition for semiconductor encapsulation according to claim 4, wherein the content of the inorganic filler having a particle diameter of 0.9 × μm or more is set in the range of 1 to 2% by weight based on the whole inorganic filler. .
【請求項6】 無機質充填剤の平均粒子径が5〜25μ
mに設定されている請求項4または5記載の半導体封止
用エポキシ樹脂組成物。
6. The average particle size of the inorganic filler is 5 to 25 μm.
The epoxy resin composition for semiconductor encapsulation according to claim 4, wherein the epoxy resin composition is set to m.
JP5183810A 1993-07-26 1993-07-26 Semiconductor device Expired - Lifetime JP3014900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5183810A JP3014900B2 (en) 1993-07-26 1993-07-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5183810A JP3014900B2 (en) 1993-07-26 1993-07-26 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0745752A true JPH0745752A (en) 1995-02-14
JP3014900B2 JP3014900B2 (en) 2000-02-28

Family

ID=16142275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5183810A Expired - Lifetime JP3014900B2 (en) 1993-07-26 1993-07-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3014900B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138092A1 (en) * 2016-02-09 2017-08-17 三菱電機株式会社 Power semiconductor device and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017138092A1 (en) * 2016-02-09 2017-08-17 三菱電機株式会社 Power semiconductor device and method for manufacturing same
JPWO2017138092A1 (en) * 2016-02-09 2018-06-21 三菱電機株式会社 Power semiconductor device and manufacturing method thereof
CN108604578A (en) * 2016-02-09 2018-09-28 三菱电机株式会社 Power semiconductor device and its manufacturing method
US20190057928A1 (en) * 2016-02-09 2019-02-21 Mitsubishi Electric Corporation Power semiconductor apparatus and manufacturing method therefor
CN108604578B (en) * 2016-02-09 2021-07-16 三菱电机株式会社 Power semiconductor device and method for manufacturing the same
US11107746B2 (en) 2016-02-09 2021-08-31 Mitsubishi Electric Corporation Power semiconductor apparatus and manufacturing method therefor

Also Published As

Publication number Publication date
JP3014900B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
JP3821173B2 (en) Epoxy resin composition
CN101068846B (en) Epoxy resin composition and semiconductor device
EP0827159B1 (en) Epoxy resin composition and semiconductor device encapsulated therewith
CN102627832A (en) Epoxy resin composition and semiconductor device
JP3618174B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2005239892A (en) Resin composition for semiconductor encapsulation and semiconductor device using the same
JPH0745752A (en) Semiconductor device
JP3565118B2 (en) Epoxy resin composition for semiconductor encapsulation
JP2001354754A (en) Epoxy resin composition for semiconductor sealing and semiconductor device using the same
JP2003277585A (en) Epoxy resin composition and semiconductor device
JP3540628B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP5275697B2 (en) Epoxy resin composition for sealing and method for producing the same
JP3094857B2 (en) Semiconductor device and semiconductor device sealing method
JP2001040182A (en) Epoxy resin composition for sealing semiconductor and semiconductor apparatus using the same
JP2014218594A (en) Sealing resin composition and method for producing the same, and resin sealing type semiconductor device
JP2002309067A (en) Epoxy resin composition for sealing and semiconductor device
JP3375835B2 (en) Liquid sealing resin composition and semiconductor product using the liquid sealing resin composition
JPH08258077A (en) Semiconductor device
JP2690795B2 (en) Epoxy resin composition
JP4850599B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained using the same
JP2006022188A (en) Epoxy resin composition and method for producing the same and semiconductor device
JP3540647B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2008184585A (en) Resin composition for sealing semiconductor and semiconductor device obtained using the same
JPH03140322A (en) Epoxy resin molding material for semiconductor-sealing and resin-sealed semiconductor device
JP2008007562A (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device obtained by using the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 14

EXPY Cancellation because of completion of term