JPH0745465A - Method and apparatus for forming resin molded coil - Google Patents

Method and apparatus for forming resin molded coil

Info

Publication number
JPH0745465A
JPH0745465A JP18581193A JP18581193A JPH0745465A JP H0745465 A JPH0745465 A JP H0745465A JP 18581193 A JP18581193 A JP 18581193A JP 18581193 A JP18581193 A JP 18581193A JP H0745465 A JPH0745465 A JP H0745465A
Authority
JP
Japan
Prior art keywords
coil
coil conductor
mold
conductor
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18581193A
Other languages
Japanese (ja)
Inventor
Yoshishige Fukushi
慶滋 福士
Toru Koyama
小山  徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18581193A priority Critical patent/JPH0745465A/en
Publication of JPH0745465A publication Critical patent/JPH0745465A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a new positioning means of a coil conductor employed in resin molding of the coil in which no spacer is employed for ensuring the thickness of insulation. CONSTITUTION:When a coil conductor 1 set in a metal mold 3 is molded by thermally curing a resin 4 filling thereabout, electromagnetic coils 6, 7 are disposed on the opposite sides of the metal mold and the coil conductor is secured at in place through the use of repelling electromagnetic force being generated upon conduction of the coil conductor and the electromagnetic coil.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子材料の成型方法
に係り、特に、エポキシ樹脂などの熱硬化性樹脂を用い
て、内部に導体巻線を有する場合の成型方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of molding a polymer material, and more particularly to a method of molding a thermosetting resin such as an epoxy resin having a conductor winding inside.

【0002】[0002]

【従来の技術】巻線をエポキシレジンなどでモールドし
たモールドコイルは、絶縁性能や機械的特性に優れ、且
つ、耐湿性能も優れているため、広く電力機器に用いら
れている。特に高電圧が荷電されるものなど高性能を要
求される機器などに適している。このようなモールドコ
イルは、通常、金型の中にコイル導体をセットした後、
エポキシレジンなどの熱硬化性レジンを注入し、加熱硬
化して成型される。このような場合、金型とコイル導体
との間には適宜の個数のスペーサを設け、所定の絶縁厚
みを確保するのが普通である。しかし、このようなスペ
ーサを用いる方法では、スペーサ界面に剥離などの欠陥
が生じ、絶縁特性など種々の特性の低下が生じる懸念が
有った。そのため、特公昭58−042609号公報に記載され
ているようにスペーサの形状や材質の工夫が為されてき
た。また、特開平4−239704 号公報に記載されているよ
うに金型との接触部に補強材を配したり、スペーサ界面
の処理をするなどの対策もされてきた。しかし、このよ
うな方法によっても、より短時間での成型をしようとす
る場合には完全な対策とは成り得なかった。また、この
ようなスペーサを取り付ける方法では、取り付けのため
の作業が不可避であり、作業工程が増えるという欠点も
有った。
2. Description of the Related Art Molded coils in which windings are molded with epoxy resin or the like are widely used in electric power equipment because they are excellent in insulation performance, mechanical characteristics, and moisture resistance. It is particularly suitable for devices that require high performance, such as those that are charged with a high voltage. Such a mold coil is usually used after setting the coil conductor in the mold.
A thermosetting resin such as an epoxy resin is injected and cured by heating to be molded. In such a case, it is usual to provide a proper number of spacers between the mold and the coil conductor to secure a predetermined insulation thickness. However, in the method using such a spacer, there is a concern that defects such as peeling may occur at the spacer interface and various characteristics such as insulation characteristics may be deteriorated. Therefore, the shape and material of the spacer have been devised as described in JP-B-58-042609. Further, as described in Japanese Patent Laid-Open No. 4-239704, measures have been taken such as providing a reinforcing material at a contact portion with a mold and treating a spacer interface. However, even such a method could not be a complete countermeasure in the case of molding in a shorter time. In addition, such a method of attaching the spacers has a drawback that the work for the attachment is inevitable and the number of work steps is increased.

【0003】[0003]

【発明が解決しようとする課題】本発明の課題は、従来
技術で述べたスペーサに関する欠点を根本的に解決する
ことである。
SUMMARY OF THE INVENTION The object of the invention is to fundamentally solve the disadvantages of the spacers mentioned in the prior art.

【0004】[0004]

【課題を解決するための手段】本発明は、従来技術にお
ける欠陥の発生が、所定の絶縁厚みを確保するために用
いられるスペーサに起因していることに着眼し、スペー
サによらない新たな導体の位置決め手段を指向して為さ
れたものである。そのためには、コイル導体の両側に電
磁コイルを設けコイル導体にも通電し、これらに働く電
磁力によってコイル導体を所定の位置に固定し、前記ス
ペーサを用いなくても所定の絶縁厚みを確保出来るよう
にした。
DISCLOSURE OF THE INVENTION The present invention focuses on the fact that the occurrence of defects in the prior art is due to the spacer used to secure a predetermined insulation thickness, and a new conductor not relying on the spacer is provided. The positioning means is directed. For that purpose, electromagnetic coils are provided on both sides of the coil conductor, the coil conductor is also energized, the coil conductor is fixed at a predetermined position by the electromagnetic force acting on these, and a predetermined insulation thickness can be secured without using the spacer. I did it.

【0005】[0005]

【作用】この方法では、欠陥の発生が懸念されるスペー
サを用いていないため、従来技術で述べたスペーサ周囲
の欠陥の発生は皆無になる。
In this method, since the spacers which are likely to cause defects are not used, the defects around the spacers described in the prior art are completely eliminated.

【0006】[0006]

【実施例】以下、本発明を図面を用いて具体的に説明す
る。本発明は、平面に近いコイルであれば、コイルの開
口側から見た形状がどんなものであっても適用可能と考
えられるが、ここでは円形のコイルを例に説明する。図
1は、本発明の一実施例である。図2は、その側面側か
ら見た横断面図である。コイル導体1は、絶縁被覆の施
された絶縁電線を巻回するか若しくは裸電線に適宜の絶
縁物を介在させながら所定の回数巻いて形成される。2
はその端子及びリード線である。コイル導体は、金型3
の中にセットされる。図には詳細を示さないが金型は、
適宜複数分割されてコイル導体が装填及び取り出し出来
るように工夫されている。金型の材質は、アルミニウム
やステンレス等の非磁性のものを用いる。この場合、コ
イルの重量は端子及びリード線で支えられるため端子及
びリード線2は、それを支えるための強度と、図2に示
される断面のコイル位置を決めるための剛性を有するよ
うに設計される必要がある。金型の両側には、図1に示
すように電磁コイル6,7が配置される。この電磁コイ
ルの形状は必ずしも、金型内のコイル導体と同形状であ
る必要は無いが出来る限り同形状に近い方が望ましい。
この電磁コイルの巻回数,通電電流は、中に装填される
コイル導体の大きさ,重量などを考慮して、それを所定
の位置に固定するのに十分な電磁力が発生するように設
計される。このような構成に配置した後に金型の空洞内
にレジン4を注入するか若しくはレジンを注入した後、
電磁コイルが図のように配置される。この状態で、コイ
ル導体には通電装置5から、また、電磁コイル6,7に
は通電装置9(図1,図2中には図示無し)から、それ
ぞれ電流が流される。通電電源は、交流でも可能と思わ
れるが、望ましくは直流電源を用いるのが良い。交流電
源を使用する場合には、FRP型のような非磁性、且
つ、非導電性のものを用いる必要がある。通電の際に
は、電磁コイルそれぞれとコイル導体は常に反発するよ
うに電流の極性及びそれぞれの巻線への通電電流の方向
を設定する。例えば、図1において電磁コイル6の左側
(コイル導体側)がN極になるように電流を流した場
合、コイル導体の右側(電磁コイル6側)がN極になる
ように通電し、電磁コイル7には右側(導体コイル側)
がS極(対向するコイル導体の左側はS極)になるよう
に電流を流す。今、電磁コイル6,7の巻数及び通電電
流が等しく、コイル導体に対して左右対称の位置に配置
されているとすると、コイル導体1は両側の電磁コイル
からほぼ等しい反発の電磁力を受け、結果として金型中
央に固定される。この反発力は、コイル導体及び電磁コ
イルの径に比較し、コイル導体と電磁コイルの距離が極
めて接近していると仮定して、概略次の式で与えられ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. The present invention can be applied to any coil having a shape close to a plane regardless of the shape viewed from the opening side of the coil, but here, a circular coil will be described as an example. FIG. 1 is an embodiment of the present invention. FIG. 2 is a cross-sectional view as seen from the side surface side. The coil conductor 1 is formed by winding an insulated electric wire coated with an insulation coating or winding a bare electric wire a predetermined number of times with an appropriate insulator interposed. Two
Are the terminals and lead wires. Coil conductor is mold 3
Set in. Although the details are not shown in the figure, the mold is
The device is devised so that the coil conductor can be loaded and unloaded appropriately by dividing into a plurality of parts. A non-magnetic material such as aluminum or stainless steel is used as the material of the mold. In this case, since the weight of the coil is supported by the terminal and the lead wire, the terminal and the lead wire 2 are designed to have strength for supporting the terminal and lead wire and rigidity for determining the coil position of the cross section shown in FIG. Need to Electromagnetic coils 6 and 7 are arranged on both sides of the mold as shown in FIG. The shape of this electromagnetic coil does not necessarily have to be the same as the shape of the coil conductor in the mold, but it is desirable that the shape be as close as possible to the same shape.
The number of turns of the electromagnetic coil and the energizing current are designed in consideration of the size and weight of the coil conductor to be loaded therein so that an electromagnetic force sufficient to fix the coil conductor in place is generated. It After arranging in such a configuration, after injecting the resin 4 into the cavity of the mold or injecting the resin,
The electromagnetic coils are arranged as shown. In this state, a current is applied to the coil conductors, and a current is applied to the electromagnetic coils 6 and 7 from an energization device 9 (not shown in FIGS. 1 and 2). The energizing power source may be alternating current, but it is preferable to use a direct current power source. When using an AC power supply, it is necessary to use a non-magnetic and non-conductive one such as FRP type. When energizing, the polarity of the current and the direction of the energizing current to each winding are set so that the electromagnetic coils and the coil conductors always repel each other. For example, in FIG. 1, when a current is passed so that the left side (coil conductor side) of the electromagnetic coil 6 becomes the N pole, the right side (electromagnetic coil 6 side) of the coil conductor is energized so as to become the N pole. 7 on the right side (conductor coil side)
Is passed through so that it becomes the S pole (the S coil is on the left side of the opposing coil conductor). Now, assuming that the electromagnetic coils 6 and 7 have the same number of turns and the same energization current and are arranged at positions symmetrical with respect to the coil conductor, the coil conductor 1 receives substantially equal repulsive electromagnetic force from the electromagnetic coils on both sides, As a result, it is fixed in the center of the mold. This repulsive force is roughly given by the following equation, assuming that the distance between the coil conductor and the electromagnetic coil is extremely short compared to the diameters of the coil conductor and the electromagnetic coil.

【0007】[0007]

【数1】 F=μ0rI1212/d …(数1) ここでμ0:真空の透磁率、 r:コイルの半径 I1、N1:コイル導体への通電電流及びコイル導体の巻
数 I2、N2:電磁コイルへの通電電流及び電磁コイルの巻
数 d:コイル導体と電磁コイルとの距離 今、実際のモールドコイルでも十分有りえる次の値を仮
定すると、反発力として、約630(N)の値が得られ
る。
[Equation 1] F = μ 0 rI 1 I 2 N 1 N 2 / d (Equation 1 ) where μ 0 : permeability of vacuum, r: radius of coil I 1 , N 1 : current flowing to coil conductor and the coil conductors of the turns I 2, N 2: the energizing current and the electromagnetic coil of the electromagnetic coil turns d: now the distance between the coil conductor and the electromagnetic coil, assuming the following values also can there be sufficient actual molded coil, repulsive A force value of about 630 (N) is obtained.

【0008】計算条件:r=0.5m, I1=100
A, I2=100A,N1=100回, N2=100
回, d=0.1m この電磁力の値は、本発明で目的としているコイル導体
を図1に示すように金型中央に固定する力としては十分
な力であり、従来例のような固体のスペーサを用いるこ
と無く、所定の絶縁厚みを確保することが出来る。
Calculation conditions: r = 0.5 m, I 1 = 100
A, I 2 = 100A, N 1 = 100 times, N 2 = 100
Time, d = 0.1 m This electromagnetic force value is sufficient for fixing the coil conductor, which is the object of the present invention, to the center of the mold as shown in FIG. It is possible to secure a predetermined insulation thickness without using the spacer.

【0009】通常のモールドコイルでは、前述の例と同
様、コイル導体を金型の中央に位置させ両側の絶縁厚み
を等しくする場合が多い。この場合には、両側の電磁コ
イルを金型の中心軸に対し対称の位置に、且つ、金型に
近い位置に配置するようにすれば良く、通電電流の制御
等は必ずしも必要としない。しかし、形状が対象でない
コイル導体あるいは左右の絶縁厚みが等しくない場合な
どには、図1中にその例を示すように、金型の内部ある
いは外部にコイル導体の位置を検出するセンサ8を設
け、そのセンサ出力によってコイル導体位置をモニタし
ながら各電磁コイルの通電電流を制御し、コイル導体が
所定の位置に固定されるようにすることもできる。
In a usual molded coil, as in the above-described example, the coil conductor is often located in the center of the mold to make the insulation thickness on both sides equal. In this case, the electromagnetic coils on both sides may be arranged at positions symmetrical with respect to the center axis of the mold and at positions close to the mold, and control of the energizing current is not necessarily required. However, when the shape of the coil conductor is not the target or the left and right insulation thicknesses are not equal, a sensor 8 for detecting the position of the coil conductor is provided inside or outside the mold as shown in FIG. It is also possible to control the energizing current of each electromagnetic coil while monitoring the coil conductor position by the sensor output so that the coil conductor is fixed at a predetermined position.

【0010】図3から図5は、電磁コイルへの通電方法
の例を示したものである。図3はコイル導体及びそれぞ
れの電磁コイルに個別の通電装置を設けるもの、図4
は、コイル導体には、独立の電源を設け、2個の電磁コ
イルには共通の電源を使用するもの、また、図5は3個
のコイルとも共通の通電装置から電流を供給するもので
ある。通常、導体への通電は、導体発熱を利用し、レジ
ン硬化の際の加熱源の働きも兼ねさせる場合が多いの
で、このような場合は、図3若しくは図4を用いれば良
い。コイル導体の両側の絶縁厚みが等しくコイル導体を
金型中央に配置したい場合は、電磁コイルに共通の電流
を流す図4の回路が適している。また、図1で説明した
コイル導体の位置検出センサを用いて、それの出力に応
じて通電電流を制御する場合には、図3の回路による。
3 to 5 show an example of a method of energizing the electromagnetic coil. FIG. 3 shows a coil conductor and each electromagnetic coil provided with an individual energizing device.
Shows that an independent power source is provided for the coil conductors and a common power source is used for the two electromagnetic coils. Also, in FIG. 5, all the three coils are supplied with current from a common energization device. . Usually, the conductor is energized by using the heat generated from the conductor and often also serves as a heating source when the resin is cured. In such a case, FIG. 3 or FIG. 4 may be used. When the coil conductors have the same insulation thickness on both sides and the coil conductor is to be arranged in the center of the mold, the circuit of FIG. 4 in which a common current is passed through the electromagnetic coil is suitable. Further, when the energizing current is controlled according to the output of the position detecting sensor of the coil conductor described in FIG. 1, the circuit of FIG. 3 is used.

【0011】図6は本発明の変形例を示したもので、図
1と同様の縦断面図である。このように本発明は、図1
で示したコイル導体とほぼ同じ大きさの電磁コイルを用
いる代わりに図6に示す形状の鉄心10,11を用い、
励磁コイル12,13で生じた磁束をコイル導体の近傍
まで導くようにしても良い。この場合も、コイル導体と
それぞれの電磁コイル間では反発の電磁力が発生するよ
うに電流の方向を決定しなければならない。このように
すると形状の異なるコイルに対しても鉄心を代えるのみ
で励磁コイルは共通にすることが出来る。
FIG. 6 shows a modification of the present invention and is a vertical sectional view similar to FIG. Thus, the present invention is shown in FIG.
Instead of using the electromagnetic coil having the same size as the coil conductor shown in, the iron cores 10 and 11 having the shape shown in FIG. 6 are used.
The magnetic flux generated in the exciting coils 12 and 13 may be guided to the vicinity of the coil conductor. Also in this case, the direction of the current must be determined so that a repulsive electromagnetic force is generated between the coil conductor and each electromagnetic coil. By doing so, the exciting coil can be made common to the coils having different shapes only by changing the iron core.

【0012】このように本実施例によれば、固体のスペ
ーサを用いることなく所定の絶縁厚みのモールドコイル
が成型できるので、欠陥の無い信頼性の高いモールドコ
イルを得ることが出来る。
As described above, according to this embodiment, a molded coil having a predetermined insulating thickness can be molded without using a solid spacer, so that a molded coil having no defects and high reliability can be obtained.

【0013】なお、エポキシ樹脂以外の他の熱硬化性樹
脂を用いた場合でも本発明は適用できる。
The present invention can be applied even when a thermosetting resin other than the epoxy resin is used.

【0014】[0014]

【発明の効果】本発明によれば、スペーサを用いない成
型が可能であることから、欠陥の発生の無い成型が可能
となり、信頼性の高いコイルの成型方法及びその製造装
置が提供できる。
According to the present invention, since it is possible to perform molding without using a spacer, it is possible to perform molding without defects, and it is possible to provide a highly reliable coil molding method and its manufacturing apparatus.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す縦断面図。FIG. 1 is a vertical sectional view showing an embodiment of the present invention.

【図2】図1の横断面図。2 is a cross-sectional view of FIG.

【図3】本発明における各コイルへの通電方法を示す回
路図。
FIG. 3 is a circuit diagram showing a method of energizing each coil according to the present invention.

【図4】本発明における各コイルへの通電方法を示す回
路図。
FIG. 4 is a circuit diagram showing a method of energizing each coil in the present invention.

【図5】本発明における各コイルへの通電方法を示す回
路図。
FIG. 5 is a circuit diagram showing a method of energizing each coil according to the present invention.

【図6】本発明の別の実施例を示す縦断面図。FIG. 6 is a vertical cross-sectional view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,1C…コイル導体、2…端子及びリード線、3…金
型、4…レジン、5…通電装置、6,7,6C,7C…
電磁コイル、8…コイル位置検出センサ、9…電磁コイ
ルの通電装置、10,11…鉄心、12,13…励磁巻
線、9a,9b…電磁コイルの通電装置。
1, 1C ... Coil conductor, 2 ... Terminal and lead wire, 3 ... Mold, 4 ... Resin, 5 ... Energizing device, 6, 7, 6C, 7C ...
Electromagnetic coil, 8 ... Coil position detection sensor, 9 ... Electromagnetic coil energizing device, 10, 11 ... Iron core, 12, 13 ... Excitation winding, 9a, 9b ... Electromagnetic coil energizing device.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】導体を巻回して構成されるコイル導体を金
型内に装填し熱硬化性レジンを注入し、加熱硬化するも
のにおいて、前記コイル導体に通電し前記コイル導体の
両開口面に対向した位置に磁界発生手段を設けたことを
特徴とするレジンモールドコイルの成型装置。
1. A method in which a coil conductor constituted by winding a conductor is loaded into a mold, a thermosetting resin is injected, and the resin is heat-cured, and the coil conductor is energized to both opening surfaces of the coil conductor. A resin molding coil molding apparatus, characterized in that magnetic field generating means are provided at opposing positions.
【請求項2】請求項1において、一対の電磁石もしくは
一対の永久磁石を用いたレジンモールドコイルの成型装
置。
2. The molding apparatus for a resin mold coil according to claim 1, wherein a pair of electromagnets or a pair of permanent magnets are used.
【請求項3】請求項2において、前記金型に、前記コイ
ル導体の位置を検出する少なくても一個のセンサを設
け、この出力に対応して前記コイル導体への通電電流も
しくは前記電磁石への励磁電流のいずれか若しくはその
両方を制御するようにしたレジンモールドコイルの成型
方法。
3. The mold according to claim 2, wherein the mold is provided with at least one sensor for detecting the position of the coil conductor, and the current supplied to the coil conductor or the electromagnet corresponding to the output of the sensor is provided. A method of molding a resin mold coil, wherein either or both of the exciting currents are controlled.
JP18581193A 1993-07-28 1993-07-28 Method and apparatus for forming resin molded coil Pending JPH0745465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18581193A JPH0745465A (en) 1993-07-28 1993-07-28 Method and apparatus for forming resin molded coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18581193A JPH0745465A (en) 1993-07-28 1993-07-28 Method and apparatus for forming resin molded coil

Publications (1)

Publication Number Publication Date
JPH0745465A true JPH0745465A (en) 1995-02-14

Family

ID=16177310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18581193A Pending JPH0745465A (en) 1993-07-28 1993-07-28 Method and apparatus for forming resin molded coil

Country Status (1)

Country Link
JP (1) JPH0745465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272665A (en) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd Manufacturing device of coated shaped body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006272665A (en) * 2005-03-28 2006-10-12 Matsushita Electric Works Ltd Manufacturing device of coated shaped body

Similar Documents

Publication Publication Date Title
JP3066078B2 (en) Cyclotron, magnetic coil and associated manufacturing method
US4616407A (en) Insulating method for rotary electric machine
US5583475A (en) Method of manufacturing a coil on a toroidal magnetic circuit
Kirby et al. Hi-Lumi LHC twin aperture orbit correctors 0.5-m model magnet development and cold test
US3559134A (en) Random wound encapsulated coil construction
US3602814A (en) Encapsulated electric coil having barrier layer
JPH0745465A (en) Method and apparatus for forming resin molded coil
JPH07238881A (en) Ignition coil
US3662460A (en) Method of making a random wound encapsulated coil
US20190252101A1 (en) Method and apparatus for electromagnetic wound coil
Wilson et al. Measured and calculated losses in model dipole for GSI's heavy ion synchrotron
US3244918A (en) Core construction and method of insulating the windings thereof
JP2000217291A (en) Stator of low-voltage electric machine
US9922760B1 (en) Selectively insulated electromagnet and electromagnet coil assembly
JPH0342687B2 (en)
JPH01104252A (en) Magnetic resonance imaging apparatus
JPH06163241A (en) Electromagnet for magnetic field generating device
JPS6350824Y2 (en)
US1940687A (en) Electromagnet
JP3954489B2 (en) Electric wire and electric wire manufacturing method
JPH04120711A (en) Manufacture of casting coil
JPH0739204Y2 (en) Structure of magnetizing yoke
JPH08162318A (en) Permanent current switch
JP2023029265A (en) Magnetizing device and magnetizing method
JPH104011A (en) Non-inductive superconductive coil