JPH0744040B2 - Sealed storage battery and manufacturing method thereof - Google Patents
Sealed storage battery and manufacturing method thereofInfo
- Publication number
- JPH0744040B2 JPH0744040B2 JP1140794A JP14079489A JPH0744040B2 JP H0744040 B2 JPH0744040 B2 JP H0744040B2 JP 1140794 A JP1140794 A JP 1140794A JP 14079489 A JP14079489 A JP 14079489A JP H0744040 B2 JPH0744040 B2 JP H0744040B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode plate
- negative electrode
- electrolyte
- storage battery
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000003860 storage Methods 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000003792 electrolyte Substances 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 31
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 26
- 238000007650 screen-printing Methods 0.000 claims description 12
- 239000011245 gel electrolyte Substances 0.000 claims description 11
- 239000002985 plastic film Substances 0.000 claims description 9
- 229920006255 plastic film Polymers 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 5
- 239000000499 gel Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 239000011149 active material Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 229910000978 Pb alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000808 amorphous metal alloy Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- CWAFVXWRGIEBPL-UHFFFAOYSA-N ethoxysilane Chemical compound CCO[SiH3] CWAFVXWRGIEBPL-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- ARYZCSRUUPFYMY-UHFFFAOYSA-N methoxysilane Chemical compound CO[SiH3] ARYZCSRUUPFYMY-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/121—Organic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Description
【発明の詳細な説明】 (発明の産業上の利用分野) 本発明は密閉型蓄電池およびその製造方法、さらに詳細
には機器の小型化に伴う電池の薄型化を実現すると共
に、さらに高容量化と長寿命化を同時に可能にすること
ができる密閉型蓄電池及びその製造方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION Industrial Field of the Invention The present invention realizes a sealed storage battery and a method for manufacturing the same, and more specifically realizes a thinner battery as the device is downsized and further increases the capacity. The present invention relates to a sealed type storage battery capable of simultaneously achieving long life and a method for manufacturing the same.
(従来技術) ポータブル機器などの小型機器の普及に伴い、安価で薄
形の密閉型蓄電池の需要が増大している。その薄形化の
方法として、例えば特願昭63−185085号(特公平6−90
934号)に記載されている密閉型蓄電池がある。この方
法は同一平面上に正極と負極が並設され、正極と負極の
厚さを同一にして両極間の空間には電池反応に関与する
電解質が充填されている。この構造を取ることにより、
充放電に伴う電池反応の場の進展方法が電極面間ではな
く、電極面と平行方向となる電極端面間の反応となる。
これにより電極面中央部に位置する集電部の劣化が保護
されるため、電極厚さが薄くなっても寿命が低下するこ
となく薄形化を可能としている。(Prior Art) With the spread of small devices such as portable devices, the demand for inexpensive and thin sealed storage batteries is increasing. As a thinning method, for example, Japanese Patent Application No. 63-185085 (Japanese Patent Publication No. 6-90
There is a sealed storage battery described in No. 934). In this method, a positive electrode and a negative electrode are arranged side by side on the same plane, and the positive electrode and the negative electrode are made to have the same thickness, and a space between both electrodes is filled with an electrolyte involved in a battery reaction. By taking this structure,
The method of advancing the field of the battery reaction due to charge and discharge is not between the electrode surfaces, but between the electrode end surfaces that are parallel to the electrode surfaces.
This protects the current collector located in the central part of the electrode surface from deterioration, so that it is possible to reduce the thickness of the electrode without shortening its life.
また、正極及び負極パターンは正極活物質及び負極活物
質をスクリーン印刷することができるために、スクリー
ン印刷用マスクパターンを変更するだけで容易に種々の
形状の電極の製造を可能にしている。In addition, since the positive electrode and negative electrode patterns can be screen-printed with the positive electrode active material and the negative electrode active material, it is possible to easily manufacture electrodes of various shapes simply by changing the screen printing mask pattern.
(発明が解決する問題点) しかしながら、例えば鉛蓄電池では正極活物質の利用率
は、負極のそれよりも低いために、正極活物質を負極活
物質量より多めにするのが一般的であり、高容量比の最
適設計上において正極厚さは負極のそれより厚いことが
望ましい。(Problems to be solved by the invention) However, in a lead-acid battery, for example, since the utilization rate of the positive electrode active material is lower than that of the negative electrode, it is common to make the positive electrode active material larger than the negative electrode active material amount, It is desirable that the thickness of the positive electrode is thicker than that of the negative electrode in the optimum design with a high capacity ratio.
以上のような理由で正極と負極の端面が離間対向しその
間で反応することを特徴とするこの方法は、電解質の厚
さが負極の厚さと同一になるように硫酸などの電解質を
充填すると、電池の薄形化と長寿命化を達成できるもの
のその電解質が負極厚さより高い正極端面の活物質面全
体に接触できないために、容量が小さくなるという欠点
を有している。For this reason, the end faces of the positive electrode and the negative electrode are separated and opposed to each other, and the reaction occurs between them.In this method, when an electrolyte such as sulfuric acid is filled so that the thickness of the electrolyte becomes the same as the thickness of the negative electrode, Although the battery can be made thinner and its life can be extended, it has a drawback that the capacity is reduced because the electrolyte cannot contact the entire surface of the active material of the positive electrode end surface which is higher than the negative electrode thickness.
一方、例えば特願平1−57075号(特開平2−236963
号)に示される方法、すなわち正・負極間及び、正極と
負極の活物質面上部にも電解質層を設ける方法では、高
容量化は達成できるものの、正極の鉛または鉛合金の
集電体が電解質の硫酸に侵され易い性質があること、
薄形電池においては正極活物質層の厚さが正・負電極間
距離に比べてかなり薄いため、正極上面部に存在する電
解質の硫酸のために、正極端面部のみに硫酸がある場合
と比し、集電体の鉛消失速度が著しく速い、などの理由
により電池寿命が短いという欠点を有している。また、
従来の薄形電池における電解質形成方法は、電池構造に
おける電解質パターンに、例えばガラス繊維でできたリ
テーナを裁断し、それを電極間に挿入して硫酸電解液を
リテーナ中に含浸させていた。この方法は前記リテーナ
の保形性が乏しいためにリテーナ挿入時に位置ずれを起
こすという欠点を有している。On the other hand, for example, Japanese Patent Application No. 1-57075 (JP-A-2-236963)
No.), that is, a method in which an electrolyte layer is provided between the positive and negative electrodes and on the active material surface of the positive electrode and the negative electrode, a high capacity can be achieved, but a positive electrode lead or lead alloy current collector is used. Having the property of being easily attacked by the sulfuric acid of the electrolyte,
In a thin battery, the thickness of the positive electrode active material layer is much smaller than the distance between the positive and negative electrodes.Therefore, sulfuric acid in the electrolyte present on the upper surface of the positive electrode makes it more However, it has a drawback that the battery life is short because the lead disappearance speed of the current collector is extremely high. Also,
In the conventional method for forming an electrolyte in a thin battery, a retainer made of, for example, glass fiber is cut into the electrolyte pattern in the battery structure, and the retainer is inserted between electrodes to impregnate the retainer with a sulfuric acid electrolytic solution. This method has a drawback in that the retainer is poor in shape retention, and thus the retainer is displaced when it is inserted.
本発明は、上述の問題点に鑑みなされたものであり、薄
形の密閉型鉛蓄電池において高容量化を図りながら且つ
長寿命化を可能にする新しい密閉型蓄電池及びその製造
方法を提供することにある。The present invention has been made in view of the above-mentioned problems, and provides a new sealed storage battery and a method for manufacturing the sealed storage battery, which enables a long life while achieving high capacity in a thin sealed lead storage battery. It is in.
(問題点を解決するための手段) 上記問題点を解決するために、本発明による密閉型蓄電
池は負極板と該負極板厚みよりも厚くなっている正極板
とをプラスチックフィルムの同一平面上に互いに離間対
向させて配置し、前記正極板と前記負極板の両電極端面
間及び前記負極板の上面部における空間に電解質を設け
たことを特徴とするものである。(Means for Solving Problems) In order to solve the above problems, in the sealed storage battery according to the present invention, a negative electrode plate and a positive electrode plate thicker than the negative electrode plate are provided on the same plane of a plastic film. It is characterized in that they are arranged so as to be separated and opposed to each other, and an electrolyte is provided between both electrode end surfaces of the positive electrode plate and the negative electrode plate and in a space in an upper surface portion of the negative electrode plate.
また、本発明は上述のような密閉型蓄電池を製造する方
法に関するものであり、特に電解質パターンの位置ずれ
防止を可能にするために、この製造方法は負極板と負極
板厚みより厚くなっている正極板とがプラスチックフィ
ルム基板上の同一平面上に互いに離間対向している電極
構造を有する密閉型蓄電池の製造方法であって、その正
極板と負極板の両電極端面間及び負極板上部の空間にゲ
ル状電解質を充填させることを特徴としている。ゲル状
電解質はスクリーン印刷、圧入、滴下などの方法により
設けることができる。Further, the present invention relates to a method for manufacturing the above-mentioned sealed type storage battery, and in particular, this manufacturing method is thicker than the thickness of the negative electrode plate and the negative electrode plate in order to prevent displacement of the electrolyte pattern. A method for manufacturing a sealed storage battery having an electrode structure in which a positive electrode plate and a plastic film substrate are spaced apart and face each other on the same plane, and a space between both electrode end surfaces of the positive electrode plate and the negative electrode plate and a space above the negative electrode plate. It is characterized in that the gel electrolyte is filled in. The gel electrolyte can be provided by a method such as screen printing, press-fitting, dropping.
従来の技術とは電解質の存在する位置が異なっている。
すなわち、従来技術は正・負極全面または対向正・負極
間のみに存在しているのに対して、本技術は正極板と負
極板の両電極端面間及び負極板上面部の空間にある点が
異なっている。また、電解質の充填が、ゲル状電解質を
スクリーン印刷する方法または型抜きなどを用いて圧入
する方法、ゾル状電解質をスポイトなどにより滴下する
方法によっているため電池構造における電解質パターン
の位置ずれがなく容易に形成できるという点が従来技術
と異なっている。The position where the electrolyte is present is different from the conventional technique.
In other words, the conventional technology exists only on the entire surface of the positive and negative electrodes or between the facing positive and negative electrodes, whereas the present technology has a space between the end faces of the positive electrode plate and the negative electrode plate and the space of the upper surface of the negative electrode plate. Is different. Also, since the filling of the electrolyte is carried out by the method of screen-printing the gel-like electrolyte, the method of press-fitting using a die-cutting method, or the method of dropping the sol-like electrolyte with a dropper, etc., there is no displacement of the electrolyte pattern in the battery structure and it is easy. It is different from the prior art in that it can be formed into
第1図は、本発明の密閉型蓄電池の電極構造を示してお
り、1は正極板、2は負極板、3は電解質、4はプラス
チックフィルム基板、5は安全弁である。FIG. 1 shows an electrode structure of the sealed storage battery of the present invention, in which 1 is a positive electrode plate, 2 is a negative electrode plate, 3 is an electrolyte, 4 is a plastic film substrate, and 5 is a safety valve.
また、同図(a)は平面図、(b)は前記第1図(a)
のA−A′断面図である。Further, FIG. 1A is a plan view, and FIG. 1B is the above-mentioned FIG. 1A.
FIG. 9 is a sectional view taken along line AA ′ of FIG.
第1図より明らかなように、正極板1および負極板2を
プラスチック基板4上に負極板2の高さが正極板1より
低くなるように形成すると共に(第1図(b)参照)、
電解質3を前記正極板1と負極板2の間で形成される空
間および前記負極板2の上面で構成される空間に充填す
る(第1図(a)、第1図(b)参照)。As is clear from FIG. 1, the positive electrode plate 1 and the negative electrode plate 2 are formed on the plastic substrate 4 so that the height of the negative electrode plate 2 is lower than that of the positive electrode plate 1 (see FIG. 1 (b)).
The electrolyte 3 is filled in the space formed between the positive electrode plate 1 and the negative electrode plate 2 and the space formed by the upper surface of the negative electrode plate 2 (see FIGS. 1 (a) and 1 (b)).
電解質3は従来のガラス繊維製の不織布を用いて電解質
形状を作製し、それに硫酸を含浸させたものを用いても
よいが、所定の電解質形状を生産性良く効率的に形成す
るには、例えばスクリーン印刷用マスクを介してスクリ
ーン印刷手法により形成するか、型抜きなどにより圧入
できるゲル状電解質及びスポイトなどにより滴下できる
ゾル状電解質が好ましい。正極板1及び負極板2は鉛形
材料でできた集電体の上に電池反応に寄与する活物質を
公知のスクリーン印刷法により形成させたものであり、
負極側より正極側の方が高くなっている。The electrolyte 3 may be formed by using a conventional glass fiber non-woven fabric to form an electrolyte shape and impregnating it with sulfuric acid, but in order to efficiently form a predetermined electrolyte shape with high productivity, for example, A gel electrolyte that can be formed by a screen printing method through a screen printing mask, or can be pressed in by die cutting, and a sol electrolyte that can be dropped by a dropper are preferable. The positive electrode plate 1 and the negative electrode plate 2 are obtained by forming an active material that contributes to a battery reaction on a current collector made of a lead material by a known screen printing method.
The positive electrode side is higher than the negative electrode side.
この構造において、負極と正極との間及び負極面上部の
正極間に充填させる望ましいゲル状電解質の例として
は、シリカゾル(たとえば日産化学社製スノーテック20
(商標名)、スノーテック0(商標名)、スノーテック
XS(商標名)など)に硫酸を含有させたもの及びそれら
の硫酸含有シリカゾルにガラス短繊維または多孔質ガラ
スなどの無機化合物を含有させたものがある。In this structure, as an example of a desirable gel electrolyte filled between the negative electrode and the positive electrode and between the positive electrodes on the upper surface of the negative electrode, silica sol (for example, Snowtech 20 manufactured by Nissan Chemical Co., Ltd.) is used.
(Trade name), Snow Tech 0 (trade name), Snow Tech
XS (trademark) etc.) containing sulfuric acid and those sulfuric acid-containing silica sols containing inorganic compounds such as short glass fibers or porous glass.
また、メトキシシラン、エトキシシランなどの有機硅素
化合物を水と酸触媒またはアルカリ触媒とで高分子量化
させたゲルと硫酸との混合物がある。さらに、これらゲ
ルに、粘度を調節するために一般的な増粘剤を含有させ
てもよい。In addition, there is a mixture of gel and sulfuric acid in which an organosilicon compound such as methoxysilane or ethoxysilane is made to have a high molecular weight with water and an acid catalyst or an alkali catalyst. Furthermore, these gels may contain a common thickener for adjusting the viscosity.
このような電解質を電極間および負極上面に充填する方
法は、基本的に限定されるものではない。例えば、電解
質がゲル状態にある場合にはスクリーン印刷法または圧
入法により、電解質がゾル状態にある場合には滴下法な
どにより行なうことができる。The method of filling such an electrolyte between the electrodes and on the upper surface of the negative electrode is not basically limited. For example, when the electrolyte is in a gel state, it can be carried out by a screen printing method or a press-fitting method, and when the electrolyte is in a sol state, it can be carried out by a dropping method.
即ち、ゲル状電解質をスクリーン印刷する方法として
は、一般的なスクリーン印刷機を用いることができ、ス
キージ及びスクリーンマスクなど一般的なスクリーン印
刷機用のものを用いることができるが、この硫酸含有ゲ
ルは強酸性のために、スクリーンマスクの材質は耐硫酸
性に優れるものであればよく、例えばステンレス製また
はアモルファス合金製のものがある。メッシュサイズは
80メッシュ前後が良好な充填性を得るのに望ましいが、
ゲルの粘性に応じて開口率60〜80%のものを用いること
ができる。That is, as a method for screen-printing the gel electrolyte, a general screen printer can be used, and those for general screen printers such as a squeegee and a screen mask can be used. Since it is strongly acidic, the screen mask may be made of any material having excellent sulfuric acid resistance, such as stainless steel or amorphous alloy. Mesh size is
Around 80 mesh is desirable to obtain good filling properties,
A gel having an opening ratio of 60 to 80% can be used depending on the viscosity of the gel.
ゲル状電解質を圧入する方法としては、たとえば、底面
に電解質パターンの平面形状を有し、その底面がゲルを
押すのに適した筒状のものから構成されており、それに
ゲル状電解質を入れて筒上部より下部方向へ圧力をかけ
て電極間の充填すべき空間へ一定量押し出す構造を有す
る型抜き装置により行なうことができる。As a method of press-fitting a gel electrolyte, for example, the bottom surface has a planar shape of an electrolyte pattern, the bottom surface is composed of a cylindrical shape suitable for pressing the gel, and put the gel electrolyte into it. This can be performed by a die-cutting device having a structure in which pressure is applied downward from the upper part of the cylinder to push a certain amount into the space between the electrodes to be filled.
また、電解質の低粘度のゾル状態である場合には、スポ
イトによる滴下により、容易に該電解質を充填すること
ができる。Further, when the electrolyte is in a low-viscosity sol state, the electrolyte can be easily filled by dropping with a dropper.
以上の方法により充填した電解質は、時間の経過と共に
増粘して完全なゲル状電解質となり、所定の電解質形状
を形成する。The electrolyte filled by the above method thickens with the passage of time to become a complete gel electrolyte and forms a predetermined electrolyte shape.
次に、第1図に示した本発明による密閉型蓄電池の性能
を確かめるための実施例は以下に示す。Next, an example for confirming the performance of the sealed storage battery according to the present invention shown in FIG. 1 will be shown below.
(実施例1) プラスチックフィルム基板上に鉛形箔の集電体を形成
し、その上に活物質をスクリーン印刷法により形成し、
第1図に示す電極を形成した。負極板厚さは350μm、
正極板の厚さは500μm、各極板の幅は4mm、正極と負極
との間の間隔は3mmである。この両電極間及び負極板上
部の空間に第1図(b)に示す構造になるようにスクリ
ーン印刷法により硫酸を含有させたスノーテックス20
(商標名)を充填させた。その後上部面にプラスチック
フィルムをのせ下部のプラスチックフィルムと熱シール
することにより密閉型蓄電池を得た。電池の大きさは54
mm×85mmであった。この電池の20時間率での容量は約70
mAhであった。(Example 1) A lead foil current collector was formed on a plastic film substrate, and an active material was formed thereon by a screen printing method.
The electrode shown in FIG. 1 was formed. The negative electrode plate thickness is 350 μm,
The thickness of the positive electrode plate is 500 μm, the width of each electrode plate is 4 mm, and the distance between the positive electrode and the negative electrode is 3 mm. Snowtex 20 containing sulfuric acid in the space between both electrodes and the space above the negative electrode plate by screen printing so as to have the structure shown in FIG. 1 (b).
(Trade name). Then, a plastic film was placed on the upper surface and heat-sealed with the lower plastic film to obtain a sealed storage battery. Battery size is 54
It was mm × 85 mm. This battery has a capacity of about 70 at a 20-hour rate.
It was mAh.
この電池を用いて25℃、2.45Vの定電圧、最大充電電流1
7.5mAの条件下でトルクル充電を行ない、30日毎に放電
電流17.5mA、放電終止電圧1.7Vの条件で容量試験を行な
った。その容量変化の結果は第2図に示したとおりであ
った。Using this battery, 25 ℃, constant voltage of 2.45V, maximum charging current 1
Torque charging was performed under the condition of 7.5 mA, and capacity test was performed every 30 days under the conditions of discharge current of 17.5 mA and discharge end voltage of 1.7V. The result of the capacity change was as shown in FIG.
(比較例1) 電解質の高さが負極板と同じ高さになるように正極板と
負極板との間に圧入法で硫酸含有のスノーテック20(商
標名)を充填させる以外は実施例1と同様にして密閉型
蓄電池を作製した。この電池の容量は40mAhと実施例に
比べて低い値であった。(Comparative Example 1) Example 1 was repeated except that sulfuric acid-containing Snowtec 20 (trade name) was filled between the positive electrode plate and the negative electrode plate by a press-fitting method so that the height of the electrolyte was the same as that of the negative electrode plate. A sealed storage battery was produced in the same manner as in. The capacity of this battery was 40 mAh, which was a low value compared to the examples.
(比較例2) 電解質が正極板と同じ高さに充填された上に、さらに30
μmの厚さの電解質を同一平面上の正極板と電解質ゲル
面の全面にスクリーン印刷法で硫酸含有のスノーテック
20(商標名)を塗布して電解質層を正極板上面にも形成
させた以外は実施例と同様にして密閉型蓄電池を作製し
た。この電池の容量は約70mAhであった。この電池を用
いて、実施例に示したトリクル充電の条件でトリクル充
電を行ない容量試験を行なった。その容量変化の結果は
第2図に示したとおりであり、実施例のものに比べて著
しい低下が認められた。(Comparative Example 2) The electrolyte was filled at the same height as the positive electrode plate, and further 30
An electrolyte with a thickness of μm is applied to the entire surface of the positive electrode plate and the electrolyte gel surface on the same plane by a screen printing method containing sulfuric acid containing Snowtech.
A sealed type storage battery was produced in the same manner as in Example except that 20 (trade name) was applied to form an electrolyte layer on the upper surface of the positive electrode plate. The capacity of this battery was about 70 mAh. Using this battery, trickle charging was performed under the trickle charging conditions shown in the examples, and a capacity test was performed. The result of the capacity change is as shown in FIG. 2, and a remarkable decrease was recognized as compared with that of the example.
実施例の電池は、比較例1のものにくらべて容量が大き
く十分なエネルギー密度を有しており、比較例2のもの
に比べてトリクル充電に対しての容量低下が認められず
十分な電池寿命を有している。The battery of the example has a large capacity and a sufficient energy density as compared with the battery of the comparative example 1, and compared with the battery of the comparative example 2, no decrease in the capacity due to trickle charging is observed and the battery is a sufficient battery. Have a lifespan.
(発明の効果) 以上説明したように、この発明においては同一平面上に
正極板と負極板とが配置され、その正極板の高さは負極
板より高くなっている密閉型蓄電池であって、正・負極
板の端面間の空間及び負極板上部の正極板端面間の空間
に電解質を充填した構造を有しているために、従来の薄
形の密閉型蓄電池に比べて高容量硫化と長寿命化の両性
能を同時に満足させているので、工業的価値は絶大なる
ものである。(Effect of the invention) As described above, in the present invention, the positive electrode plate and the negative electrode plate are arranged on the same plane, and the height of the positive electrode plate is higher than that of the negative electrode plate. Since it has a structure in which the space between the end faces of the positive and negative plates and the space between the end faces of the positive plate above the negative plate are filled with electrolyte, it has higher capacity and longer storage capacity than conventional thin sealed batteries. The industrial value is tremendous because both performances of life extension are satisfied at the same time.
第1図は本発明の密閉型蓄電池の(a)平面図及び
(b)A−A′面の断面図であり、第2図は本発明の実
施例及び比較例2に示した電池のトリクル充電期間にお
ける容量変化曲線である。 1……正極板、2……負極板、3……電解質、4……プ
ラスチックフィルム、5……安全弁。FIG. 1 is a plan view (a) and a sectional view taken along the line A-A ′ of the sealed storage battery of the present invention, and FIG. 2 is a trickle of the battery shown in Examples of the present invention and Comparative Example 2. It is a capacity change curve in a charging period. 1 ... Positive electrode plate, 2 ... Negative electrode plate, 3 ... Electrolyte, 4 ... Plastic film, 5 ... Safety valve.
フロントページの続き (72)発明者 堀江 利夫 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 尾形 努 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内Front Page Continuation (72) Inventor Toshio Horie 1-6 Uchiyuki-cho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation (72) Tsutomu Ogata 1-1-6 Uchiyuki-cho, Chiyoda-ku, Tokyo Nihon Telegraph Phone Co., Ltd.
Claims (4)
る正極板とをプラスチックフィルムの同一平面上に互い
に離間対向させて配置した密閉型蓄電池であって、前記
正極板と前記負極板の両電極端面間及び前記負極板の上
部における空間に電解質を設けたことを特徴とする密閉
型蓄電池。1. A sealed type storage battery in which a negative electrode plate and a positive electrode plate thicker than the negative electrode plate are arranged on the same plane of a plastic film so as to face each other with a space therebetween, and the positive electrode plate and the negative electrode plate. A sealed storage battery, characterized in that an electrolyte is provided in a space between both electrode end faces and in an upper part of the negative electrode plate.
あることを特徴とする特許請求の範囲第1項記載の密閉
型蓄電池。2. The sealed storage battery according to claim 1, wherein the electrolyte is a gel electrolyte containing sulfuric acid.
ている前記正極板とがプラスチックフィルム基板の同一
平面上に互いに離間対向して配置されている電極構造を
有する密閉型蓄電池の製造方法であって、前記正極板と
前記負極板の両電極端面間及び前記負極板の上部におけ
る空間に前記ゲル状電解質を充填させることを特徴とす
る密閉型蓄電池の製造方法。3. A method for manufacturing a sealed storage battery having an electrode structure in which the negative electrode plate and the positive electrode plate thicker than the negative electrode plate are arranged on the same plane of a plastic film substrate so as to face each other with a space therebetween. A method for manufacturing a sealed type storage battery, characterized in that a space between both electrode end surfaces of the positive electrode plate and the negative electrode plate and a space above the negative electrode plate is filled with the gel electrolyte.
刷、圧入又は滴下により行なうことを特徴とする特許請
求の範囲第3項記載の密閉型蓄電池の製造方法。4. The method for manufacturing a sealed type storage battery according to claim 3, wherein the gel electrolyte is filled by screen printing, press-fitting or dropping.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1140794A JPH0744040B2 (en) | 1989-06-02 | 1989-06-02 | Sealed storage battery and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1140794A JPH0744040B2 (en) | 1989-06-02 | 1989-06-02 | Sealed storage battery and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH038268A JPH038268A (en) | 1991-01-16 |
JPH0744040B2 true JPH0744040B2 (en) | 1995-05-15 |
Family
ID=15276896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1140794A Expired - Fee Related JPH0744040B2 (en) | 1989-06-02 | 1989-06-02 | Sealed storage battery and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0744040B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1049530C (en) * | 1992-06-22 | 2000-02-16 | 王振川 | Pasty colloid accumulator and its mfg. method |
AU2003209065A1 (en) | 2002-02-07 | 2003-09-02 | Kvg Technologies, Inc. | Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators, electrolyte therefor, and absorbent separators therefor |
JP4581384B2 (en) * | 2003-12-08 | 2010-11-17 | 日産自動車株式会社 | Battery and manufacturing method thereof |
-
1989
- 1989-06-02 JP JP1140794A patent/JPH0744040B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH038268A (en) | 1991-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11894512B2 (en) | Longitudinal constraints for energy storage devices | |
US20230178792A1 (en) | Electrode structures for three-dimensional batteries | |
KR102350354B1 (en) | Separators for three-dimensional batteries | |
US11901514B2 (en) | Three-dimensional batteries with compressible cathodes | |
KR101532136B1 (en) | Anode, method of fabricating the same and rechargeable battery | |
WO2022265975A1 (en) | Spacers for providing protection of electrochemical battery enclosures and systems and methods therefor | |
US5916706A (en) | Honeycomb battery structure | |
US5045415A (en) | Electrode plate structure | |
JPH0744040B2 (en) | Sealed storage battery and manufacturing method thereof | |
EP0465475A4 (en) | Improved electrode plate structure | |
JP2000311701A (en) | Flat battery | |
US20240356061A1 (en) | Electrode structures for three-dimensional batteries | |
JPH1173985A (en) | Lead-acid battery | |
JPS63133447A (en) | Positive electrode material for battery | |
JPH0244657A (en) | Sealed lead-acid battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |