JPH0743465B2 - Laser printer - Google Patents

Laser printer

Info

Publication number
JPH0743465B2
JPH0743465B2 JP60116564A JP11656485A JPH0743465B2 JP H0743465 B2 JPH0743465 B2 JP H0743465B2 JP 60116564 A JP60116564 A JP 60116564A JP 11656485 A JP11656485 A JP 11656485A JP H0743465 B2 JPH0743465 B2 JP H0743465B2
Authority
JP
Japan
Prior art keywords
lens
mirror
incident
scanning
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60116564A
Other languages
Japanese (ja)
Other versions
JPS61275781A (en
Inventor
浩人 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60116564A priority Critical patent/JPH0743465B2/en
Publication of JPS61275781A publication Critical patent/JPS61275781A/en
Publication of JPH0743465B2 publication Critical patent/JPH0743465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、記録情報に基づいて変調されたレーザビーム
を偏向器を介して感光体ドラム上に等速走査させて、前
記記録情報に対応した静電像を感光体ドラム上に形成す
るレーザプリンタに係り、特にfθ特性を有する結像レ
ンズ系の出射側に複数の反射ミラーを配し、前記レーザ
ビームの光路を変向させて省スペース化を図ったレーザ
プリンタの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION “Industrial field of application” The present invention corresponds to the above recorded information by scanning a laser beam modulated based on the recorded information onto a photosensitive drum at a constant speed through a deflector. The present invention relates to a laser printer for forming an electrostatic image on a photosensitive drum, and in particular, a plurality of reflecting mirrors are arranged on the exit side of an imaging lens system having an fθ characteristic, and the optical path of the laser beam is deflected to save space. The present invention relates to improvements in laser printers.

「従来の技術」 従来より、入力情報に対応して変調されたレーザビーム
を、コリメートレンズ及びシリンドリカルレンズを通し
て平行な線状集束光として回転多面鏡に入射させ、該回
転多面鏡の回転により所定角度偏向反射させながらfθ
特性を有する結像レンズ系に入射させて等束運動に変換
させた後、感光体ドラム上に入力情報に対応した光ドッ
トパターンを結像走査させ、以下感光体ドラムを副走査
方向に回転させながらこれを繰り返し、所定の静電潜像
を形成するレーザプリンタは既に公知である。
“Prior Art” Conventionally, a laser beam modulated according to input information is made incident on a rotary polygon mirror as parallel linear focused light through a collimating lens and a cylindrical lens, and the rotary polygon mirror rotates at a predetermined angle. Fθ while deflecting and reflecting
After being incident on an image forming lens system having characteristics and converted into a uniform bundle motion, an optical dot pattern corresponding to input information is image-formed on the photosensitive drum, and thereafter, the photosensitive drum is rotated in the sub-scanning direction. However, a laser printer that repeats this process to form a predetermined electrostatic latent image is already known.

この種の装置においては前記fθレンズを通過した走査
ビームが感光体ドラムの母線上で結像させる必要がある
為に、結像レンズより感光体ドラムまでの光路長を該レ
ンズの焦点距離と対応して長く取らなければならず、こ
の為必然的に前記回転多面鏡と感光体ドラム間の距離が
大になり、装置がいたずらに大型化してしまうという問
題を有していた。
In this type of device, since the scanning beam that has passed through the fθ lens needs to be imaged on the generatrix of the photoconductor drum, the optical path length from the imaging lens to the photoconductor drum corresponds to the focal length of the lens. Therefore, there is a problem in that the distance between the rotary polygon mirror and the photosensitive drum is inevitably increased, and the device is unnecessarily increased in size.

かかる欠点を防止する為に、第7図に示す如く、前記f
θレンズ系1の出射側に複数の反射ミラー2、3を配
し、回転多面鏡4により主走査方向Xに掃引された走査
ビーム10を変向させて感光体ドラム5上に入射するよう
構成することにより、該走査ビーム10の見掛け上の光路
長を短縮して装置の小形化を図った技術が開示されてい
る。(特開昭57−104915) 尚、図中7は半導体レーザ、8はこれらの各種部材を一
体的に内蔵し、光走査ユニットを構成する枠体である。
In order to prevent such a defect, as shown in FIG.
A plurality of reflecting mirrors 2 and 3 are arranged on the exit side of the θ lens system 1 so that the scanning beam 10 swept in the main scanning direction X by the rotary polygon mirror 4 is deflected and is incident on the photosensitive drum 5. By doing so, a technique is disclosed in which the apparent optical path length of the scanning beam 10 is shortened and the apparatus is downsized. (JP-A-57-104915) In the figure, 7 is a semiconductor laser, and 8 is a frame body that integrally incorporates these various members and constitutes an optical scanning unit.

「発明が解決しようとする問題点」 しかしながら、かかる従来技術によれば、fθレンズ1
よりの走査ビーム10が入射する第1の反射ミラー2が、
感光体ドラム5の下流側垂直接線HL上を超えて更に水平
方向に延長した位置に配置されている為に、前記感光体
ドラム5上方の装置上面側のほぼ全域に亙って前記光走
査ユニットが占有することとなり、その分感光体ドラム
5周辺に配設する現像ユニット(図示せず)その他の周
辺装置の配設位置が制限を受け、設計及び組立が面倒に
なる。
“Problems to be Solved by the Invention” However, according to such a conventional technique, the fθ lens 1
The first reflection mirror 2 on which the scanning beam 10 from
Since the optical scanning unit is arranged at a position which extends in the horizontal direction beyond the vertical tangent line HL on the downstream side of the photoconductor drum 5, the optical scanning unit is provided over almost the entire area above the photoconductor drum 5 on the upper surface side of the apparatus. Therefore, the arrangement position of the developing unit (not shown) and other peripheral devices arranged around the photosensitive drum 5 is restricted by that much, which makes the design and assembly troublesome.

特に現像ユニットは前記レーザビームの走査位置の下流
側に隣接して配置されるものであり、且つプリンタにお
いては大量にトナーを消費するためにトナー収容容積を
大に取る必要があるが、前記の如き構成では光走査ユニ
ットが感光体ドラム5の下流側の垂直接線HL上を超えた
位置まで占有されている為に、その分現像ユニットのト
ナー収容容積を小に形成しなければならず、頻繁なトナ
ー交換によりメインテナンスの煩雑化につながる。
Particularly, the developing unit is arranged adjacent to the downstream side of the scanning position of the laser beam, and in the printer, it is necessary to take a large toner storage volume in order to consume a large amount of toner. In such a configuration, since the optical scanning unit is occupied up to the position beyond the vertical tangent line HL on the downstream side of the photoconductor drum 5, the toner accommodating volume of the developing unit must be made small by that much, and it is frequent. The maintenance of complicated toner will be complicated.

又、現像ユニットのトナー注入口を装置上面側に設ける
にしても、前記感光体ドラム5周面より遠避けた位置に
設けなければならず、その分装置内デッドスペースが増
大し、装置の大型化につながる。
Further, even if the toner inlet of the developing unit is provided on the upper surface side of the apparatus, it must be provided at a position away from the peripheral surface of the photosensitive drum 5, and the dead space in the apparatus increases accordingly, resulting in a large apparatus. Lead to

本発明はかかる従来技術の欠点に鑑み、現像ユニットそ
の他の周辺装置の配設位置に制限を受けることなく省ス
ペース化を図り、装置の小形化を可能ならしめると共
に、特に現像ユニットのトナー容積の増大を図り得る、
レーザプリンタを提供することを目的とする。
In view of the above-mentioned drawbacks of the prior art, the present invention achieves space saving without restricting the arrangement position of the developing unit and other peripheral devices, enables downsizing of the device, and particularly reduces the toner volume of the developing unit. Can be increased,
It is an object to provide a laser printer.

「問題点を解決する為の手段」 本考案は、例えば第1A図及び第1B図に示すように、fθ
レンズ1その他の結像レンズ系を通過した走査ビーム10
を、複数の反射ミラー12a,13a,あるいは12b,13bにより
変向させて感光体ドラム5上に入射させるレーザプリン
タにおいて、前記走査ビーム10光路の最下流側に位置す
る第2の反射ミラー13a,13bよりの出射光と平行関係に
ある、感光体ドラム5の一対の接線L1,L2間に挟まれる
領域内に、第1の反射ミラー12a,12bのビーム入出射位
置が存在するよう構成することにより前記した技術的課
題が達成される。
"Means for Solving Problems" The present invention is directed to fθ as shown in FIGS. 1A and 1B, for example.
Scanning beam 10 that passes through lens 1 and other imaging lens systems
In a laser printer that deflects the light by a plurality of reflection mirrors 12a, 13a or 12b, 13b and makes it incident on the photosensitive drum 5, a second reflection mirror 13a, which is located on the most downstream side of the optical path of the scanning beam 10. The beam entering / exiting positions of the first reflecting mirrors 12a, 12b are located in the region between the pair of tangents L1, L2 of the photoconductor drum 5 in parallel with the outgoing light from 13b. According to the above, the technical problems described above are achieved.

この場合、前記第1の反射ミラー12a,12bは第2の反射
ミラー13a,13bより感光体ドラム5母線上に入射される
レーザビーム光路の上流側又は下流側のいずれに配置し
てもよい。
In this case, the first reflecting mirrors 12a and 12b may be arranged either upstream or downstream of the optical path of the laser beam incident on the bus line of the photoconductor drum 5 from the second reflecting mirrors 13a and 13b.

又前記反射ミラー12a,13a,あるいは12b,13bは垂直上方
に延伸する感光体ドラム5の一対の接線間に配置した方
が、組立上の面より、又該反射ミラー12a,13a,あるいは
12b,13b側方に、現像ユニット11を取り付ける余裕空間
を形成する場合にも有利である。
Further, it is better to arrange the reflection mirrors 12a, 13a or 12b, 13b between a pair of tangent lines of the photosensitive drum 5 extending vertically upward, from the viewpoint of assembly or the reflection mirrors 12a, 13a, or
It is also advantageous when forming an extra space for mounting the developing unit 11 on the side of 12b, 13b.

尚、前記反射ミラー12a,13a,あるいは12b,13bは2個の
みに限定されるものではなく、前記技術的範囲において
3個又は4個以上配設する事も可能である。
The number of the reflection mirrors 12a, 13a or 12b, 13b is not limited to two, and three or four or more reflection mirrors can be arranged within the technical range.

「作用」 かかる技術手段によれば、例えば光走査ユニットを感光
体ドラム5の上方に配置した場合において、感光体ドラ
ム5の一対の垂直接線L1,L2間に挟まれる領域内に、全
ての反射ミラー12a,13a,あるいは12b,13bのビーム入出
射位置が存在する事となり、この結果、fθレンズ1と
感光体ドラム5間の見掛け上の光路長を短縮でき、現像
ユニット11を感光体ドラム5周面に隣接する装置余裕空
間に形成する事が可能となり、装置小形化を可能にしつ
つもトナー収容容積の増大を図る事が出来る。
[Operation] According to the technical means, for example, when the optical scanning unit is arranged above the photoconductor drum 5, all the reflection is within the area sandwiched between the pair of vertical tangents L1 and L2 of the photoconductor drum 5. Since the beam entrance / exit positions of the mirrors 12a, 13a or 12b, 13b exist, as a result, the apparent optical path length between the fθ lens 1 and the photoconductor drum 5 can be shortened, and the developing unit 11 can be moved to the photoconductor drum 5. It is possible to form a space in the apparatus adjacent to the peripheral surface, and it is possible to reduce the size of the apparatus while increasing the toner storage capacity.

又、本発明の好ましい実施例によれば、第1B図に示すよ
うに、複数の反射ミラー12b,13bにより変向された走査
ビーム10光路が交差することなく感光体ドラム5上に入
射するよう構成、言い変えれば結像レンズ系1を通過し
た走査ビーム10を最初に変向させる第1の反射ミラー12
bを、第2の反射ミラー13bの入出射位置の上流側、即ち
fθレンズ系1に近接する側に配置する事により、より
一層感光体ドラム5下流側の現像ユニット11取付スペー
スの増大を図る事が出来る。
Further, according to the preferred embodiment of the present invention, as shown in FIG. 1B, the scanning beam 10 deflected by the plurality of reflecting mirrors 12b and 13b is incident on the photosensitive drum 5 without crossing. Configuration, in other words, a first reflecting mirror 12 that first redirects the scanning beam 10 that has passed through the imaging lens system 1.
By disposing b on the upstream side of the entrance / exit position of the second reflecting mirror 13b, that is, on the side closer to the fθ lens system 1, the mounting space of the developing unit 11 on the downstream side of the photosensitive drum 5 is further increased. I can do things.

更に本発明の好ましい実施例によれば、前記fθレンズ
1より第1の反射ミラー12a,12bに入射されるレーザビ
ーム光路又はその延長線と第2の反射ミラー13a,13bの
感光体ドラム5母線上に入射されるレーザビーム光路と
の交差位置より第1の反射ミラー12a,12bの入射位置ま
での光路距離が、前記交差位置より第2の反射ミラー13
a,13bの入射位置までの光路距離より大になる如く、言
い換えれば第1の反射ミラー12a,12bから第2の反射ミ
ラー13a,13bに導かれるビーム光路が感光体ドラム5の
母線を通る略垂直線方向に長く延出する事により、見掛
け上の光路長を一層少なくする事が可能となる。
Further, according to a preferred embodiment of the present invention, the optical path of the laser beam incident on the first reflection mirrors 12a, 12b from the f.theta. Lens 1 or its extension and the photosensitive drum 5 mother of the second reflection mirrors 13a, 13b. The optical path distance from the intersecting position with the optical path of the laser beam incident on the line to the incident position of the first reflecting mirrors 12a and 12b is the second reflecting mirror 13 from the intersecting position.
The beam optical path guided from the first reflecting mirrors 12a, 12b to the second reflecting mirrors 13a, 13b is set so as to be larger than the optical path distance to the incident positions of a and 13b. By extending in the vertical direction, it is possible to further reduce the apparent optical path length.

「実施例」 以下、図面を参照して本発明の好適な実施例を例示的に
詳しく説明する。ただしこの実施例に記載されている構
成部品の寸法、材質、形状、その相対配置などは特に特
定的な記載がない限りは、この発明の範囲をそれのみに
限定する趣旨ではなく、単なる説明例に過ぎない。
[Embodiment] Hereinafter, a preferred embodiment of the present invention will be exemplarily described in detail with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but merely illustrative examples. Nothing more than.

第2図は本発明の実施例に係るレーザプリンタを示す正
面断面図で、先ずその概略構成について説明するに、5
は装置内略中央部に配置された感光体ドラムで、その周
面上に後記詳説する光走査ユニット20、該静電潜像を可
視像化する現像ユニット11、可視像化された前記静電像
を転写紙に転写する転写装置14、転写後の残存トナーを
除去するクリーニング部材15、表面の残存電荷を消去す
る除電ランプ16、感光体ドラム5面を一様帯電させ次の
露光に備える帯電装置17が配置され、一方転写紙搬送路
上に沿って入口側より順次、給紙カセット18、給紙ロー
ラ19、レジストローラ21、搬送ガイド22、熱定着装置23
等が配置され、公知の電子写真印刷方式により感光体ド
ラム5上に形成されたトナー像を転写紙に転写して定着
させた後、外部に排出するよう構成されている。又、24
は感光体ドラム5その他の回転部材を回転させる駆動モ
ータである。
FIG. 2 is a front sectional view showing a laser printer according to an embodiment of the present invention.
Is a photoconductor drum disposed in the substantially central portion of the apparatus, on the peripheral surface of which an optical scanning unit 20, which will be described in detail later, a developing unit 11 for visualizing the electrostatic latent image, and the visible image forming unit. A transfer device 14 for transferring an electrostatic image onto a transfer paper, a cleaning member 15 for removing the residual toner after the transfer, a charge eliminating lamp 16 for erasing the residual charge on the surface, and a surface of the photosensitive drum 5 are uniformly charged for the next exposure. A charging device 17 is provided, and one side of the transfer sheet conveying path is sequentially provided from the entrance side with a sheet feeding cassette 18, a sheet feeding roller 19, a registration roller 21, a conveyance guide 22, and a heat fixing device 23.
Are arranged, and the toner image formed on the photoconductor drum 5 is transferred onto a transfer paper by a known electrophotographic printing method to be fixed and then discharged to the outside. Also, 24
Is a drive motor for rotating the photosensitive drum 5 and other rotating members.

さて、感光体ドラム5上方には、感光体ドラム5下流側
の垂直接線近傍を通る垂直壁部251と排紙側に設けた垂
直壁部254と、傾斜段差状の開口窓部253を介して熱定着
装置23方向に延設する水平壁部252とからなる隔壁25を
設け、該水平壁部252と垂直壁部251により形成される位
置規制面に光走査ユニット20を当接させて位置決め固定
し、これらの壁部251,252,254と装置上面により形成さ
れる閉鎖空間内に光走査ユニット20を配設する。
Now, above the photoconductor drum 5, a vertical wall part 251 passing near the vertical tangent line on the downstream side of the photoconductor drum 5, a vertical wall part 254 provided on the paper discharge side, and an opening window part 253 having an inclined step are provided. A partition wall 25 including a horizontal wall portion 252 extending in the direction of the heat fixing device 23 is provided, and the optical scanning unit 20 is brought into contact with the position regulating surface formed by the horizontal wall portion 252 and the vertical wall portion 251 to position and fix it. Then, the optical scanning unit 20 is arranged in a closed space formed by these walls 251, 252, 254 and the upper surface of the apparatus.

このように装置内に光走査ユニット20の位置規制可能な
隔壁を設ける事により、光走査ユニット20と感光体ドラ
ム5母線間距離の一定化と、光走査ユニット20内に組付
けられたトロイダルレンズ30より出射された走査ビーム
10の光軸と感光体ドラム5の軸心を通る母線垂直線との
整合(一致)を容易に且つ正確に採る事が出来る。
By providing the partition for regulating the position of the optical scanning unit 20 in the apparatus as described above, the distance between the optical scanning unit 20 and the photoconductor drum 5 bus line is made constant, and the toroidal lens assembled in the optical scanning unit 20 is provided. Scanning beam emitted from 30
Alignment (coincidence) between the optical axis 10 and the vertical line of the bus line passing through the axis of the photosensitive drum 5 can be easily and accurately taken.

又光走査ユニット20内に組付けられた第1及び第2の反
射ミラー12、13のビーム入出射点は後述するように感光
体ドラム5の一対の垂直接線間に挟まれる領域(ドラム
直径幅)内に位置させている為に、該反射ミラー12、13
を支持する側板43及び該側板43外面に当接される垂直壁
部251も当然に感光体ドラム5の垂直接線上の近傍に位
置する事となり、この結果、該垂直壁部251と駆動モー
タ24間の装置内に現像ユニット11を配設する為の余裕空
間を大きく取る事が可能となる。
Further, the beam entrance / exit points of the first and second reflecting mirrors 12 and 13 assembled in the optical scanning unit 20 are sandwiched between a pair of vertical tangents of the photosensitive drum 5 (drum diameter width) as will be described later. ), The reflecting mirrors 12, 13
Naturally, the side plate 43 supporting the side plate 43 and the vertical wall portion 251 abutting on the outer surface of the side plate 43 are naturally located in the vicinity of the vertical tangent line of the photosensitive drum 5, and as a result, the vertical wall portion 251 and the drive motor 24 It is possible to secure a large spare space for disposing the developing unit 11 in the apparatus in between.

従って本実施例においては現像ユニット11のトナー収容
部111を装置上面の開閉カバー112付近まで延出して形成
し、フリーメインテナンスを可能にしている。
Therefore, in the present embodiment, the toner containing portion 111 of the developing unit 11 is formed so as to extend to the vicinity of the opening / closing cover 112 on the upper surface of the apparatus to enable free maintenance.

隔壁25は、水平壁部252の感光体ドラム5母線直上位置
にスリット開口255を穿設し、走査ビーム10が感光体母
線上に入射可能に構成すると共に、熱定着装置23直上の
水平壁部252下面にスポンジ状の水滴吸収材26を取り付
け、転写紙等から発生した水蒸気が前記隔壁25に露結し
た際に、これを前記水滴吸収材26に吸収させ、水滴の付
着及び落下から生じる不具合を防止している。そして該
水滴吸収材26により吸収された水分は、熱定着装置23の
加熱により逐次蒸発する。
The partition wall 25 is provided with a slit opening 255 at a position directly above the bus line of the photoconductor drum 5 of the horizontal wall part 252 so that the scanning beam 10 can be incident on the photo bus line of the photoconductor drum. 252 A sponge-like water droplet absorbing material 26 is attached to the lower surface, and when water vapor generated from a transfer paper or the like is condensed on the partition wall 25, it is absorbed by the water droplet absorbing material 26, resulting in a problem caused by the attachment and drop of water droplets. Is being prevented. Then, the water absorbed by the water droplet absorbing material 26 is sequentially evaporated by heating the heat fixing device 23.

一方、前記開口窓部253の閉鎖空間側にはオゾンフィル
タ27が、又装置排紙側に位置する垂直壁部254内側の光
走査ユニット20の両側(第3図参照)には一対の送風器
28、29が夫々配置されている。
On the other hand, an ozone filter 27 is provided on the closed space side of the opening window portion 253, and a pair of blowers is provided on both sides (see FIG. 3) of the optical scanning unit 20 inside the vertical wall portion 254 located on the paper discharge side of the apparatus.
28 and 29 are arranged respectively.

この結果、前記記録動作中における送風器28、29の回転
により、感光体ドラム5周辺部の内部空気が、開口窓部
253からオゾンフィルタ27を通って閉鎖空間内に吸引さ
れ、光走査ユニット20と水平壁部252に挟まれる同期モ
ータ31周辺を通過しながら装置外に排出される為に、帯
電装置17等のコロナ放電により感光体ドラム5近傍に発
生したオゾンが、開口窓部253に取り付けたオゾンフィ
ルタ27に容易に吸着され、人体に有害なオゾンの外部排
出を防止し得る。
As a result, due to the rotation of the blowers 28 and 29 during the recording operation, the internal air around the photosensitive drum 5 is changed to the open window portion.
Since it is sucked from 253 into the closed space through the ozone filter 27 and is discharged to the outside of the device while passing around the synchronous motor 31 sandwiched between the optical scanning unit 20 and the horizontal wall portion 252, the corona of the charging device 17 or the like is used. Ozone generated in the vicinity of the photoconductor drum 5 due to the electric discharge is easily adsorbed by the ozone filter 27 attached to the opening window portion 253, so that ozone harmful to the human body can be prevented from being discharged to the outside.

又前記送風器28、29による通風は、同期モータ31の冷却
と共に光走査ユニット20と熱定着装置23間を遮断するエ
アーカーテンの役目を果し、同期モータ31や熱定着装置
23より発生した熱の光走査ユニット20への伝搬を防ぐ。
この結果同期モータ31の定常回転を保証すると共に、光
走査ユニット20内に配設した半導体レーザ7の温度変動
による誤差の防止を図ることが可能となる。
Further, the ventilation by the blowers 28 and 29 serves as an air curtain that cools the synchronous motor 31 and shuts off between the optical scanning unit 20 and the thermal fixing device 23.
It prevents the heat generated from 23 from propagating to the optical scanning unit 20.
As a result, it is possible to ensure the steady rotation of the synchronous motor 31 and prevent errors due to temperature fluctuations of the semiconductor laser 7 arranged in the optical scanning unit 20.

次に光走査ユニット20の構成について第2図及び第3図
により詳細に説明する。
Next, the configuration of the optical scanning unit 20 will be described in detail with reference to FIGS. 2 and 3.

40は光走査系各種部材を所定位置に組付ける枠体で、精
密成形可能なプラスチック樹脂から形成され、周囲に側
壁411が立設された枠体本体41と、該枠体本体41を隠蔽
する上部カバー42と、反射ミラー12、13取付側に配され
た側板43とからなる。
Reference numeral 40 denotes a frame body for assembling various members of the optical scanning system at a predetermined position, which is formed of a plastic resin that can be precisely molded, and which conceals the frame body 41 with a side wall 411 provided upright on the periphery. It is composed of an upper cover 42 and a side plate 43 arranged on the mounting side of the reflection mirrors 12 and 13.

そして枠体本体41は、回転多面鏡4に連結された同期モ
ータ31を杆設するを円状開口413、感光体ドラム5母線
上に走査ビーム10を出射するスリット孔412、及び各種
位置決め用孔が穿設された底面部41Aを有し、該底面部4
1Aの回転多面鏡4取付位置側方に、側壁411aと平行して
所定角度内側に偏向させた隔壁414を形成し、該隔壁414
と側壁411a間に半導体レーザ7等の取付通路415を構成
する。
The frame body 41 has a circular opening 413 for mounting the synchronous motor 31 connected to the rotary polygon mirror 4, a slit hole 412 for emitting the scanning beam 10 on the photoconductor drum 5 bus line, and various positioning holes. Has a bottom surface portion 41A in which the bottom surface portion 4A
A partition wall 414, which is deflected inward by a predetermined angle in parallel with the side wall 411a, is formed on the side of the mounting position of the rotary polygon mirror 4 of 1A.
A mounting passage 415 for the semiconductor laser 7 and the like is formed between the side wall 411a and the side wall 411a.

又前記底面部41Aの、回転多面鏡4出射側は平面矩形状
に隆起され、該隆起部416の立下がり部と側壁411との間
のスリット孔412直上位置を凹部417状に形成し、該凹部
417にトロイダルレンズ30とフィルター32を所定位置に
固定する為の段付面418、419を形成する。
Further, the output side of the rotary polygonal mirror 4 of the bottom surface portion 41A is bulged in a flat rectangular shape, and the position immediately above the slit hole 412 between the falling portion of the bulging portion 416 and the side wall 411 is formed in a concave portion 417, Recess
Stepped surfaces 418 and 419 for fixing the toroidal lens 30 and the filter 32 in place are formed on 417.

上部カバー42は反射ミラー12、13取付側を上方に矩形状
に隆起させて、該隆起部421に第2の反射ミラー13が所
定角度位置で取付可能な取付面を設けると共に、該隆起
部421側方の上部カバー42上方に余裕空間42Aを形成し、
制御基板33やコントローラ等を収納可能に形成する。
(第6図参照) 次にかかる枠体に組み付けられた各種部材の配置関係に
ついて説明する。
In the upper cover 42, the mounting sides of the reflecting mirrors 12 and 13 are bulged upward in a rectangular shape, and the bulging portion 421 is provided with a mounting surface on which the second reflecting mirror 13 can be mounted at a predetermined angular position. Form an extra space 42A above the side upper cover 42,
The control board 33, the controller and the like are formed so as to be accommodated.
(See FIG. 6) Next, the arrangement relationship of various members assembled to the frame body will be described.

回転多面鏡4側方に位置する取付通路415には開口端側
より順次、半導体レーザ7ーとシリンドリカルレンズ34
が位置決め固定されており、半導体レーザー7より出射
された変調ビーム10′を走査方向に平行な線状スポット
光として集束させた後、該取付通路415の出口側に配設
された変向ミラー35を介して、所定角度で回転多面鏡4
の偏向面に入射−結像させる。
In the mounting passage 415 located on the side of the rotary polygon mirror 4, the semiconductor laser 7 and the cylindrical lens 34 are sequentially arranged from the opening end side.
Is positioned and fixed, and after the modulated beam 10 'emitted from the semiconductor laser 7 is focused as a linear spot light parallel to the scanning direction, the deflecting mirror 35 disposed on the exit side of the mounting passage 415. Through the rotary polygon mirror 4 at a predetermined angle
It is incident on the deflecting surface of-and is imaged.

回転多面鏡4には、回転多面鏡4を枠体底面部41Aに固
定させる取付板401を介して同期モータ31が連結され、
該同期モータ31により回転多面鏡4が感光体ドラム5と
同期して回転し、偏向面4aに入射した変調ビーム10′を
主走査方向に掃引しながら扇状に等角速度運動をなす走
査ビーム10として、回転多面鏡4出射側に配置したfθ
レンズ系1に入射させる。
A synchronous motor 31 is connected to the rotary polygon mirror 4 via a mounting plate 401 for fixing the rotary polygon mirror 4 to the frame bottom surface portion 41A,
The rotary polygon mirror 4 is rotated by the synchronous motor 31 in synchronism with the photosensitive drum 5, and the modulated beam 10 'incident on the deflecting surface 4a is swept in the main scanning direction as a scanning beam 10 having a fan-like uniform angular velocity motion. , Fθ arranged on the exit side of the rotary polygon mirror 4
It is incident on the lens system 1.

尚、前記回転多面鏡4は、その偏向面4aの数(例えば六
面体)と反射幅を適宜選択して該走査ビーム10の変向角
を広げ、fθレンズ系1通過後の走査ビーム10の画角が
略45度になるように設定している。
The rotary polygon mirror 4 widens the deflection angle of the scanning beam 10 by appropriately selecting the number of deflection surfaces 4a (for example, a hexahedron) and the reflection width, and the image of the scanning beam 10 after passing through the fθ lens system 1 is selected. The angle is set to about 45 degrees.

fθレンズ系1は後記するように凹レンズ1aと凸レンズ
1bの2枚のレンズの組合せよりなり、fθレンズ系1か
ら出射された走査ビーム10が、第1及び第2の反射ミラ
ー12、13により変向されながら感光体ドラム5母線上で
結像するよう、言換えればfθレンズ系1の焦点距離と
fθレンズ系1から感光体ドラム5母線までの光路長が
同一になる位置に配置されている。
The fθ lens system 1 includes a concave lens 1a and a convex lens as described later.
The scanning beam 10 emitted from the fθ lens system 1 is formed by a combination of two lenses 1b and is imaged on the generatrix of the photoconductor drum 5 while being deflected by the first and second reflecting mirrors 12 and 13. In other words, the focal length of the fθ lens system 1 and the optical path length from the fθ lens system 1 to the photoconductor drum 5 generatrix are the same.

これにより該fθレンズ系1を透過した走査ビーム10が
等角速度運動から等速度運動に変換されて感光体ドラム
5母線上で結像させる事が出来るが、該走査ビーム10は
前記回転多面鏡4により偏向角が80度以上好ましくは約
90度前後に広げられている為に、非点収差が発生する場
合がある。
As a result, the scanning beam 10 transmitted through the fθ lens system 1 can be converted from a uniform angular velocity motion to a constant velocity motion and imaged on the generatrix of the photoconductor drum 5, but the scanning beam 10 is formed by the rotary polygon mirror 4. The deflection angle is 80 degrees or more, preferably about
Astigmatism may occur because it is expanded to around 90 degrees.

しかしながら、この非点収差は後記するトロイダルレン
ズ30で補正される為に、感光体ドラム5母線上に形成さ
れる光ドットパターンのピッチ形状が不均一になる事は
ない。
However, since this astigmatism is corrected by the toroidal lens 30 described later, the pitch shape of the optical dot pattern formed on the generatrix of the photoconductor drum 5 does not become nonuniform.

前記fθレンズ系1と対面する側板43には第1の反射ミ
ラー12が取り付けられている。
The first reflection mirror 12 is attached to the side plate 43 facing the fθ lens system 1.

第1の反射ミラー12は主走査方向に沿って長板状をな
し、その入出射点を感光体ドラム5の一対の垂直接線に
挟まれる領域内に位置させると共に、該反射ミラー12に
より導かれた走査ビーム10が第2の反射ミラー13に導か
れるようその取付角度を設定する。
The first reflecting mirror 12 has a long plate shape along the main scanning direction, and its entrance / exit point is located in a region sandwiched by a pair of vertical tangent lines of the photosensitive drum 5, and is guided by the reflecting mirror 12. The mounting angle is set so that the scanning beam 10 is guided to the second reflecting mirror 13.

第2の反射ミラー13も同様に主走査方向に沿って長板状
をなし、スリット孔412と対面する上部カバー42裏面に
取り付けられて、該反射ミラー13より出射された走査ビ
ーム10が、感光体ドラム5母線上を通る垂直線に沿って
トロイダルレンズ30の光軸上に導かれるようその取付角
度と取付位置を設定する。
Similarly, the second reflecting mirror 13 also has a long plate shape along the main scanning direction, is attached to the back surface of the upper cover 42 facing the slit hole 412, and the scanning beam 10 emitted from the reflecting mirror 13 is exposed to light. The mounting angle and the mounting position of the toroidal lens 30 are set so as to be guided to the optical axis of the toroidal lens 30 along a vertical line passing through the generatrix of the body drum 5.

トロイダルレンズ30は、入射面と出射面が同心円弧状を
なすプラスチックレンズで形成され、その光軸状が走査
方向と平行になる如く、スリット孔412直上位置に形成
された凹部417の段付面418上に戴置させ、板ばね36にて
固定する。
The toroidal lens 30 is formed of a plastic lens having an entrance surface and an exit surface in a concentric arc shape, and a stepped surface 418 of a recess 417 formed immediately above the slit hole 412 so that its optical axis is parallel to the scanning direction. Place it on top and secure it with leaf spring 36.

前記段付面418は、トロイダルレンズ30が副走査方向に
おいて、fθレンズ系1とトロイダルレンズ30の合成系
に対し、前記回転多面鏡4の偏向面4aと被走査面(感光
体ドラム5母線上位置)が共役関係を維持し得るような
位置に形成されている。
In the stepped surface 418, in the sub scanning direction of the toroidal lens 30, the deflection surface 4a of the rotary polygon mirror 4 and the surface to be scanned (on the photoconductor drum 5 generatrix) with respect to the combined system of the fθ lens system 1 and the toroidal lens 30. (Position) is formed at a position where the conjugate relationship can be maintained.

この結果トロイダルレンズ30は、回転多面鏡4の面倒れ
に基ずく走査ビーム10の副走査方向の光軸ずれを補正し
得ると共に、該レンズ30の入射面と出射面とが同心円状
に形成されている為に、前記fθレンズ系1を透過する
際に生じた非点収差の補正を行う事が可能となる。
As a result, the toroidal lens 30 can correct the optical axis shift in the sub-scanning direction of the scanning beam 10 due to the surface tilt of the rotary polygon mirror 4, and the incident surface and the exit surface of the lens 30 are concentrically formed. Therefore, it is possible to correct the astigmatism that occurs when the light passes through the fθ lens system 1.

従ってかかる実施例によれば、前記走査ビーム10の偏向
角を80度以上好ましくは約90度に広げつつもこの出射側
に、非点収差と面倒れ補正を行うトロイダルレンズ30を
配した為に、fθレンズ系1のレンズ構成を2〜3個程
度の少ない枚数で構成する事が出来ると共に、画角を広
げたが故にfθレンズ系1の焦点距離、即ち光路長を短
くする事が出来、この結果光走査ユニット20の小形化と
重量軽減、等を図る事が出来る。
Therefore, according to such an embodiment, since the deflection angle of the scanning beam 10 is expanded to 80 degrees or more, preferably about 90 degrees, the toroidal lens 30 for correcting astigmatism and surface tilt is disposed on the exit side. , The lens structure of the fθ lens system 1 can be configured with a small number of lenses such as about 2 to 3, and the focal length of the fθ lens system 1, that is, the optical path length can be shortened because the angle of view is widened. As a result, it is possible to reduce the size and weight of the optical scanning unit 20.

尚、該トロイダルレンズ30の出射側にはフィルター32が
配設され、外部よりの塵埃の侵入を防いでいる。
A filter 32 is provided on the exit side of the toroidal lens 30 to prevent dust from entering from the outside.

一方、前記fθレンズ系1の出射側と第1の反射ミラー
12間の、走査ビーム10走査開始側には検出ミラー37が、
又該検出ミラー37と対面する走査領域を外れた区域には
フォトダイオード38が夫々配置され、fθレンズ系1よ
り出射した走査ビーム10を、回転多面鏡4による繰り返
し走査毎に検出ミラー37を介してフォトダイオード38に
導き、走査ビーム10の変調開始時期規制用の基準信号を
出力する。
On the other hand, the exit side of the fθ lens system 1 and the first reflecting mirror
Between 12, the detection beam 37 on the scanning beam 10 scanning start side,
Photodiodes 38 are respectively arranged in areas outside the scanning area facing the detection mirror 37, and the scanning beam 10 emitted from the fθ lens system 1 is passed through the detection mirror 37 at every repeated scanning by the rotary polygon mirror 4. And guides it to the photodiode 38, and outputs a reference signal for regulating the modulation start timing of the scanning beam 10.

次に前記走査系の各種部材の支持装置について更に詳細
に説明する。
Next, the supporting device for various members of the scanning system will be described in more detail.

第4A図及び第4B図は前記変向ミラー35と検出ミラー37に
使用されるミラー支持装置50の構成を示し、該ミラー支
持装置50はアルミ、樹脂その他の弾性体で略L字状に形
成され、枠体底面部41Aに螺子止めされる平板状支持台5
1上に、反射ミラー35,37を固着させるミラー取付部52を
垂直に直立させて構成される。
4A and 4B show the structure of a mirror supporting device 50 used for the deflecting mirror 35 and the detecting mirror 37. The mirror supporting device 50 is made of aluminum, resin or other elastic material and is formed into a substantially L shape. And the flat plate-shaped support 5 that is screwed to the bottom surface 41A of the frame body.
A mirror mounting portion 52 for fixing the reflection mirrors 35 and 37 is vertically arranged on the top of the unit 1.

ミラー取付部52は、ミラー取付面52aと平行に上端より
下端部付近まで達するすり割りにより2つの直立片521,
522に分割され、該直立片521,522はミラー取付側直立片
521が背側直立片522より薄肉になるよう形成されると共
に、背側直立片522の上端付近に螺子孔523を螺刻し、該
螺子孔523にミラー取付側直立片521の背面側を押圧可能
な調整螺子53を螺合させる。
The mirror mounting portion 52 has two upright pieces 521, which are formed by slits extending parallel to the mirror mounting surface 52a from the upper end to the vicinity of the lower end.
Divided into 522, the upright pieces 521 and 522 are upright pieces on the mirror mounting side.
521 is formed to be thinner than the back side upright piece 522, and a screw hole 523 is screwed near the upper end of the back side upright piece 522, and the rear surface side of the mirror mounting side upright piece 521 is pressed into the screw hole 523. Screw the possible adjusting screws 53.

又、変調ビーム10′光軸と反射ミラー35,37面と交わる
交点と対応する平板上支持台51下面にはピボット525が
取り付けられ、該支持装置50を介して前記反射ミラー3
5,37を走査方向に回転させる事が出来る。
A pivot 525 is attached to the lower surface of the flat plate support 51 corresponding to the intersection of the optical axis of the modulated beam 10 'and the surfaces of the reflection mirrors 35 and 37, and the reflection mirror 3 is attached via the support device 50.
5,37 can be rotated in the scanning direction.

従って、かかる支持装置50によれば前記ピボット525を
支点として主走査方向の光軸ずれを、又前記調整螺子53
の回動により反射ミラー取付側直立片521と共に反射ミ
ラー35,37が副走査方向に僅かに角度変向させることが
出来、これにより副走査方向の光軸ずれの調整をも行う
事が出来る。
Therefore, according to the supporting device 50, the optical axis shift in the main scanning direction with the pivot 525 as a fulcrum, and the adjusting screw 53
The rotation of the reflecting mirrors 35 and 37 together with the upright piece 521 on the reflection mirror mounting side can be slightly angle-shifted in the sub-scanning direction, whereby the optical axis shift in the sub-scanning direction can be adjusted.

第4C図は反射ミラー支持装置50′の変形例を示す他の実
施例で、断面横U字状に形成した平板状支持台55と該支
持台55中央位置より直立する反射ミラー取付部56とを有
し、前記平板状支持台55の基側に固定螺子57を、又U字
状先端側に調整螺子58を取り付け、該調整螺子58の回動
により前記U字部空間幅が縮小又は拡大するように構成
し、反射ミラー35,37の反斜面を幅走査方向に角度変向
させるものである。
FIG. 4C is another embodiment showing a modified example of the reflection mirror supporting device 50 '. It has a flat plate-shaped support base 55 formed in a U-shaped cross section and a reflection mirror mounting portion 56 standing upright from the central position of the support base 55. A fixing screw 57 is attached to the base side of the flat plate-like support base 55, and an adjusting screw 58 is attached to the U-shaped tip side, and the space width of the U-shaped portion is reduced or expanded by rotating the adjusting screw 58. The anti-slopes of the reflection mirrors 35 and 37 are angularly changed in the width scanning direction.

この変形例においては、上部カバー42を外して上方より
調整螺子58を回動させる事出来る為に、該反射ミラー支
持装置50′を枠体に組付け後においても幅走査方向の光
軸ずれの調整を行う事が出来る為に、組立調整やメイン
テナンスの容易化が可能となる。
In this modified example, since the upper cover 42 can be removed and the adjusting screw 58 can be rotated from above, the optical axis shift in the width scanning direction does not occur even after the reflection mirror supporting device 50 'is assembled to the frame. Since adjustment can be performed, assembly adjustment and maintenance can be facilitated.

第5図はfθレンズ系1の支持装置60を示す。FIG. 5 shows a supporting device 60 of the fθ lens system 1.

fθレンズ系1は前述した如く、屈折率の低い薄肉小径
の凹レンズ1aと屈折率の高い厚肉大径の凸レンズ1bとよ
り構成され、該レンズ系1はその上下両側部分を主走査
方向と平行に除去して偏平形状をなし、支持装置60によ
り一体的に固定されている。
As described above, the fθ lens system 1 is composed of a thin lens small diameter concave lens 1a having a low refractive index and a thick large diameter convex lens 1b having a high refractive index. The lens system 1 has its upper and lower both sides parallel to the main scanning direction. It is removed to form a flat shape and is integrally fixed by a supporting device 60.

支持装置60は、枠体底面に固定される基台61と、該基台
61上面に固定され前記両レンズ1a,1b間隔を規制する規
制板62と、該規制板62と対向する両端側に配置され、凹
レンズ1aを副走査方向に回動可能に支持する一対の板バ
ネ63と、規制板62と対向して配置され凸レンズ1bを所定
位置に固定する固定板64と、基台61上に門形状に立設さ
れ、前記レンズ系の側面に沿って該レンズ系1を方形に
囲繞する支持板65と、該支持板65上面中央部に調整螺子
67を介して浮き状態で取り付けられた補正板66とから構
成される。
The support device 60 includes a base 61 fixed to the bottom surface of the frame and the base 61.
A regulating plate 62 fixed to the upper surface of the lens 61 for regulating the distance between the both lenses 1a and 1b, and a pair of leaf springs arranged on both end sides facing the regulating plate 62 and rotatably supporting the concave lens 1a in the sub scanning direction. 63, a fixing plate 64 arranged to face the restriction plate 62 to fix the convex lens 1b at a predetermined position, and is erected in a gate shape on the base 61, and the lens system 1 is mounted along the side surface of the lens system. A support plate 65 surrounding a square shape, and an adjusting screw at the center of the upper surface of the support plate 65.
The correction plate 66 is mounted in a floating state via 67.

そして前記補正板66は凹レンズ1a上面を面接触にて押圧
保持する保持辺661と、前記支持板65上方に所定間隔存
して浮き状態を維持する浮き辺662と、該浮き辺662より
J字状に立下がり、凹レンズ1aを略線接触にて保持する
回動辺663とを有し、前記調整螺子67を締付けて該浮き
辺662を陥没させる事により、前記回動辺663が凹レンズ
1a上面を押圧しながら離間する方向に回動し、この結
果、該凹レンズ1aを下端側で支持する板バネ63の弾性力
に抗して凹レンズ1aを副走査方向に回動(倒伏)させる
事が出来、一方前記螺子67をゆるめると、回動辺663と
共に凹レンズ1aが板バネ63の弾性力により元に復帰し、
これにより両レンズ1a−1b間の副走査方向の光軸ずれの
補正が簡単な構成で且つ容易に行う事が出来る。
The correction plate 66 has a holding side 661 that presses and holds the upper surface of the concave lens 1a by surface contact, a floating side 662 that maintains a floating state at a predetermined distance above the support plate 65, and a J-shape from the floating side 662. Has a rotating side 663 that holds the concave lens 1a in a substantially linear contact, and the rotating side 663 is a concave lens by retracting the floating side 662 by tightening the adjusting screw 67.
1a is rotated in a direction of separating while pressing the upper surface, and as a result, the concave lens 1a is rotated (fallen) in the sub-scanning direction against the elastic force of the leaf spring 63 that supports the concave lens 1a at the lower end side. On the other hand, when the screw 67 is loosened, the concave lens 1a is restored to the original state by the elastic force of the leaf spring 63 together with the rotating side 663,
This makes it possible to easily correct the optical axis shift between the lenses 1a-1b in the sub-scanning direction with a simple configuration.

従って本実施例によれば、小形化を図る為にfθレンズ
系1を走査方向に平行な偏平状に形成した為に生じる。
組立て時における幅走査方向の倒れ誤差、特に薄肉な凹
レンズ1aを簡単に調整する事が出来ると共に、該調整は
上部カバー42を取外すことにより上方より簡単に行う事
が出来る為に、メインテナンス上からも利便である。
Therefore, according to the present embodiment, this occurs because the fθ lens system 1 is formed in a flat shape parallel to the scanning direction in order to reduce the size.
A tilt error in the width scanning direction at the time of assembly, especially the thin concave lens 1a can be easily adjusted, and since the adjustment can be easily performed from above by removing the upper cover 42, it is also possible from above maintenance. It is convenient.

第6図は枠体への支持容易化を図ったトロイダルレンズ
30の形状を示す。
Figure 6 shows a toroidal lens designed for easy support on the frame.
The shape of 30 is shown.

トロイダルレンズ30は前述したように、入射面と出射面
がいずれも同心状の曲率半径で形成されている為に、正
確な位置決め固定を図る為には支持部材も該曲率半径に
併せて形成しなければならないが、このような支持部材
の加工は極めてめて困難であり、而もこのような支持部
材は一般に両端支持により支持されるものである為に、
撓みや変形が生じ易い。
As described above, in the toroidal lens 30, both the entrance surface and the exit surface are formed with concentric radii of curvature. Therefore, in order to achieve accurate positioning and fixing, the support member is also formed along with the radii of curvature. However, it is extremely difficult to process such a supporting member, and since such a supporting member is generally supported by supporting both ends,
Deflection and deformation easily occur.

そこで本実施例においては、プラスチック製のトロイダ
ルレンズ30の出射面側に、その底面が出射面頂部と直交
する仮想平面と面一になる如く、短手方向両端側に、長
手方向(主走査方向)に沿って平行に一対の足部71,72
を形成すると共に、該一対の足部71,72間に挟まれる領
域に走査ビーム10が走査される出射面30Aを形成する。
又入射面側の長手方向両端側は足部71,72底面と平行な
平面部が形成され、板ばね保持面73,74となす。
Therefore, in this embodiment, on the exit surface side of the plastic toroidal lens 30, the longitudinal direction (main scanning direction) is set on both ends in the lateral direction so that the bottom surface is flush with the virtual plane orthogonal to the top of the exit surface. ) Parallel to the pair of feet 71,72
And the emission surface 30A on which the scanning beam 10 is scanned is formed in the region sandwiched between the pair of legs 71, 72.
Further, flat surfaces parallel to the bottom surfaces of the foot portions 71 and 72 are formed on both end sides in the longitudinal direction on the incident surface side, and serve as leaf spring holding surfaces 73 and 74.

そしてかかるトロイダルレンズ30は、前記枠体40のスリ
ット孔412上方の両側に形成した段付面418上にレンズ足
部71,72を戴置させた後、枠体40隆起部421よりレンズ側
に延出する板ばね36の自由端を板ばね保持面73,74に押
圧させることにより該レンズ30の位置 決め固定を行う事が出来る。
Then, the toroidal lens 30 is such that the lens legs 71 and 72 are placed on the stepped surfaces 418 formed on both sides above the slit holes 412 of the frame body 40, and then on the lens side from the raised portion 421 of the frame body 40. The lens 30 can be positioned and fixed by pressing the free end of the extending leaf spring 36 against the leaf spring holding surfaces 73, 74.

かかるトロイダルレンズ30によれば、該レンズの入出射
面30A側に形成される位置決め固定部位71〜74がいずれ
も対向する平行な平面である為に、特別な固定部材を用
いることなく、枠体40に単に段付面418を形成するのみ
で正確且つ容易に位置決めが行われると共に、長手方向
全長に亙って段付面418上に戴置される為に、撓みや変
形が生じる事はない。又、前記足部71,72及び板ばね保
持面73,74はビーム走査領域から外れた区域に形成され
ている為に、ビーム走査に何等支障を生ずる事はない。
According to the toroidal lens 30, since the positioning and fixing portions 71 to 74 formed on the entrance / exit surface 30A side of the lens are parallel flat surfaces that face each other, a frame member is used without using a special fixing member. Accurate and easy positioning is achieved by simply forming the stepped surface 418 on the 40, and since it is placed on the stepped surface 418 over the entire length in the longitudinal direction, no bending or deformation occurs. . Further, since the foot portions 71, 72 and the leaf spring holding surfaces 73, 74 are formed in the areas deviating from the beam scanning area, the beam scanning will not be disturbed at all.

「発明の効果」 以上記載した如く本発明によれば、fθレンズから出射
された走査ビームを変向する複数の反射ミラーの入出射
位置を感光体ドラムの一対の接線間に挟まれる領域内に
配置した為に、現像ユニットその他の周辺装置の配設位
置に制限を受けることなく見掛け上の光路長を短くする
事が出来、この結果、装置の小形化と共に、現像ユニッ
トのトナー容積を増大する事が出来る、等の種々の著効
を有す。
[Advantages of the Invention] As described above, according to the present invention, the entrance / exit positions of a plurality of reflecting mirrors that redirect the scanning beam emitted from the fθ lens are located within a region sandwiched between a pair of tangent lines of the photosensitive drum. Since the arrangement is made, the apparent optical path length can be shortened without being restricted by the arrangement position of the developing unit and other peripheral devices. As a result, the toner volume of the developing unit is increased with the downsizing of the device. It has various remarkable effects such as being able to do things.

【図面の簡単な説明】 第1A図及び第1B図は本発明の原理を説明する原理説明
図、第2図は本発明の実施例に係るレーザプリンタの概
略構成を示す正面断面図、第3図は光走査ユニットの平
面断面図である 第4A図及び第4B図は前記変向ミラーと検出ミラーに使用
されるミラー支持装置の構成を示し、第4A図は斜視図、
第4B図は正面断面図である。第4C図はミラー支持装置の
変形例を示す正面断面図である。 第5図はfθレンズ系の支持装置を示す斜視図である。 第6図はトロイダルレンズの形状を示す斜視図である。 第7図は従来技術に係る正面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A and FIG. 1B are principle explanatory views for explaining the principle of the present invention. FIG. 2 is a front sectional view showing a schematic configuration of a laser printer according to an embodiment of the present invention. FIG. 4A and FIG. 4B show a configuration of a mirror support device used for the deflection mirror and the detection mirror, and FIG. 4A is a perspective view.
FIG. 4B is a front sectional view. FIG. 4C is a front sectional view showing a modified example of the mirror support device. FIG. 5 is a perspective view showing a supporting device for the fθ lens system. FIG. 6 is a perspective view showing the shape of the toroidal lens. FIG. 7 is a front view according to the prior art.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】fθ特性を有する結像レンズ系を通過した
レーザービームが、複数の反射ミラーを介して感光体ド
ラムの母線上に入射するよう構成されたレーザプリンタ
において、 前記レーザビームの光路の最下流側に位置する反射ミラ
ーよりの出射光と平行関係にある、一対の感光体ドラム
接線間に挟まれる領域内に、前記複数の反射ミラーの全
ての反射ミラーのビーム入出射位置が存在するよう構成
した事を特徴とするレーザプリンタ
1. A laser printer configured such that a laser beam having passed through an imaging lens system having an fθ characteristic is incident on a generatrix of a photosensitive drum via a plurality of reflecting mirrors. The beam entrance / exit positions of all the reflection mirrors of the plurality of reflection mirrors are present in a region sandwiched between the tangents of the pair of photoconductor drums in parallel with the light emitted from the reflection mirror located on the most downstream side. Laser printer characterized by being configured as
【請求項2】前記複数の反射ミラーにより変向されたレ
ーザビーム光路が、交差することなく感光体ドラム上に
入射するよう構成した事を特徴とする特許請求の範囲第
1項記載のレーザプリンタ
2. The laser printer according to claim 1, wherein the laser beam optical paths deflected by the plurality of reflecting mirrors are configured to enter the photoconductor drum without intersecting each other.
【請求項3】垂直上方に延伸する感光体ドラムの一対の
接線間に、全ての反射ミラーのビーム入出射位置が存在
するよう構成した特許請求の範囲第1項記載のレーザプ
リンタ
3. The laser printer according to claim 1, wherein the beam entrance / exit positions of all the reflection mirrors are present between a pair of tangents of the photosensitive drum extending vertically upward.
【請求項4】前記結像レンズ系より第1の反射ミラーに
入射されるレーザビーム光路又はその延長線と第2の反
射ミラーの感光体ドラム母線上に入射されるレーザビー
ム光路との交差位置より第1の反射ミラーの入射位置ま
での光路距離が、前記交差位置より第2の反射ミラーの
入射位置までの光路距離より大になる如く構成した特許
請求の範囲第1項記載のレーザプリンタ
4. A crossing position between a laser beam optical path incident on the first reflecting mirror from the imaging lens system or its extension and a laser beam optical path incident on the photoconductor drum generatrix of the second reflecting mirror. The laser printer according to claim 1, wherein the optical path distance to the incident position of the first reflecting mirror is longer than the optical path distance from the intersecting position to the incident position of the second reflecting mirror.
JP60116564A 1985-05-31 1985-05-31 Laser printer Expired - Fee Related JPH0743465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60116564A JPH0743465B2 (en) 1985-05-31 1985-05-31 Laser printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60116564A JPH0743465B2 (en) 1985-05-31 1985-05-31 Laser printer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP60137012A Division JPS61277917A (en) 1985-06-25 1985-06-25 Laser recording device

Publications (2)

Publication Number Publication Date
JPS61275781A JPS61275781A (en) 1986-12-05
JPH0743465B2 true JPH0743465B2 (en) 1995-05-15

Family

ID=14690227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60116564A Expired - Fee Related JPH0743465B2 (en) 1985-05-31 1985-05-31 Laser printer

Country Status (1)

Country Link
JP (1) JPH0743465B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01188820A (en) * 1988-01-25 1989-07-28 Tokyo Electric Co Ltd Beam deflector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764718A (en) * 1980-10-09 1982-04-20 Hitachi Ltd Laser beam printer
JPS59147319A (en) * 1983-02-12 1984-08-23 Canon Inc Optical scanner of image forming device
JPS6021066A (en) * 1983-07-15 1985-02-02 Hitachi Ltd Optical beam printer
JPS6031167A (en) * 1983-08-01 1985-02-16 Canon Inc Image recording method
JPS6093468A (en) * 1983-10-28 1985-05-25 Hitachi Ltd Laser beam printer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119423U (en) * 1983-01-31 1984-08-11 株式会社リコー Laser writing optical system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5764718A (en) * 1980-10-09 1982-04-20 Hitachi Ltd Laser beam printer
JPS59147319A (en) * 1983-02-12 1984-08-23 Canon Inc Optical scanner of image forming device
JPS6021066A (en) * 1983-07-15 1985-02-02 Hitachi Ltd Optical beam printer
JPS6031167A (en) * 1983-08-01 1985-02-16 Canon Inc Image recording method
JPS6093468A (en) * 1983-10-28 1985-05-25 Hitachi Ltd Laser beam printer

Also Published As

Publication number Publication date
JPS61275781A (en) 1986-12-05

Similar Documents

Publication Publication Date Title
US7006270B2 (en) Optical scanning device, image forming apparatus, and optical scanning method
US6593951B2 (en) Optical writing system directed to miniaturization thereof, and image forming apparatus employing it
US8059148B2 (en) Light source device and manufacturing method thereof
JP5116559B2 (en) Optical scanning device and image forming apparatus using the same
JP4573943B2 (en) Optical scanning optical device and image forming apparatus using the same
US6847474B2 (en) Optical scanning device, scanning optical system, scanning imaging optical component, optical scanning method, ghost image preventing method and image forming apparatus
JP3335259B2 (en) Reflective scanning optical device
US5018806A (en) Image forming apparatus
JP2001027735A (en) Optical scanner and method for adjusting light beam distance
JP3789770B2 (en) Optical scanning apparatus and image forming apparatus
JPH0996773A (en) Optical scanner
JPH0743465B2 (en) Laser printer
JPH0259714A (en) Optical scanning device
JPS61292166A (en) Image forming device
JP3684910B2 (en) Optical scanning device and image forming apparatus provided with optical scanning device
JP4573944B2 (en) Optical scanning optical device and image forming apparatus using the same
JPS61277917A (en) Laser recording device
JP4175311B2 (en) Optical scanning apparatus and image forming apparatus
JPH03171113A (en) Optical device for laser beam scanning
JPS61275718A (en) Photoscanning system
JP2001330790A (en) Optical scanning optical device and image forming device using the same
JP4642182B2 (en) Optical scanning optical device and image forming apparatus using the same
JP2583154B2 (en) Optical system mirror holding device
JP2002277786A (en) Optical scanner
JP5279474B2 (en) Optical scanning device and image forming apparatus using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees