JPH0743095B2 - Fluidized bed boiler - Google Patents

Fluidized bed boiler

Info

Publication number
JPH0743095B2
JPH0743095B2 JP63082302A JP8230288A JPH0743095B2 JP H0743095 B2 JPH0743095 B2 JP H0743095B2 JP 63082302 A JP63082302 A JP 63082302A JP 8230288 A JP8230288 A JP 8230288A JP H0743095 B2 JPH0743095 B2 JP H0743095B2
Authority
JP
Japan
Prior art keywords
desulfurization
bed
chamber
temperature
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63082302A
Other languages
Japanese (ja)
Other versions
JPH01256707A (en
Inventor
安正 出井
真司 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63082302A priority Critical patent/JPH0743095B2/en
Publication of JPH01256707A publication Critical patent/JPH01256707A/en
Publication of JPH0743095B2 publication Critical patent/JPH0743095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/005Fluidised bed combustion apparatus comprising two or more beds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は砂等の流動床中で石炭等の燃料を燃焼させ、そ
の燃焼熱を伝熱管内の水に吸収させて蒸気を発生させる
とともに、燃焼後のガスを脱硫剤で脱硫して外部へ排出
する流動床ボイラに関するものであり、詳しくは、異な
る性状の燃料を用いる場合や、ボイラ負荷が変化したよ
うな場合でも脱硫床の温度を最適脱硫温度に調整可能と
し、高い脱硫効率を維持できうるように改良された流動
床ボイラに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention burns a fuel such as coal in a fluidized bed such as sand and absorbs the combustion heat into water in a heat transfer tube to generate steam. The present invention relates to a fluidized bed boiler that desulfurizes the gas after combustion with a desulfurizing agent and discharges it to the outside.Specifically, the temperature of the desulfurization bed can be controlled even when fuels with different properties are used or when the boiler load changes. The present invention relates to an improved fluidized bed boiler that can be adjusted to an optimum desulfurization temperature and can maintain high desulfurization efficiency.

[従来の技術] 近年、燃焼効率が高くて廃ガス公害が少ないボイラとし
て流動床ボイラが開発されている。この種の流動床ボイ
ラは、例えば、ボイラ本体内に下段から順に隔成された
空気室,流動床燃焼室,流動床脱硫室の3室を備えてお
り、常時所定量だけ燃焼室内に蓄えられた砂等の流動媒
体を空気室からの空気の吹き込みによって流動させ、燃
焼室へ供給される石炭を砂とともに流動させながら燃焼
させるものであって、燃焼室の伝熱管内を通過する水が
この燃焼ガスで加熱されることによって蒸気が発生す
る。そして、燃焼ガスは脱硫室で石灰石などの脱硫剤で
脱硫されて排気される。
[Prior Art] In recent years, a fluidized bed boiler has been developed as a boiler having high combustion efficiency and less waste gas pollution. This type of fluidized bed boiler has, for example, an air chamber, a fluidized bed combustion chamber, and a fluidized bed desulfurization chamber, which are partitioned in order from the bottom in the boiler body, and always store a predetermined amount in the combustion chamber. The flow medium such as sand is made to flow by blowing air from the air chamber, and the coal supplied to the combustion chamber is burned while flowing along with the sand, and the water passing through the heat transfer tube of the combustion chamber is Steam is generated by being heated by the combustion gas. Then, the combustion gas is desulfurized by a desulfurizing agent such as limestone in the desulfurization chamber and exhausted.

[発明が解決しようとする課題] このように流動床燃焼部と流動床脱硫部とを別個に備え
た流動床ボイラでは、一般的に燃焼部における燃焼の温
度条件と脱硫部における脱硫の温度条件とを別個に調整
可能であるので、燃焼効率と脱硫効率を高くすることが
できるという利点を有しているが、一方では次のような
問題点も有している。
[Problems to be Solved by the Invention] As described above, in a fluidized bed boiler having a fluidized bed combustion section and a fluidized bed desulfurization section separately, generally, combustion temperature conditions in the combustion section and desulfurization temperature conditions in the desulfurization section are used. Since and can be adjusted separately, it has an advantage that the combustion efficiency and the desulfurization efficiency can be increased, but on the other hand, it also has the following problems.

すなわち、燃焼部で燃焼させる燃料が揮発分の多い燃料
である場合や、微粉を多く含む燃料である場合は燃焼室
における流動床の上方のフリーボードで燃焼する割合が
増えるため、フリーボード部における燃焼ガス温度が高
くなって脱硫床に入る燃焼ガス温度が上昇し、脱硫に最
適な温度レベル(750〜880℃)を越えて脱硫効率が低下
する場合がある。
That is, when the fuel to be burned in the combustion section is a fuel with a large amount of volatile matter, or when it is a fuel containing a large amount of fine powder, the proportion of combustion in the freeboard above the fluidized bed in the combustion chamber increases, so the freeboard section In some cases, the temperature of the combustion gas rises and the temperature of the combustion gas entering the desulfurization bed rises, and the desulfurization efficiency drops below the optimum temperature level (750 to 880 ° C) for desulfurization.

また、ボイラ負荷の変化が生じたり、異なる負荷で運転
する場合には、燃焼部において伝熱管に接触している流
動床自体の温度は例えば950℃程度に一定に保つことは
できるが、流動床上部のフリーボード部で上段側の伝熱
管が流動床から露出しているような低負荷時の場合に
は、燃焼ガスの保有熱がこの露出した伝熱管により熱吸
収されてフリーボード部における燃焼ガス温度が例えば
750℃以下に低下し、脱硫に適した温度よりも低下して
しまう。また、この逆に、このような状態からボイラ負
荷を上昇させる場合には、伝熱管は全て流動床に埋没さ
れるため燃焼ガス温度が上昇し、流動床温度とほぼ同等
の温度の例えば950℃程度に上昇し、脱硫に適した温度
よりも高くなり、脱硫効率が低下するという問題点もあ
る。
When the boiler load changes or the load is operated under different loads, the temperature of the fluidized bed itself, which is in contact with the heat transfer tubes in the combustion section, can be kept constant at, for example, about 950 ° C. In the case of a low load where the upper heat transfer tube is exposed from the fluidized bed in the freeboard section of the engine section, the heat retained by the combustion gas is absorbed by the exposed heat transfer tube and combustion in the freeboard section occurs. The gas temperature is
The temperature drops below 750 ° C, which is below the temperature suitable for desulfurization. On the contrary, when the boiler load is increased from such a state, since the heat transfer tubes are all buried in the fluidized bed, the combustion gas temperature rises and the temperature is almost equal to the fluidized bed temperature, for example, 950 ° C. There is also a problem that the temperature rises to a certain degree, the temperature becomes higher than the temperature suitable for desulfurization, and the desulfurization efficiency decreases.

一方、脱硫床の温度を調整する方法としては例えば特開
昭60−101409号公報に開示されているように脱硫部の直
ぐ上流の燃焼室のフリーボードに開口させて設けた2次
空気供給管からの2次空気の供給流量を調節することに
よって行なえるが、燃焼床での燃焼効率を所要範囲に維
持するためには全体空気量に対する2次空気の比率をあ
る上限値(例えば約15%)に抑えざるを得ない場合があ
り、また、NOx低減のために燃焼室の流動床部とフリー
ボード部とで燃焼させる、いわゆる2段燃焼させざるを
得ない場合(すなわち、燃焼用空気としての1次空気量
を減らして燃焼床で未燃カーボンや一酸化炭素を一部発
生させ、これをNOxの還元分解に用いること。)には、
この2次空気は例えば約10〜15%の範囲の量を入れざる
を得ないため、脱硫床の温度を調節するために2次空気
量を変化させることができない場合もある。
On the other hand, as a method for adjusting the temperature of the desulfurization bed, for example, as disclosed in Japanese Patent Laid-Open No. 60-101409, a secondary air supply pipe opened on the freeboard of the combustion chamber immediately upstream of the desulfurization section. This can be done by adjusting the flow rate of the secondary air supplied from the, but in order to maintain the combustion efficiency in the combustion bed within the required range, the ratio of the secondary air to the total amount of air has an upper limit value (for example, about 15%). ) In some cases, and in order to reduce NOx, there is no choice but to perform so-called two-stage combustion in which the fluidized bed section and the freeboard section of the combustion chamber combust (that is, as combustion air). The amount of primary air is reduced to partially generate unburned carbon and carbon monoxide in the combustion bed, and this is used for NOx reduction decomposition.)
Since the amount of this secondary air must be in the range of, for example, about 10 to 15%, it may not be possible to change the amount of secondary air in order to adjust the temperature of the desulfurization bed.

[課題を解決するための手段] 本発明は以上のような問題点を解決するためになされた
ものであり、下部に1次空気供給管が設けられた空気室
と、この空気室の上側に設けられこの空気室と分散板に
よって隔てられこの分散板を通して空気が供給され内部
に燃焼流動床と伝熱管を備えた燃焼室と、この燃焼室の
フリーボードに接続された2次空気供給と、前記燃焼室
の燃焼ガス流の下流の上部に前記燃焼室で発生した燃焼
ガスの脱硫を行う脱硫床を有した脱硫室を備えた流動床
ボイラにおいて、前記脱硫室の脱硫床上層部に伝熱管を
設置するとともに、脱硫室に脱硫室伝熱管の設置高さ位
置近傍で開口する流入口を備えた脱硫剤排出部材を設
け、この排出部材はその流入口の高さを調整可能に設
け、前記1次空気供給管と2次空気供給管にそれぞれ空
気流量検出器を設けると共に、前記脱硫室に脱硫床温度
検出器を設け、前記脱硫剤排出部材にその流入口の高さ
調整用駆動装置を設け、前記1次空気および2次空気の
流量検出器の検出流量値又は前記脱硫床温度検出器の検
出温度値に基づいて前記脱硫剤排出部材駆動装置を調整
駆動する制御装置を設け、この制御装置により脱硫剤排
出部材の流入口の高さを調整して脱硫床の高さを変化さ
せ脱硫床脱硫剤と脱硫室伝熱管との接触面積或いは接触
頻度を変化させることにより脱硫床を脱硫に適した温度
に調整する構成としたものである。
[Means for Solving the Problems] The present invention has been made to solve the above problems, and includes an air chamber provided with a primary air supply pipe in the lower portion and an upper side of the air chamber. A combustion chamber provided with a combustion fluidized bed and a heat transfer tube inside, which is separated from the air chamber by a dispersion plate and is supplied with air through the dispersion plate; and a secondary air supply connected to a freeboard of the combustion chamber, In a fluidized bed boiler equipped with a desulfurization chamber having a desulfurization bed for desulfurizing combustion gas generated in the combustion chamber in a downstream upper part of the combustion gas flow of the combustion chamber, a heat transfer pipe is provided in a desulfurization bed upper layer part of the desulfurization chamber. The desulfurizing agent discharge member having an inlet opening in the vicinity of the installation height position of the desulfurization chamber heat transfer pipe is provided in the desulfurization chamber, and the discharge member is provided so that the height of the inlet can be adjusted. The primary air supply pipe and the secondary air supply pipe The desulfurization chamber temperature detector is provided in the desulfurization chamber and the desulfurization agent discharge member is provided with a drive device for adjusting the height of the inlet of the desulfurization agent, and the primary air and the secondary air are provided. A control device for adjusting and driving the desulfurizing agent discharge member drive device based on the detected flow rate value of the flow rate detector or the detected temperature value of the desulfurization bed temperature detector is provided, and the controller controls the inflow port of the desulfurization agent discharge member. A structure in which the desulfurization bed is adjusted to a temperature suitable for desulfurization by changing the height of the desulfurization bed to change the contact area or contact frequency between the desulfurization agent and the desulfurization chamber heat transfer tube by adjusting the height Is.

[作用] 例えばボイラに投入する燃料としての石炭の揮発分が高
くなった場合、または微粉量が多くなった場合、あるい
は、ボイラ負荷が上昇されたような場合にはフリーボー
ドでの燃焼ガスの温度が上昇する。前記、石炭の揮発分
が高くなった場合、又は、微粉量が多くなった場合は、
脱硫室の温度検出計により脱硫床の温度が検出され、そ
の信号が脱硫剤排出部材駆動装置の制御装置へ送られ、
その制御装置によって該脱硫剤排出部材駆動装置が駆動
され、脱硫床の温度上昇に対応させて脱硫剤排出部材の
流入口の高さが上げられる。また、ボイラ負荷が上昇さ
れた場合には、それに応じて上昇される1次空気量と2
次空気量がそれぞれ空気流量検出器で検出され、その信
号が脱硫剤排出部材駆動装置の制御装置へ送られ、その
制御装置によって該脱硫剤排出部材駆動装置が駆動さ
れ、1次空気と2次空気の増加量に対応させて脱硫剤排
出部材の流入口の高さが上げられる。このようにして脱
硫剤排出部材の流入口の高さが上げられると、脱硫剤の
流動床(脱硫床)高さが上昇され、脱硫剤上層部に位置
する伝熱管に接触する石灰石等の脱硫剤である流動媒体
の量が多くなり、すなわち、脱硫床と伝熱管との接触面
積あるいは接触頻度が多くなって、脱硫床から伝熱管へ
の伝熱量が増大されて脱硫床の温度が低下され、脱硫に
適した所定の温度(例えば830℃)とされる。逆に、ボ
イラ負荷が低下するなどしてフリーボードの燃焼ガス温
度が脱硫に適した温度よりも下った場合には前記脱硫剤
排出部材の流入口の高さが低くされて脱硫流動床の高さ
が低くされ、伝熱管との接触面積あるいは接触頻度が少
なくなって脱硫床の温度が脱硫に適した温度に上昇され
る。
[Operation] For example, when the volatile content of coal as a fuel to be fed into the boiler becomes high, or when the amount of fine powder becomes large, or when the boiler load is increased, the combustion gas of the freeboard is changed. The temperature rises. When the volatile content of the coal is high, or when the amount of fine powder is large,
The temperature of the desulfurization bed is detected by the temperature detector of the desulfurization chamber, and the signal is sent to the controller of the desulfurizing agent discharge member drive device,
The controller drives the desulfurization agent discharge member driving device, and the height of the inlet of the desulfurization agent discharge member is raised in response to the temperature rise of the desulfurization agent. Also, when the boiler load is increased, the primary air amount and 2
The amount of secondary air is detected by the air flow rate detector, and the signal is sent to the controller of the desulfurizing agent discharge member driving device, and the controller drives the desulfurizing agent discharge member driving device to drive the primary air and the secondary air. The height of the inflow port of the desulfurizing agent discharge member is raised in accordance with the increased amount of air. When the height of the inlet of the desulfurization agent discharge member is increased in this manner, the height of the fluidized bed (desulfurization bed) of the desulfurization agent is increased, and desulfurization of limestone or the like that comes into contact with the heat transfer tube located in the upper layer of the desulfurization agent The amount of the fluidized medium that is the agent increases, that is, the contact area or contact frequency between the desulfurization bed and the heat transfer tubes increases, and the heat transfer amount from the desulfurization bed to the heat transfer tubes increases and the temperature of the desulfurization bed decreases. The temperature is set to a predetermined temperature suitable for desulfurization (for example, 830 ° C). On the contrary, when the combustion gas temperature of the freeboard falls below the temperature suitable for desulfurization due to, for example, a decrease in boiler load, the height of the inlet of the desulfurizing agent discharge member is lowered to increase the height of the desulfurization fluidized bed. The temperature of the desulfurization bed is raised to a temperature suitable for desulfurization because the contact area with the heat transfer tube or the contact frequency is reduced.

[実施例] 以下図面を参照して実施例について説明する。Embodiments Embodiments will be described below with reference to the drawings.

第1図は本発明の実施例に係る流動床ボイラを説明する
ための流動床ボイラの縦断面図である。
FIG. 1 is a vertical sectional view of a fluidized bed boiler for explaining a fluidized bed boiler according to an embodiment of the present invention.

図において、符号1は流動床ボイラの本体、2はボイラ
炉体であり、その内部の底部には分散板5が該ボイラ内
部を横断するように設置され、空気室7が区画形成され
ている。この空気室7には1次空気の供給管3が接続さ
れている。分散板5の上方は燃焼室(流動室)8であ
り、多数の伝熱管16が設置されている。本実施例では、
伝熱管16は高さ方向に3段になるように設置されてお
り、かつ上下方向に千鳥配列となるように設置されてい
る。符号13は燃料(本実施例においては粒状炭)の供給
管であり、分散板5の直上に均一に供給するように複数
本配設されている。
In the figure, reference numeral 1 is a main body of a fluidized bed boiler, 2 is a boiler furnace body, a dispersion plate 5 is installed at the bottom of the inside of the boiler so as to traverse the inside of the boiler, and an air chamber 7 is partitioned and formed. . A supply pipe 3 for primary air is connected to the air chamber 7. Above the dispersion plate 5 is a combustion chamber (flow chamber) 8, and a large number of heat transfer tubes 16 are installed. In this embodiment,
The heat transfer tubes 16 are installed in three steps in the height direction, and are also installed in a zigzag arrangement in the vertical direction. Reference numeral 13 denotes a fuel (in the present embodiment, granular coal) supply pipe, and a plurality of supply pipes are arranged just above the dispersion plate 5 so as to be uniformly supplied.

伝熱管16上方のフリーボード部9には2次空気の供給管
4が接続されている。2次空気供給管4のさらに上方に
は、分散板6がボイラ炉体2内部を横断するように設置
され、その上方に脱硫室10が形成されている。符号14は
石灰石やドロマイト等の脱硫剤15(本実施例では石灰
石)を供給するための配管である。この脱硫室10の石灰
石(脱硫剤)15で形成される流動床Sの上層部には脱硫
室10を横断するように多数の伝熱管17が設置されてお
り、本実施例では伝熱管17は高さ方向に1段に設置され
ている。この伝熱管17に流通される流体はボイラ水ある
いは過熱蒸気等とされる。符号23は脱硫室10の上端部に
設けられた脱硫後の燃焼ガスを排出する排出口、符号41
は流動床Sの温度を検知して信号を発する温度検出器で
ある。1次空気供給管3と2次空気供給管4にはそれぞ
れその空気量を検出して信号を発する流量検出器42,43
が設置されている。
A secondary air supply pipe 4 is connected to the freeboard portion 9 above the heat transfer pipe 16. A dispersion plate 6 is installed above the secondary air supply pipe 4 so as to traverse the inside of the boiler furnace body 2, and a desulfurization chamber 10 is formed above the dispersion plate 6. Reference numeral 14 is a pipe for supplying a desulfurizing agent 15 (limestone in this embodiment) such as limestone or dolomite. A large number of heat transfer tubes 17 are installed in the upper layer of the fluidized bed S formed of limestone (desulfurization agent) 15 in the desulfurization chamber 10 so as to cross the desulfurization chamber 10. In this embodiment, the heat transfer tubes 17 are It is installed in one step in the height direction. The fluid flowing through the heat transfer tube 17 is boiler water, superheated steam, or the like. Reference numeral 23 is an outlet provided at the upper end of the desulfurization chamber 10 for discharging the combustion gas after desulfurization, and reference numeral 41
Is a temperature detector that detects the temperature of the fluidized bed S and emits a signal. The primary air supply pipe 3 and the secondary air supply pipe 4 respectively detect flow rate detectors 42 and 43 which detect the amount of air and emit a signal.
Is installed.

さらに、脱硫室10には、脱硫剤層高制御装置付の脱硫剤
抜き出し装置24が設けられている。すなわち、ボイラ炉
体2の外面に固定されたブラケット25には、図示しない
廃石灰石貯蔵タンク等との間に管体26を介して接続され
た外筒27が傾斜状に固着されており、一方、ボイラ炉体
2の外面に固着された軸受28には外筒27に摺動自在に嵌
合されてこれと同心状に傾斜する排出部材としての抜き
出し筒29がパッキン30を介して斜め上下方向へ進退自在
に支持されている。31はパッキン30の抜けを規制するパ
ッキン押えである。抜き出し筒29はその廃石灰石の流入
口29aである開口部を前記伝熱管17の設置高さ付近に臨
まされた状態でボイラ炉体2を貫通して石灰石15の層中
に係入されており、脱硫により変質した廃石灰石15が抜
き出し筒29内へオーバフローして外筒27と管体26とを介
し廃石灰石貯蔵タンク等へ排出されるように構成されて
いる。この結果、抜き出し筒29の流入口29aは、常時石
灰石15(流動床S)の上端面に開口している。32は外筒
27とほぼ平行してブラケット25に支持された抜き出し筒
駆動装置としてのエアシリンダであって、そのピストン
ロッド33の作用端は、抜き出し筒29の突片34に固定され
ており、またヘッドエンド側ポートとロッドエンド側ポ
ートとは、電磁弁35との間を配管36,37でそれぞれ接続
されている。一方、脱硫剤排出部材駆動用制御装置38
は、1次空気流量検出器42と2次空気流量検出器43の信
号が入力される加算演算器44と、この加算演算器44の出
力信号を受け取り、ボイラ負荷に応じた抜き出し筒29の
流入口29aの高さを算出する函数発生器40と、この出力
信号が入力されると共に脱硫床温度検出器41の信号が入
力される調節計39、とで構成されている。本実施例では
制御装置38の調節計39から出力信号が電磁弁35に送ら
れ、電磁弁35は抜き出し筒駆動装置のエアシリンダ32を
作動させる。
Further, the desulfurization chamber 10 is provided with a desulfurizing agent withdrawing device 24 with a desulfurizing agent layer height control device. That is, an outer cylinder 27 connected to a bracket 25 fixed to the outer surface of the boiler furnace body 2 via a pipe body 26 with an unillustrated waste limestone storage tank or the like is fixed in an inclined shape. A bearing cylinder 28 fixed to the outer surface of the boiler furnace body 2 is slidably fitted to the outer cylinder 27, and an extraction cylinder 29 as a discharging member that is inclined concentrically with the outer cylinder 27 is slanted vertically through a packing 30. It is supported to move forward and backward. Reference numeral 31 is a packing retainer for restricting the removal of the packing 30. The extraction cylinder 29 is inserted into the layer of limestone 15 through the boiler furnace body 2 in a state where the opening which is the inflow port 29a of the waste limestone is exposed near the installation height of the heat transfer tube 17. The waste limestone 15 denatured by desulfurization overflows into the extraction cylinder 29 and is discharged to the waste limestone storage tank or the like via the outer cylinder 27 and the pipe body 26. As a result, the inflow port 29a of the extraction cylinder 29 is always open to the upper end surface of the limestone 15 (fluidized bed S). 32 is the outer cylinder
An air cylinder as an extraction cylinder drive device supported by a bracket 25 substantially in parallel with 27, the working end of a piston rod 33 of which is fixed to a projecting piece 34 of the extraction cylinder 29. The port and the rod end side port are connected to the solenoid valve 35 by pipes 36 and 37, respectively. On the other hand, the controller 38 for driving the desulfurizing agent discharge member 38
Is an addition computing unit 44 to which the signals of the primary air flow rate detector 42 and the secondary air flow rate detector 43 are input, and an output signal of the addition computing unit 44 to receive the flow of the extraction cylinder 29 according to the boiler load. It is composed of a function generator 40 for calculating the height of the inlet 29a and a controller 39 to which the output signal of the function generator 40 and the signal of the desulfurization bed temperature detector 41 are input. In this embodiment, an output signal is sent from the controller 39 of the control device 38 to the solenoid valve 35, and the solenoid valve 35 operates the air cylinder 32 of the extraction cylinder drive device.

抜き出し筒29の進退ストロークは、その流入口29aの高
さが、伝熱管17が流動床Sから露出する高さ(第1図
中、鎖線29c)と伝熱管17が流動床Sに完全に埋没され
る高さ(第1図中、鎖線29b)の範囲内で移動可能な長
さとされている。なお、この流入口29aの最小高さ位置
(第1図中、鎖線29c)は脱硫効率を維持するための必
要高さとされ、この最小高さ位置のときは流動媒体(石
灰石15)が伝熱管17に接触しない位置とされる。こうす
ることにより石炭中の揮発分や微粉分の量が変化して脱
硫床Sの温度が変化したり、または、ボイラの負荷が変
化する(すなわち、1次空気と2次空気の量が変化す
る)と、これを検出器41,42,43がそれぞれ検知して信号
を発し、検出器41からの信号は調節計39を介して、ま
た、検出器42,43からの信号は加算演算器44と函数発生
器40とを介して電磁弁35へ送られて電磁弁35が作動し、
エアシリンダ32のピストンロッド33と抜き出し筒29とが
一体的に進退して流入口29aの高さが変化するように構
成されている。この場合、流入口29aの高さは、例え
ば、フリーボード9の燃焼ガス温度が高くなると高くな
り、この結果、石灰石の流動床Sの高さも高くなって、
伝熱管17と流動床Sとの接触頻度が多くなり、あるいは
伝熱管17へ流動床Sが接触する面積が多くなって流動床
Sの温度が低下され、所定の脱硫温度に保たれる。
The height of the inflow port 29a of the extraction cylinder 29 is such that the height of the heat transfer tube 17 is exposed from the fluidized bed S (chain line 29c in FIG. 1) and the heat transfer tube 17 is completely buried in the fluidized bed S. The movable length is within the range of the height (dotted line 29b in FIG. 1). The minimum height position of the inflow port 29a (broken line 29c in Fig. 1) is the required height for maintaining desulfurization efficiency. At this minimum height position, the fluid medium (limestone 15) is the heat transfer tube. The position is such that it does not touch the 17. By doing so, the amount of volatile components and fine powder components in the coal changes, the temperature of the desulfurization bed S changes, or the load of the boiler changes (that is, the amounts of primary air and secondary air change). And the detectors 41, 42 and 43 respectively detect and emit a signal, the signal from the detector 41 via the controller 39, and the signal from the detectors 42 and 43 to the addition calculator. It is sent to the solenoid valve 35 via 44 and the function generator 40, and the solenoid valve 35 operates,
The piston rod 33 of the air cylinder 32 and the extraction cylinder 29 are integrally advanced and retracted so that the height of the inflow port 29a is changed. In this case, the height of the inflow port 29a increases as the combustion gas temperature of the freeboard 9 increases, and as a result, the height of the fluidized bed S of limestone also increases.
The contact frequency between the heat transfer tube 17 and the fluidized bed S increases, or the area where the fluidized bed S contacts the heat transfer tube 17 increases, so that the temperature of the fluidized bed S decreases and the temperature is maintained at a predetermined desulfurization temperature.

かかる構成において、分散板5上方の燃焼室8内には砂
からなる流動媒体が充填され、燃料供給管13から供給さ
れる粒状炭が、1次空気供給管3から空気室7を通って
供給される1次空気によって燃焼し、この燃焼は、空気
分散板15からの吹き上げ空気で砂と粒状炭とが流動する
(流動床Gを形成する)ことにより促進され、効率よく
燃焼する。この燃焼によって伝熱管16内の水が加熱され
て蒸気が発生し、蒸気使用設備へ供給される。一方、燃
焼ガスは分散板6を経て脱硫室10に入り、脱硫室10内で
は石灰石を流動化させて流動床Sを形成し、この流動床
S中で硫黄分を除去され無害のガスとなって排出口23か
ら排出される。排出口23から排出された排出ガスは、別
に設けた廃熱ボイラ等を通過してその保有熱を吸収され
たのち、煙突から排出される。
In this structure, the fluidized medium made of sand is filled in the combustion chamber 8 above the dispersion plate 5, and the granular coal supplied from the fuel supply pipe 13 is supplied from the primary air supply pipe 3 through the air chamber 7. Combustion is performed by the generated primary air, and this combustion is promoted by the flow of the air blown from the air dispersion plate 15 between the sand and the granular charcoal (forming the fluidized bed G) and efficient combustion. This combustion heats the water in the heat transfer tube 16 to generate steam, which is supplied to the steam using facility. On the other hand, the combustion gas enters the desulfurization chamber 10 through the dispersion plate 6, and fluidizes the limestone in the desulfurization chamber 10 to form a fluidized bed S. In the fluidized bed S, the sulfur content is removed to become a harmless gas. And is discharged from the discharge port 23. The exhaust gas discharged from the discharge port 23 passes through a separately provided waste heat boiler or the like to absorb the heat retained therein, and then is discharged from the chimney.

また、脱硫室10内には脱硫剤供給管14から石灰石が連続
して供給されており、脱硫室10内の石灰石15のうち、脱
硫により変質した石灰石15は、流入口29aからオーバフ
ローし、抜き出し筒29と外筒27,管体26とを経て廃石灰
石貯蔵タンク等へ排出される。
Further, limestone is continuously supplied from the desulfurization agent supply pipe 14 into the desulfurization chamber 10, and among the limestone 15 in the desulfurization chamber 10, the limestone 15 that has been altered by desulfurization overflows from the inflow port 29a and is withdrawn. It is discharged to a waste limestone storage tank or the like via the cylinder 29, the outer cylinder 27, and the pipe body 26.

しかして、燃焼室8においては、流動床Gの高さがボイ
ラ負荷の変動に対応して変えられた際に該流動床Gへの
埋没本数が変化するように伝熱管16の設置高さおよび流
動媒体(砂)の充填量が設定されている。例えば、ボイ
ラ負荷が最大になった場合にはこれに対応して粒状炭供
給量および1次空気供給量が最大とされ、流動床Gの高
さは第1図のDのレベルにまで増大し、全ての伝熱管16
が該流動床Gに埋没する。また、中間の負荷状態にあっ
ては、それに見合って粒状炭供給量および1次空気供給
量が減少され、流動床Gの高さは第1図のEのレベルに
まで低下し、伝熱管16のうち最上段のものが流動床Gか
ら露出する。さらに、最低負荷状態になったときには、
粒状炭供給量および1次空気供給量が最低量まで減少さ
せ、流動床Gの高さは第1図のFのレベルにまで低下す
る。これにより最上段および中段の伝熱管18が流動床G
から露出し、最下段の伝熱管18のみが流動床Gに埋没す
ることになる。このように、流動床ボイラの負荷変動に
対応して流動床Gの高さが変動すると、該流動床Gに埋
没する伝熱管16の本数が増減し、伝熱面積が増減する。
したがって、流動床Gから伝熱管16に伝えられる総熱量
が負荷の増減に対応して増減することになり、流動床G
の温度の変動幅は著しく小さいものとされる。したがっ
て、ボイラ負荷の変動に対しても燃焼室8の流動床Gの
温度はほぼ一定(例えば950℃)の温度に保たれる。
Then, in the combustion chamber 8, the installation height of the heat transfer tubes 16 and the installation height of the heat transfer pipes 16 are changed so that the number of buried in the fluidized bed G is changed when the height of the fluidized bed G is changed corresponding to the fluctuation of the boiler load. The filling amount of the fluid medium (sand) is set. For example, when the boiler load becomes maximum, the granular coal supply amount and the primary air supply amount are correspondingly maximized, and the height of the fluidized bed G increases to the level of D in FIG. , All heat transfer tubes 16
Are buried in the fluidized bed G. Further, in the intermediate load state, the granular coal supply amount and the primary air supply amount are correspondingly reduced, the height of the fluidized bed G is lowered to the level E in FIG. 1, and the heat transfer tube 16 The uppermost one is exposed from the fluidized bed G. Furthermore, when the minimum load condition is reached,
The granular coal supply amount and the primary air supply amount are reduced to the minimum amount, and the height of the fluidized bed G is reduced to the level F in FIG. As a result, the heat transfer tubes 18 at the top and middle stages are moved to the fluidized bed G
Therefore, only the lowermost heat transfer tube 18 is buried in the fluidized bed G. As described above, when the height of the fluidized bed G changes in accordance with the load change of the fluidized bed boiler, the number of the heat transfer tubes 16 buried in the fluidized bed G increases and decreases, and the heat transfer area increases and decreases.
Therefore, the total amount of heat transferred from the fluidized bed G to the heat transfer tubes 16 will increase / decrease in accordance with the increase / decrease in the load.
The fluctuation range of the temperature is extremely small. Therefore, the temperature of the fluidized bed G of the combustion chamber 8 is maintained at a substantially constant temperature (for example, 950 ° C.) even when the boiler load changes.

一方、このように負荷変動に応じて動作する過程におい
て、例えばボイラ負荷が上昇されて流動床Gの高さが第
1図中、FからEのレベルへ、または、EからDのレベ
ルへと変化されるような場合には、フリーボード9に露
出していた伝熱管16が流動床G中に埋設されるため、今
までフリーボード9に露出していた伝熱管16による燃焼
ガスの保有熱の吸収がなくなるので、フリーボード部9
における燃焼ガスの温度が上昇し、したがって、脱硫室
10内の脱硫床Sの温度が上昇して、脱硫に適した温度範
囲を越えようとする。なお、このボイラ負荷の変動に対
する脱硫床Sの温度変化の関係は第2図に示すようにな
り、ボイラ負荷にほぼ比例して脱硫床Sの温度が変化す
る。
On the other hand, in the process of operating according to the load variation, for example, the boiler load is increased and the height of the fluidized bed G is changed from the level F to the level E or the level E from the level D in FIG. In the case of change, the heat transfer pipe 16 exposed on the freeboard 9 is buried in the fluidized bed G, and therefore the heat of combustion gas held by the heat transfer pipe 16 previously exposed on the freeboard 9 is retained. Free board part 9
The temperature of the combustion gas in the rises and therefore the desulfurization chamber
The temperature of the desulfurization bed S in 10 rises and tries to exceed the temperature range suitable for desulfurization. The relationship of the temperature change of the desulfurization bed S with respect to the fluctuation of the boiler load is as shown in FIG. 2, and the temperature of the desulfurization bed S changes almost in proportion to the boiler load.

したがって、このようにボイラ負荷が上昇される場合に
はそれに応じて上昇される1次空気と2次空気の投入量
(なお、1次空気と2次空気の合計量は脱硫室10の排ガ
ス排出口23から排出される排ガスの持去り熱量を限定し
て所定のボイラ効率を維持するために一定の空気過剰率
に保って運転される。)が流量検出器42,43によって検
出され、その検出信号が排出部材駆動用制御装置38の加
算演算器44に入力されて加算され、さらに、その信号が
函数発生器40に入力されてその信号が調節計39に入力さ
れ調節計39が電磁弁35を作動させてエヤシリンダ32のピ
ストンロッド33を前進させるので、流入口29a(あるい
は、29c)が第1図に鎖線29b(あるいは、29a)で示す
ように高くなり、脱硫床Sの高さが例えばB(または
C)のレベルからA(またはB)のレベルへと高くなっ
て脱硫床Sと伝熱管17との接触頻度あるいは接触面積が
多くなり脱硫床Sの温度が低下されて脱硫に適した温度
の例えば830℃レベルに調節される。
Therefore, when the boiler load is increased in this way, the input amounts of the primary air and the secondary air that are increased accordingly (the total amount of the primary air and the secondary air is the exhaust gas discharge of the desulfurization chamber 10). Is operated at a constant excess air ratio in order to limit the carry-out heat amount of the exhaust gas discharged from the outlet 23 and maintain a predetermined boiler efficiency.) Is detected by the flow rate detectors 42, 43, and its detection The signal is input to the addition calculator 44 of the discharge member drive control device 38 to be added, and further, the signal is input to the function generator 40, the signal is input to the controller 39, and the controller 39 causes the solenoid valve 35 to operate. To move the piston rod 33 of the air cylinder 32 forward, the inflow port 29a (or 29c) becomes high as shown by the chain line 29b (or 29a) in FIG. 1, and the height of the desulfurization bed S increases, for example. B (or C) level to A (or B) level As the temperature rises to the bell, the contact frequency or contact area between the desulfurization bed S and the heat transfer tubes 17 increases, the temperature of the desulfurization bed S is lowered, and the temperature suitable for desulfurization is adjusted to, for example, 830 ° C. level.

なお、脱硫床Sの温度は第3図に示すように廃石灰石抜
き出し筒29の流入口29aの高さとほぼ比例して変化し、
流入口29aを高くすれば脱硫床Sの温度を低下させ、低
くすれば上昇させることができる。
The temperature of the desulfurization bed S changes substantially in proportion to the height of the inflow port 29a of the waste limestone extraction cylinder 29 as shown in FIG.
If the inlet 29a is raised, the temperature of the desulfurization bed S can be lowered, and if lowered, it can be raised.

そして、前記函数発生器40には、脱硫床Sの温度を脱硫
に適した所定の温度に保つように、第2図および第3図
に示されるような関係に対応させてボイラ負荷に応じた
抜き出し筒29の流入口29aの高さの式が入力され設定さ
れている。
Then, the function generator 40 responds to the boiler load according to the relationship shown in FIGS. 2 and 3 so as to maintain the temperature of the desulfurization bed S at a predetermined temperature suitable for desulfurization. The formula of the height of the inflow port 29a of the extraction cylinder 29 is input and set.

勿論、このようにボイラ負荷が変更された際には脱硫床
Sの温度自体を温度検出器41で検出して調節計39を介し
て電磁弁35を作動させてシリンダ32を作動させ、抜き出
し筒29の流入口29aの高さを変化させることもできる
が、このように函数発生器40に予めボイラ負荷に応じた
流入口29aの高さ位置を設定しておけば、脱硫床Sの熱
容量が大きいことによる温度変化の遅れを(脱硫床Sの
温度変化は燃焼ガスの温度変化よりも遅れる)補償して
一定の温度制御を行なうことができる。
Of course, when the boiler load is changed in this way, the temperature itself of the desulfurization bed S is detected by the temperature detector 41, the solenoid valve 35 is operated through the controller 39, and the cylinder 32 is operated. Although it is possible to change the height of the inlet 29a of 29, if the height position of the inlet 29a according to the boiler load is set in advance in the function generator 40 in this way, the heat capacity of the desulfurization bed S A constant temperature control can be performed by compensating for the delay of the temperature change due to the large value (the temperature change of the desulfurization bed S is later than the temperature change of the combustion gas).

一方、運転中に燃焼室8に投入される粒状炭の揮発分が
高い程、あるいは微粉が多くなる程、流動床G内よりも
フリーボード9で燃焼する割合が増えるが、このような
場合にはフリーボード9での燃焼ガスの温度が上昇して
脱硫床Sの温度が上昇する。この場合、脱硫床Sの温度
検出器41がその温度を検知し、その信号を調節計39に送
り、調節計39は、電磁弁35を介して、脱硫に適した温度
となるように抜き出し筒29の流入口29aの高さを上昇さ
せて流動床Sの高さを上昇させ、伝熱管17との接触頻度
あるいは接触面積を増加させる。この結果、脱硫床Sの
温度は低下されて、脱硫に適した所定温度に調節され
る。なお、脱硫床Sで一部の未燃カーボンが燃焼されて
脱硫床Sの温度が上昇する場合でも同様な作動を行なわ
せて所定の温度に調節することができる。
On the other hand, the higher the volatile content of the granular charcoal charged into the combustion chamber 8 during operation or the larger the amount of fine powder, the higher the rate of combustion in the freeboard 9 than in the fluidized bed G. In such a case, Causes the temperature of the combustion gas on the freeboard 9 to rise and the temperature of the desulfurization bed S to rise. In this case, the temperature detector 41 of the desulfurization bed S detects the temperature and sends the signal to the controller 39, and the controller 39, via the solenoid valve 35, pulls out the extraction cylinder to a temperature suitable for desulfurization. The height of the inflow port 29a of 29 is increased to increase the height of the fluidized bed S, and the contact frequency or contact area with the heat transfer tube 17 is increased. As a result, the temperature of the desulfurization bed S is lowered and adjusted to a predetermined temperature suitable for desulfurization. Even if some of the unburned carbon is burned in the desulfurization bed S and the temperature of the desulfurization bed S rises, the same operation can be performed to adjust the temperature to a predetermined temperature.

以上の場合は、ボイラ負荷が上昇された場合や粒状炭の
揮発分や微粒分が増えて脱硫床Sの温度が上昇される場
合の作動について説明したものであるが、ボイラ負荷が
低下される場合や粒状炭の揮発分や微粒分が低くなって
脱硫床Sの温度が低下されるような場合でも前記と逆の
作動をすることにより、脱硫床Sの温度は上昇され、脱
硫に適した所定の温度に調節される。
In the above case, the operation is explained when the boiler load is increased, or when the temperature of the desulfurization bed S is increased due to an increase in the volatile content or fine particle content of the granular coal, but the boiler load is reduced. In the case where the volatile content or the fine particle content of the granular coal is lowered and the temperature of the desulfurization bed S is lowered, the temperature of the desulfurization bed S is increased by performing the operation reverse to the above, which is suitable for desulfurization. It is adjusted to a predetermined temperature.

第4図(a),(b)は本発明の脱硫剤排出部材とその
駆動装置の他の実施例を示し、第4図(a)はその正面
図、第4図(b)は同じく縦断面図である。これらの図
において、断熱材2aを有する前記ボイラ炉体2の内面に
は、断面コ字形半割環状のガイドリング50が、脱硫室10
に面してねじ止め等で固定されており、このガイドリン
グ50には、円形板状に形成された脱硫材排出部材の一つ
を構成する調整板51が回動自在に支持されている。ま
た、炉体2の外面には、図示しない廃石灰石貯蔵タンク
との間をダクト52で連結された流出口53が開口されてお
り、この流出口53と、調整板51の外周部に設けた流入口
54との間は、炉体2を貫通する傾斜円筒状の中空部材55
によって連通されている。すなわち、流入口54と、中空
部材55と、流出口53とで、石灰石15を本体1外へ排出す
る脱硫剤排出部材としての石灰石排出管56が形成されて
いる。57は調整板51の中心に対応して炉体2の外面に固
着されたグランドメタルであって、その内孔には、パッ
キン押さえ58で押さえられたパッキン59が装填されてお
り、パッキン59には、先端を調整板51に固着された駆動
軸60が回動自在に軸支されている。駆動軸60には図示し
ないブラケットを介し本体側に支持されたモータ61のモ
ータ軸62がカップリング63で連結されている。さらに、
モータ61には、図示を省略した第1図と同じ制御装置38
が接続されている。こうすることにより、前述したよう
な制御装置38からの指令でモータ61が回動すると、調整
板51が回動し、偏心位置にある流入口54の高さが変化す
るので、石灰石15の抜き出し高さ、すなわち、流動床S
の高さが図中、レベルAとCの間で変わり、伝熱管17へ
の流動床Sの接触面積が変化されて流動床Sの温度が調
整される。
4 (a) and 4 (b) show another embodiment of the desulfurizing agent discharging member and its driving device of the present invention. FIG. 4 (a) is its front view and FIG. 4 (b) is the same longitudinal section. It is a side view. In these figures, on the inner surface of the boiler furnace body 2 having the heat insulating material 2a, a guide ring 50 having a U-shaped cross section and a half ring shape is provided.
The guide ring 50 is rotatably supported on the guide ring 50. The adjustment plate 51 constitutes one of desulfurization material discharge members formed in a circular plate shape. Further, an outlet 53, which is connected to a waste limestone storage tank (not shown) by a duct 52, is opened on the outer surface of the furnace body 2. The outlet 53 and the outer peripheral portion of the adjusting plate 51 are provided. Inlet
A slanting cylindrical hollow member 55 penetrating the furnace body 2
Is communicated by. That is, the inflow port 54, the hollow member 55, and the outflow port 53 form a limestone discharge pipe 56 as a desulfurizing agent discharge member for discharging the limestone 15 to the outside of the main body 1. Reference numeral 57 is a ground metal fixed to the outer surface of the furnace body 2 corresponding to the center of the adjustment plate 51, and the packing 59 held by the packing presser 58 is loaded in the inner hole of the ground metal. The drive shaft 60 having the tip fixed to the adjusting plate 51 is rotatably supported. A motor shaft 62 of a motor 61 supported on the main body side via a bracket (not shown) is connected to the drive shaft 60 by a coupling 63. further,
The motor 61 has the same controller 38 as that shown in FIG.
Are connected. By doing so, when the motor 61 is rotated by a command from the control device 38 as described above, the adjusting plate 51 is rotated and the height of the inflow port 54 at the eccentric position is changed, so that the limestone 15 is extracted. Height, that is, fluidized bed S
In the figure changes between levels A and C, the contact area of the fluidized bed S with the heat transfer tube 17 is changed, and the temperature of the fluidized bed S is adjusted.

第5図はさらに本発明の脱硫剤排出部材とその駆動装置
の他の実施例を第4図(b)に対応して示す縦断面図で
あって、本実施例において本体1の炉体2にはグランド
メタル70が脱硫室10の外部に対応して固着されていて、
このグランドメタル70には、くの字状に形成された脱硫
剤排出部材としての石灰石排出管71が折曲端である流入
口71aを石灰石15上の上端面に臨ませて回動自在に軸支
されており、流出口71bには、廃石灰石貯蔵タンク等に
接続されたダクトが回動自在に接合されている。72は石
灰石排出管71とギア73,74で駆動連結されて本体側に支
持されたモータである。モータ72には図示を省略した第
1図と同じ制御装置38が接続されている。こうすること
により、前述したような制御装置38からの指令でモータ
72が回動すると、石灰石排出管71が回動してその流入口
71aが図に実線と鎖線とで示すように首を振るので、開
口部の高さが変わり、石灰石15の抜き出し高さ、すなわ
ち、流動床Sの高さが図中、レベルAとCの間で変わ
り、伝熱管17によって流動床Sの温度が調整される。
FIG. 5 is a vertical cross-sectional view showing another embodiment of the desulfurizing agent discharge member and its driving device of the present invention corresponding to FIG. 4 (b). In this embodiment, the furnace body 2 of the main body 1 is shown. The ground metal 70 is fixed to the outside of the desulfurization chamber 10,
In this ground metal 70, a limestone discharge pipe 71 as a desulfurizing agent discharge member formed in a dogleg shape is rotatably provided with an inlet 71a which is a bent end facing the upper end surface on the limestone 15. A duct connected to a waste limestone storage tank or the like is rotatably joined to the outlet 71b. A motor 72 is drivingly connected to the limestone discharge pipe 71 and gears 73 and 74 and supported on the main body side. The motor 72 is connected to the same control device 38 as that shown in FIG. By doing so, the motor is controlled by the command from the control device 38 as described above.
When 72 rotates, the limestone discharge pipe 71 rotates and its inlet port
Since 71a shakes its head as shown by the solid line and the chain line in the figure, the height of the opening changes, and the extraction height of the limestone 15, that is, the height of the fluidized bed S is between levels A and C in the figure. The temperature of the fluidized bed S is adjusted by the heat transfer tube 17.

第6図はさらに本発明の脱硫剤排出部材とその駆動装置
の他の実施例を第4図(b)に対応して示す縦断面図で
あって、本実施例において、本体1の炉体2とこれに固
定された中空状の軸受80とには略N字状に折曲された脱
硫剤排出部材としての石灰石排出管81が回動自在に軸支
されており、その突出端には本体1側に支持されたモー
タ82がカップリング83を介して駆動連結されている。ま
た、軸受80には廃石灰石貯蔵タンクとの間をダクトで接
続された流出口84が設けられており、石灰石排出管81の
軸受80への係合部には、複数個の孔81a,81bが穿設され
ている。モータ82には図示を省略した第1図と同じ制御
装置38が接続されている。こうすることにより、前述し
たような制御装置38からの指令でモータ82が回動する
と、石灰石排出管81が回動してその流入口81cの高さが
変わり、石灰石15の抜き出し高さ、すなわち、流動床S
の高さが図中、レベルAとCの間で変化され、伝熱管17
により流動床Sの温度が調整される。
FIG. 6 is a longitudinal sectional view showing another embodiment of the desulfurizing agent discharging member and its driving device of the present invention, corresponding to FIG. 4 (b). In this embodiment, the furnace body of the main body 1 is shown. A limestone discharge pipe 81 serving as a desulfurizing agent discharge member bent in a substantially N-shape is rotatably supported by 2 and a hollow bearing 80 fixed thereto, and a protruding end of the limestone discharge pipe 81. A motor 82 supported on the main body 1 side is drivingly connected via a coupling 83. Further, the bearing 80 is provided with an outlet 84 connected to the waste limestone storage tank by a duct, and the engaging portion of the limestone discharge pipe 81 with the bearing 80 has a plurality of holes 81a, 81b. Has been drilled. The motor 82 is connected to the same controller 38 as that shown in FIG. By doing so, when the motor 82 is rotated by a command from the control device 38 as described above, the limestone discharge pipe 81 is rotated and the height of the inflow port 81c is changed, and the extraction height of the limestone 15, that is, , Fluidized bed S
The height of the heat transfer tube 17 is changed between levels A and C in the figure.
The temperature of the fluidized bed S is adjusted by.

以上の実施例では、脱硫室10に設ける伝熱管17は高さ方
向に1段設けた場合を説明したが、脱硫床Sの温度をさ
らに広範囲に調整したい場合等には、複数段設けても良
いことは勿論である。
In the above embodiments, the heat transfer pipes 17 provided in the desulfurization chamber 10 are provided in one step in the height direction, but if it is desired to adjust the temperature of the desulfurization bed S in a wider range, a plurality of steps may be provided. Of course good things.

[発明の効果] 以上の説明から明らかなように、本発明は特許請求の範
囲に記載したような構成としたので、燃料の揮発分や微
粉の量、あるいはボイラ負荷などの変動により、脱硫床
へ流入する燃焼ガス温度の変化等があっても、これに応
じて脱硫床の温度を常に脱硫に適した温度に自動的に調
節することができ、脱硫効率の高い流動床ボイラが得ら
れる。そして、燃焼流動床と脱硫床とをそれぞれの最適
の温度条件で運転でき、効率の良い流動床ボイラが得ら
れる。
[Effects of the Invention] As is clear from the above description, the present invention has the structure as described in the claims, and therefore, the desulfurization bed may be changed due to fluctuations in the amount of volatile components of fuel, fine powder, or boiler load. Even if there is a change in the temperature of the combustion gas flowing in, the temperature of the desulfurization bed can always be automatically adjusted to a temperature suitable for desulfurization, and a fluidized bed boiler with high desulfurization efficiency can be obtained. Then, the combustion fluidized bed and the desulfurization bed can be operated under the respective optimum temperature conditions, and an efficient fluidized bed boiler can be obtained.

さらに、本発明では負荷上昇時や燃料の微粉分,揮発分
の増加時にフリーボードから脱硫床へ入る燃焼ガス温度
が上昇するような場合でも、その保有熱を脱硫室に設け
た伝熱管で吸収させるので、脱硫床の温度調整と同時に
ボイラ効率を向上させることができる。
Further, according to the present invention, even when the temperature of the combustion gas entering the desulfurization bed from the freeboard rises when the load increases or the fine powder content and volatile content of the fuel increase, the heat retained by the combustion gas is absorbed by the heat transfer tube provided in the desulfurization chamber. Therefore, the boiler efficiency can be improved at the same time when the temperature of the desulfurization bed is adjusted.

また、燃焼室のフリーボードに2次空気を供給して燃焼
ガスのNOxの低減,除去を行なう場合でも、この2次空
気で脱硫床の温度調整を行なう必要もないので、燃焼流
動床での燃焼効率を所要値に維持して2次空気によるNO
xの低減,除去作用を確実に行なわせることができる。
Further, even when the secondary air is supplied to the freeboard of the combustion chamber to reduce and remove NOx in the combustion gas, it is not necessary to adjust the temperature of the desulfurization bed with the secondary air, so that the combustion fluidized bed NO by secondary air by maintaining combustion efficiency at required value
It is possible to surely reduce and remove x.

【図面の簡単な説明】 図面はいずれも本発明の実施例を示すものであり、第1
図は流動床ボイラの縦断面図、第2図はボイラ負荷と脱
硫床温度の関係を示すグラフ、第3図は廃石灰石抜き出
し筒高さと脱硫床温度の関係を示すグラフ、第4図
(a),(b),第5図,第6図はそれぞれ異なる脱硫
剤排出部材とその駆動装置の他の実施例を示す図面であ
る。 1……流動床ボイラ本体、8……燃焼室、 10……脱硫室、16……伝熱管(燃焼部)、 17……伝熱管(脱硫部)、G……流動床(燃焼部)、 S……流動床(脱硫部)、 29,56,71,81……脱硫剤排出部材、 29a,54,71a,81c……流入口。
BRIEF DESCRIPTION OF THE DRAWINGS The drawings each show an embodiment of the present invention.
FIG. 2 is a vertical cross-sectional view of a fluidized bed boiler, FIG. 2 is a graph showing the relationship between boiler load and desulfurization bed temperature, FIG. 3 is a graph showing the relationship between waste limestone extraction cylinder height and desulfurization bed temperature, and FIG. ), (B), FIG. 5 and FIG. 6 are drawings showing other embodiments of different desulfurizing agent discharge members and their driving devices. 1 ... Fluidized bed boiler body, 8 ... Combustion chamber, 10 ... Desulfurization chamber, 16 ... Heat transfer tube (combustion part), 17 ... Heat transfer tube (desulfurization part), G ... Fluidized bed (combustion part), S: Fluidized bed (desulfurization section), 29,56,71,81 ... Desulfurizing agent discharge member, 29a, 54,71a, 81c ... Inlet.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】下部に1次空気供給管が設けられた空気室
と、この空気室の上側に設けられこの空気室と分散板に
よって隔てられこの分散板を通して空気が供給され内部
に燃焼流動床と伝熱管を備えた燃焼室と、この燃焼室の
フリーボードに接続された2次空気供給と、前記燃焼室
の燃焼ガス流の下流の上部に前記燃焼室で発生した燃焼
ガスの脱硫を行う脱硫床を有した脱硫室を備えた流動床
ボイラにおいて、前記脱硫室の脱硫床上層部に伝熱管を
設置するとともに、脱硫室に脱硫室伝熱管の設置高さ位
置近傍で開口する流入口を備えた脱硫剤排出部材を設
け、この排出部材はその流入口の高さを調整可能に設
け、前記1次空気供給管と2次空気供給管にそれぞれ空
気流量検出器を設けると共に、前記脱硫室に脱硫床温度
検出器を設け、前記脱硫剤排出部材にその流入口の高さ
調整用駆動装置を設け、前記1次空気および2次空気の
流量検出器の検出流量値又は前記脱硫床温度検出器の検
出温度値に基づいて前記脱硫剤排出部材駆動装置を調整
駆動する制御装置を設け、この制御装置により脱硫剤排
出部材の流入口の高さを調整して脱硫床の高さを変化さ
せ脱硫床脱硫剤と脱硫室伝熱管との接触面積或いは接触
頻度を変化させることにより脱硫床を脱硫に適した温度
に調整する構成としたことを特徴とする流動床ボイラ。
1. An air chamber having a primary air supply pipe at the bottom thereof, and an air chamber provided above the air chamber and separated from the air chamber by a dispersion plate, and air is supplied through the dispersion plate to a combustion fluidized bed inside. And a combustion chamber having a heat transfer tube, a secondary air supply connected to a freeboard of the combustion chamber, and desulfurization of combustion gas generated in the combustion chamber at an upper part downstream of the combustion gas flow in the combustion chamber. In a fluidized bed boiler equipped with a desulfurization chamber having a desulfurization bed, a heat transfer tube is installed in the desulfurization bed upper layer part of the desulfurization room, and an inflow port opening near the installation height position of the desulfurization room heat transfer tube is provided in the desulfurization room. A desulfurizing agent discharge member provided is provided, the height of the inflow port of the discharge member is adjustable, and an air flow rate detector is provided in each of the primary air supply pipe and the secondary air supply pipe, and the desulfurization chamber is also provided. A desulfurization bed temperature detector is installed in the The agent discharge member is provided with a drive device for adjusting the height of its inflow port, and the desulfurization agent is based on the detected flow rate value of the flow rate detector of the primary air and the secondary air or the detected temperature value of the desulfurization bed temperature detector. A control device for adjusting and driving the discharge member drive device is provided, and the height of the desulfurization agent discharge member is adjusted by this control device to change the height of the desulfurization bed to change the desulfurization bed desulfurization agent and the desulfurization chamber heat transfer pipe. A fluidized bed boiler characterized in that a desulfurization bed is adjusted to a temperature suitable for desulfurization by changing a contact area or a contact frequency.
JP63082302A 1988-04-05 1988-04-05 Fluidized bed boiler Expired - Lifetime JPH0743095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63082302A JPH0743095B2 (en) 1988-04-05 1988-04-05 Fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63082302A JPH0743095B2 (en) 1988-04-05 1988-04-05 Fluidized bed boiler

Publications (2)

Publication Number Publication Date
JPH01256707A JPH01256707A (en) 1989-10-13
JPH0743095B2 true JPH0743095B2 (en) 1995-05-15

Family

ID=13770756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63082302A Expired - Lifetime JPH0743095B2 (en) 1988-04-05 1988-04-05 Fluidized bed boiler

Country Status (1)

Country Link
JP (1) JPH0743095B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110017477B (en) * 2019-04-23 2020-09-01 广东电科院能源技术有限责任公司 Combustion method, device and equipment for circulating fluidized bed

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0238171Y2 (en) * 1985-07-15 1990-10-16
JPS6217501A (en) * 1985-07-15 1987-01-26 宇部興産株式会社 Layer-height regulator in fluidized bed boiler

Also Published As

Publication number Publication date
JPH01256707A (en) 1989-10-13

Similar Documents

Publication Publication Date Title
KR100355505B1 (en) Operating method of fluidized-bed incinerator and the incinerator
JPS6217123B2 (en)
US4709663A (en) Flow control device for solid particulate material
CN1014089B (en) Thermal reactor
EP0047159B1 (en) Fluidised bed
JP2002286216A (en) Operation method for circulated fluidized bed
JP3749144B2 (en) Water-cooled stoker
JPH0743095B2 (en) Fluidized bed boiler
KR950007013B1 (en) Internal circulation type fluidized bed boiler & method of controlling same
EP0028458A2 (en) Fluidised-bed boilers
JP3034865B1 (en) Method and apparatus for recovering heat from a fluidized bed
US4176623A (en) Fluidized bed boiler
JP3800099B2 (en) Circulating fluidized bed furnace and circulating fluidized bed boiler
EP0722067A2 (en) Heat recovery apparatus by fluidized bed
CN100353116C (en) Cinder cooler for regulating hearth temperature of circulating fluidized bed boiler and its regulation method
CN1086300A (en) The horizontal cyclone separator that is used for fluidized-bed reactor
JPS62252808A (en) Fluidized bed combustion device
JPH0120490Y2 (en)
JP2795957B2 (en) Combustion control method for waste incinerator
JPS6129601A (en) Fluidized-bed combustion apparatus
JPH07151308A (en) Fluidizing air injector
JP2902625B1 (en) Fluid bed furnace heat recovery method and apparatus
JP3095815B2 (en) Fluidized bed combustion device
JPS604080Y2 (en) Layer height adjustment device
JPS58148301A (en) Fluidized-bed boiler