JPH0742539B2 - High strength / high ductility tungsten alloy and method for producing the same - Google Patents

High strength / high ductility tungsten alloy and method for producing the same

Info

Publication number
JPH0742539B2
JPH0742539B2 JP29826692A JP29826692A JPH0742539B2 JP H0742539 B2 JPH0742539 B2 JP H0742539B2 JP 29826692 A JP29826692 A JP 29826692A JP 29826692 A JP29826692 A JP 29826692A JP H0742539 B2 JPH0742539 B2 JP H0742539B2
Authority
JP
Japan
Prior art keywords
alloy
temperature
tungsten
liquid phase
grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29826692A
Other languages
Japanese (ja)
Other versions
JPH06271970A (en
Inventor
信義 岡登
將雄 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP29826692A priority Critical patent/JPH0742539B2/en
Publication of JPH06271970A publication Critical patent/JPH06271970A/en
Publication of JPH0742539B2 publication Critical patent/JPH0742539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、防護物を貫通する発射
体(弾心材)や高速回転体などに有用な高強度・高延性
タングステン(以下W)焼結合金及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength, high-ductility tungsten (hereinafter W) sintered alloy useful for a projectile (core material) penetrating a protective object and a high-speed rotating body, and a method for producing the same.

【0002】[0002]

【従来の技術】弾心材は、高い引張り強さ、密度、硬さ
を有し、しかも防護物を完全に貫通する前に破壊しない
ように十分な延性、靱性を有していなければならない。
また、高速回転体は、高い引張り強さ、ヤング率並びに
高速回転時に破壊しないよう十分な靱性を有していなけ
ればならない。W焼結合金はそのような特性を有する材
料の1つである。
2. Description of the Prior Art A core material must have high tensile strength, density and hardness, and must have sufficient ductility and toughness so as not to break before completely penetrating a protective body.
Further, the high-speed rotating body must have high tensile strength, Young's modulus and sufficient toughness so as not to be broken at high speed rotation. W sintered alloy is one of the materials having such characteristics.

【0003】W焼結合金の上記諸特性を向上させるた
め、従来より多くの研究開発が行なわれてきた。特公昭
63−30391には、W粒の粒径が40〜100μm
であり、そのW粒内にニツケル(以下Ni)鉄(以下F
e)を所定量以上固溶しており、かつ、合金中の酸素と
炭素の量が所定量以下に制限されているW焼結合金が開
示されている。この合金は、伸びと衝撃値が高い高靱性
のW合金であるとされている。
In order to improve the above-mentioned various properties of the W sintered alloy, much research and development has been carried out in the past. In Japanese Examined Patent Publication No. 63-30391, the W grain size is 40 to 100 μm.
And nickel (hereinafter Ni) iron (hereinafter F)
Disclosed is a W sintered alloy in which e) is dissolved in a predetermined amount or more and the amount of oxygen and carbon in the alloy is limited to a predetermined amount or less. This alloy is said to be a high toughness W alloy with high elongation and impact value.

【0004】特開平3−173738には、W粒の粒径
が40μm 以下であり、合金内に窒素を所定量固溶した
W焼結合金が開示されている。この合金においては、従
来よりも延性と強度が共に向上したとされている。
Japanese Unexamined Patent Publication (Kokai) No. 3-173738 discloses a W sintered alloy in which the grain size of W grains is 40 μm or less and a predetermined amount of nitrogen is solid-dissolved in the alloy. It is said that this alloy has improved both ductility and strength as compared with conventional ones.

【0005】しかしながら、従来のようなW粒径や粒内
固溶元素の制御のみによっては、合金の伸びと靱性を同
時に向上させることには限界があった。というのは、一
般的には、W焼結合金の強度を高めるにはW粒を小さく
することが有効であるが、そうすると十分な合金の延性
が得られなくなるとされていたのである。W粒径を小さ
くするためには、W粒の成長を押さえるために、液相焼
結の温度を低下させるか焼結時間を短くする必要があ
る。しかし、W粒の成長が不十分になると、ミクロ組織
的には、W粒は十分に球形とはならず、そのため隣接す
るW粒同士の接触面積が増えることとなる。W粒同士の
接触している粒界面は、ミクロ組織上最も脆弱な部分で
あるため、その面の増加がW合金の延性劣化をもたらす
ものと考えられていた。
However, there is a limit to simultaneously improving the elongation and toughness of the alloy only by controlling the W grain size and the intragranular solid solution element as in the prior art. It is generally said that it is effective to reduce the W grains in order to increase the strength of the W sintered alloy, but if so, sufficient ductility of the alloy cannot be obtained. In order to reduce the W grain size, it is necessary to lower the temperature of liquid phase sintering or shorten the sintering time in order to suppress the growth of W grains. However, if the growth of W grains is insufficient, the W grains are not sufficiently spherical in terms of microstructure, and therefore the contact area between adjacent W grains increases. Since the grain interface where W grains are in contact with each other is the weakest part in terms of microstructure, it has been considered that an increase in the surface causes ductility deterioration of the W alloy.

【0006】また、従来のW粒内固溶元素の制御により
W合金の特性を改善する方法には、特別な原料粉末の前
処理や焼結雰囲気のコントロールが必要であった。その
ような作業は手間のかかるものであり、また、製品製造
工程中での管理要因が増えて不良品発生のおそれもあっ
た。
Further, in the conventional method for improving the characteristics of the W alloy by controlling the solid solution element in the W grain, special pretreatment of the raw material powder and control of the sintering atmosphere are required. Such work is troublesome, and there is a risk of defective products due to increased control factors during the product manufacturing process.

【0007】[0007]

【発明が解決しようとする課題】本発明は、高い強度と
延性を兼ね備えており、シンプルな製造工程で作ること
のできるW焼結合金を提供することを目的とする。ま
た、作業の手間がかからず、微妙な工程管理要因の無い
高強度・高延性W合金の製造方法を提供することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a W sintered alloy which has both high strength and ductility and can be manufactured by a simple manufacturing process. Another object of the present invention is to provide a method for producing a high-strength / high-ductility W alloy that requires no labor and is free from delicate process control factors.

【0008】[0008]

【課題を解決するための手段】本発明者らは、W合金の
ミクロ組織上におけるW粒の粒径粗大化を防ぎつつ、か
つ、W粒−W粒界面の接触率を小さくすることができれ
ば、強度・延性ともに高いW合金を生み出すことができ
るとの着想を抱いた。この着想を実現すべく、合金ミク
ロ組織の改善と焼結条件等製造条件の開発を重ねた結
果、本発明を完成するに至った。
[Means for Solving the Problems] If the present inventors can prevent the coarsening of the grain size of W grains on the microstructure of W alloy and reduce the contact ratio at the W grain-W grain interface. The idea was that a W alloy with high strength and ductility could be produced. In order to realize this idea, as a result of repeatedly improving the alloy microstructure and developing manufacturing conditions such as sintering conditions, the present invention has been completed.

【0009】すなわち、本発明のW焼結合金は、タング
ステン85〜98重量%、及び、残部主成分として含有
重量比5:5から8:2の範囲のニッケルと鉄とを含有
する焼結合金であって;タングステン粒の粒径が平均4
0μm 以下であり、かつ、タングステン粒の接触率の平
均値が、接触率<0.056×W含有重量%−5.0
1、の条件を満たしていることを特徴とする。
That is, the W sintered alloy of the present invention is a sintered alloy containing 85 to 98% by weight of tungsten and the balance of nickel and iron in the weight ratio of 5: 5 to 8: 2 as the main components. And the average grain size of the tungsten grains is 4
The average value of the contact ratio of the tungsten particles is 0 μm or less, and the contact ratio is <0.056 × W content weight% −5.0.
It is characterized in that the condition 1 is satisfied.

【0010】また、本発明のW焼結合金の製造方法は、
タングステン85〜98重量%、及び、残部主成分とし
て含有重量比5:5から8:2の範囲のニッケルと鉄と
を含有する金属混合粉末を圧縮成形して圧粉体を得、該
圧粉体をニッケル鉄合金の液相発生温度以上に加熱して
焼結するタングステン合金の製造方法において;焼結時
保持温度を1500℃以上とし、液相生成温度以上に圧
粉体を保つ間の、(燒結温度−液相生成温度)×時間の
積分値を1000〜3000℃・min とし、保持後に焼
結時最高温度から液相生成温度まで冷却する冷却速度を
8℃/min以上とすることを特徴とする。
The method for producing a W sintered alloy of the present invention is
A metal powder mixture containing 85 to 98% by weight of tungsten and the balance of nickel and iron in a weight ratio of 5: 5 to 8: 2 as a main component is compression-molded to obtain a powder compact. In a method for producing a tungsten alloy, which comprises heating a body to a temperature above a liquid phase generation temperature of a nickel-iron alloy and sintering it; while maintaining a sintering temperature at 1500 ° C. or higher and maintaining a green compact at a liquid phase generation temperature or higher, (Sintering temperature-Liquid phase formation temperature) x integrated value of time is 1000 to 3000 ° C · min, and the cooling rate for cooling from the maximum temperature during sintering to the liquid phase formation temperature after holding is set to 8 ° C / min or more. Characterize.

【0011】本発明のW焼結合金の主組成は、Wが85
〜98重量%(以下w%)で残部がNiとFeである。
W含有量は所定の高密度を保つために85%以上が必要
である。また、W焼結合金を製造する際の液相焼結工程
において完全に緻密化する液相量を確保するため98%
以下であることが必要である。NiとFeの含有重量比
率は、液相生成温度を下げて効果的な液相焼結をするた
めにNi:Fe=5:5から8:2の範囲内にとする。
更にその他の成分として必要に応じコバルトを5%まで
添加することができる。
The main composition of the W sintered alloy of the present invention has a W content of 85.
.About.98% by weight (hereinafter, w%) and the balance is Ni and Fe.
The W content needs to be 85% or more in order to maintain a predetermined high density. Further, 98% in order to ensure the amount of liquid phase that is completely densified in the liquid phase sintering step when manufacturing the W sintered alloy.
It must be: The content ratio by weight of Ni and Fe is set within the range of Ni: Fe = 5: 5 to 8: 2 in order to lower the liquid phase formation temperature and perform effective liquid phase sintering.
If necessary, cobalt can be added up to 5% as another component.

【0012】上記組成比の混合粉末を圧縮成形後、Ni
・Feが溶融する1430℃以上に加熱することにより
圧粉体は液相焼結される。液相焼結後のミクロ組織は球
状のW粒をNi−FeそれにWが固溶したマトリックス
相が取囲んだいわゆる重合金組織となる。W粒中には微
量のNi、Feガス成分等が固溶されていてもよい。
After compression molding of the mixed powder having the above composition ratio,
-The green compact is liquid-phase sintered by heating it to 1430 ° C or higher at which Fe melts. After the liquid phase sintering, the microstructure becomes a so-called heavy metal structure in which spherical W particles are surrounded by Ni-Fe and a matrix phase in which W is solid-dissolved. A trace amount of Ni, Fe gas components, etc. may be solid-dissolved in the W grains.

【0013】本発明のW合金においては、ミクロ組織に
おけるW粒の平均を40μm 以下とするとともに、W粒
の接触率の平均を次式で表わされる範囲内とする。 0.056x−5.01>y X:W含有量(%)
y:接触率 W粒径が40μm を超えると十分な合金強度が得られな
い。粒径の下限は特にないが10μm 以下ではW粒の接
触率の上限を超えてしまい延性が劣化する場合もありう
る。接触率が関係式の範囲より大きくなると伸びの劣化
が著しい。ここで、W粒の粒径の平均とは、切片長測定
法による平均値をいう。
In the W alloy of the present invention, the average W grain in the microstructure is 40 μm or less, and the average contact ratio of the W grains is within the range represented by the following equation. 0.056x-5.01> y X: W content (%)
y: Contact rate If the W particle size exceeds 40 μm, sufficient alloy strength cannot be obtained. The lower limit of the grain size is not particularly limited, but if it is 10 μm or less, the upper limit of the contact rate of W grains may be exceeded and the ductility may be deteriorated. When the contact rate exceeds the range of the relational expression, the elongation deteriorates significantly. Here, the average grain size of W grains refers to the average value obtained by the section length measuring method.

【0014】W粒の接触率は、W合金ミクロ組織中のW
粒とW粒同士の界面の存在割合を示す指標である。W焼
結合金のミクロ組織の界面には、W粒同士の界面
(CWW)と、W粒と液相マトリックス相との界面
(CWL)の2種類がある。図1に示すように、合金のミ
クロ組織観察面に任意の線を引き、その線と粒界との交
点がCww、CWLのどちらになっているかを調べる。接触
率は以下の式で求められる。 接触率=(CWWの数)÷全界面数 =2CWW÷(2Cww+CWL) ここでCWWが2倍されているのは、接触している2個の
W粒のそれぞれに1個ずつ界面があるという考えに基づ
く。
The contact ratio of W grains is determined by the W content in the W alloy microstructure.
It is an index showing the existence ratio of the interface between the grains and the W grains. There are two types of interfaces of the microstructure of the W sintered alloy: an interface between W grains (C WW ) and an interface between W grains and a liquid matrix phase (C WL ). As shown in FIG. 1, an arbitrary line is drawn on the surface of the alloy where the microstructure is observed, and it is investigated whether the intersection of the line and the grain boundary is C ww or C WL . The contact rate is calculated by the following formula. Contact rate = (number of C WW ) ÷ total number of interfaces = 2C WW ÷ (2C ww + C WL ), where C WW is doubled, one for each of the two W particles in contact. Each is based on the idea that there is an interface.

【0015】W粒の接触率の平均値は、400倍倍率の
光学顕微鏡写真において、10μm間隔で長さ250μm
の線を50本平行に引き、その50本の接触率の平均
値を求めることによって得る。
The average value of the contact ratio of W particles is 250 μm in length at 10 μm intervals in an optical microscope photograph at 400 × magnification.
50 lines are drawn in parallel and the average value of the contact ratio of the 50 lines is obtained.

【0016】上述のミクロ組織を得るには、W合金の液
相焼結工程を次のように制御する。まず液相焼結時の保
持温度を1500℃以上とし、(燒結温度−液相生成温
度)×時間の積分値が1000〜3000℃・minの範囲
に入るよう昇温、保持、冷却する。保持後の冷却過程に
おいては、保持温度から液相生成温度(1430℃前
後)までを8℃/min以上の冷却速度で冷却する。
In order to obtain the above-mentioned microstructure, the liquid phase sintering process of W alloy is controlled as follows. First, the holding temperature during liquid phase sintering is set to 1500 ° C. or higher, and the temperature is raised, held, and cooled so that the integrated value of (sintering temperature−liquid phase formation temperature) × time falls within the range of 1000 to 3000 ° C.min. In the cooling process after holding, the temperature from the holding temperature to the liquid phase formation temperature (around 1430 ° C.) is cooled at a cooling rate of 8 ° C./min or more.

【0017】本発明のW合金の焼結方法の第一の特徴は
焼結温度が高いということである。焼結温度が高くなる
と、液相焼結時には溶融状態にあるマトリックス相とW
粒との界面エネルギーが低下するため、W粒とW粒の接
触部が作る角度が大きくなり、それによってW粒同士の
接触率を小さくすることができる。その結果、W焼結合
金中で最も脆弱なW粒界面を減らすことができ、同合金
の延性を改善することができる。
The first feature of the W alloy sintering method of the present invention is that the sintering temperature is high. When the sintering temperature becomes high, the matrix phase in the molten state and the W
Since the interfacial energy with the grains is lowered, the angle formed by the contact portion between the W grains becomes large, and thereby the contact rate between the W grains can be reduced. As a result, the weakest W grain interface in the W sintered alloy can be reduced, and the ductility of the alloy can be improved.

【0018】第二の特徴は、液相生成温度以上の高温に
合金を保持する間に起こるW粒の粗大化を抑制するた
め、(燒結温度−液相生成温度)×時間の値を一定範囲
内にコントロールしたことである。これによってW粒の
粗大化に伴う強度・延性の低下を防止することができ
る。
The second characteristic is to suppress the coarsening of W grains which occurs during holding the alloy at a temperature higher than the liquidus formation temperature, so that the value of (sintering temperature-liquidus formation temperature) × time is within a certain range. That is the control within. As a result, it is possible to prevent the strength and ductility from being lowered due to the coarsening of W grains.

【0019】保持後に保持温度から液相生成温度まで冷
却する速度を8/min以上とするのは、冷却速度を速める
ことによって高温状態の組織をそのままの状態で固めて
しまうためである。なお、昇温速度については、極端に
遅い速度とすると昇温中にW粒が粗大化してしまうの
で、ある程度速い(例えば8℃/min以上)ほうが好まし
い。
The reason why the cooling rate from the holding temperature to the liquid phase formation temperature after the holding is set to 8 / min or more is that the high temperature structure is solidified as it is by increasing the cooling rate. It should be noted that if the temperature raising rate is extremely slow, the W particles become coarse during the temperature raising, so it is preferable that the rate is relatively high (for example, 8 ° C./min or more).

【0020】[0020]

【実施例】原料粉末として水素還元タングステン粉、カ
ーボニルニツケル粉、カーボニル鉄粉を用い、V型混合
機にて表1に示す組成に混合した。混合粉末を直径20
mm、長さ140mmのゴム型に充填して冷間静水圧成形機
を用いて圧粉した。圧粉体を水素焼結炉に入れ、100
0℃×1hrの還元処理および1350℃×1hrの予備焼
結をほどこした。その後昇温速度を5℃/min〜25℃/m
inとし、焼結温度である1450〜1650℃まで昇温
し1min 〜40min 保持し、その後の冷却速度を1℃/m
in〜25℃/minに変化させて焼結して実施例及び比較例
のW合金焼結体を得た。焼結後、脱H2 処理を目的とし
て1150℃×2hrの真空熱処理を行なった。本実施例
における液相生成温度は1430℃であった。表1に
は、本実験の合金の焼結条件と、得られた合金のミクロ
組織及び引張試験の結果を示す。
Example Hydrogen-reduced tungsten powder, carbonyl nickel powder, and carbonyl iron powder were used as raw material powders, and mixed with a V-type mixer to have the composition shown in Table 1. Diameter of mixed powder 20
It was filled in a rubber mold having a length of 140 mm and a length of 140 mm, and was pressed using a cold isostatic press. Put the green compact in the hydrogen sintering furnace and
A reduction treatment of 0 ° C. × 1 hr and a pre-sintering of 1350 ° C. × 1 hr were performed. After that, the temperature rising rate is 5 ° C / min to 25 ° C / m
In, the temperature was raised to 1450 to 1650 ° C, which is the sintering temperature, and held for 1 min to 40 min, and then the cooling rate was 1 ° C / m.
The temperature was changed to in to 25 ° C / min and sintering was performed to obtain W alloy sintered bodies of Examples and Comparative Examples. After sintering, vacuum heat treatment was performed at 1150 ° C. for 2 hours for the purpose of H 2 removal treatment. The liquid phase production temperature in this example was 1430 ° C. Table 1 shows the sintering conditions of the alloy of this experiment, the microstructure of the obtained alloy and the result of the tensile test.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例(A)及び比較例(B)に係るW焼
結合金のミクロ組織の顕微鏡写真を図2に示す。実施例
(A)では、W粒径が34μm と小さいのにもかかわら
ず、W粒径の周囲に液相がよく回り込んでおり、W粒−
W粒界面は少なくなっている。実施例及び比較例の合金
の引張強さと延びの関係を示すグラフを図3に示す。こ
のグラフから明らかなように本発明実施例のW合金は、
引張強さと延びのバランスが比較例の合金として著しく
向上している。
FIG. 2 shows micrographs of the microstructures of the W sintered alloys of Example (A) and Comparative Example (B). In Example (A), although the W particle size was as small as 34 μm, the liquid phase was well wrapped around the W particle size.
The W grain interface is reduced. A graph showing the relationship between tensile strength and elongation of the alloys of Examples and Comparative Examples is shown in FIG. As is clear from this graph, the W alloys of the examples of the present invention are
The balance between tensile strength and elongation is remarkably improved as the alloy of the comparative example.

【0023】[0023]

【発明の効果】以上の説明から明らかなように、本発明
は以下の効果を発揮する。 W焼結の合金のW粒の粒径が小さく、かつ、脆弱な
W粒界面も少ないので、同合金の強度と延性がバランス
よく向上する。 焼結時の温度制御という比較的シンプルな製造条件
の改良によって、高い強度と延性を兼ね備えたW焼結合
金を製造することができる。 、の結果、低コスト、高品質の高強度・高靱性
W焼結合金を提供できる。
As is apparent from the above description, the present invention exhibits the following effects. Since the W grain size of the W sintered alloy is small and the brittle W grain interface is small, the strength and ductility of the alloy are improved in a well-balanced manner. By improving the relatively simple manufacturing condition of controlling the temperature during sintering, a W sintered alloy having both high strength and ductility can be manufactured. As a result, it is possible to provide a low-cost, high-quality, high-strength / high-toughness W sintered alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】W粒−W粒の接触率を測定する方法を表す図で
ある。
FIG. 1 is a diagram illustrating a method of measuring a W grain-W grain contact rate.

【図2】本発明の実施例(A)及び比較例(B)に係る
W焼結合金のミクロ組織を示す顕微鏡写真である。
FIG. 2 is a micrograph showing a microstructure of a W sintered alloy according to Example (A) and Comparative Example (B) of the present invention.

【図3】本発明の実施例及び比較例に係るW焼結合金の
引張特性を示すグラフである。
FIG. 3 is a graph showing tensile properties of W sintered alloys according to Examples and Comparative Examples of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 タングステン85〜98重量%、及び、
残部主成分として含有重量比5:5から8:2の範囲の
ニッケルと鉄とを含有する焼結合金であって;タングス
テン粒の粒径が平均40μm 以下であり、かつ、タング
ステン粒の接触率の平均値が、接触率<0.056×W
含有重量%−5.01、の条件を満たしていることを特
徴とする高強度・高延性タングステン合金。
1. 85 to 98% by weight of tungsten, and
A sintered alloy containing nickel and iron in a weight ratio of 5: 5 to 8: 2 as the main constituent, the grain size of tungsten grains being 40 μm or less on average, and the contact rate of tungsten grains. Average value of contact rate <0.056 × W
A high-strength, high-ductility tungsten alloy, characterized by satisfying the condition of content weight% -5.01.
【請求項2】 タングステン85〜98重量%、及び、
残部主成分として含有重量比5:5から8:2の範囲の
ニッケルと鉄とを含有する金属混合粉末を圧縮成形して
圧粉体を得、該圧粉体をニッケル鉄合金の液相発生温度
以上に加熱して焼結するタングステン合金の製造方法に
おいて;焼結時最高温度を1500℃以上とし、 液相生成温度以上に圧粉体を保つ間の、(燒結温度−液
相生成温度)×時間の積分値を1000〜3000℃・
min とし、 保持後に焼結時最高温度から液相生成温度まで冷却する
冷却速度を8℃/min以上とすることを特徴とする高強
度・高延性タングステン合金の製造方法。
2. 85 to 98% by weight of tungsten, and
A metal powder mixture containing nickel and iron in a weight ratio of 5: 5 to 8: 2 as the main component is compression molded to obtain a green compact, and the green compact is used to generate a liquid phase of a nickel-iron alloy. In a method for producing a tungsten alloy which is heated to a temperature or higher and is sintered; the maximum temperature during sintering is 1500 ° C. or higher, and while the green compact is kept above the liquid phase formation temperature (sintering temperature-liquid phase formation temperature) × The integrated value of time is 1000 to 3000 ° C.
The method for producing a high-strength, high-ductility tungsten alloy is characterized in that the cooling rate after cooling is from the maximum temperature during sintering to the liquid phase formation temperature after holding is 8 ° C / min or more.
JP29826692A 1992-10-12 1992-10-12 High strength / high ductility tungsten alloy and method for producing the same Expired - Lifetime JPH0742539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29826692A JPH0742539B2 (en) 1992-10-12 1992-10-12 High strength / high ductility tungsten alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29826692A JPH0742539B2 (en) 1992-10-12 1992-10-12 High strength / high ductility tungsten alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06271970A JPH06271970A (en) 1994-09-27
JPH0742539B2 true JPH0742539B2 (en) 1995-05-10

Family

ID=17857412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29826692A Expired - Lifetime JPH0742539B2 (en) 1992-10-12 1992-10-12 High strength / high ductility tungsten alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0742539B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959334A (en) * 2022-06-10 2022-08-30 西安华力装备科技有限公司 Preparation method for improving hardness of tungsten alloy material

Also Published As

Publication number Publication date
JPH06271970A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
EP3611282B1 (en) Cobalt based alloy powder
CN108060322B (en) Preparation method of hard high-entropy alloy composite material
EP0804627B1 (en) Oxidation resistant molybdenum alloy
US4923532A (en) Heat treatment for aluminum-lithium based metal matrix composites
JP4080013B2 (en) High strength and high toughness aluminum alloy and method for producing the same
US3920489A (en) Method of making superalloy bodies
CN112391556B (en) High-strength high-conductivity Cu-Cr-Nb alloy reinforced by double-peak grain size and double-scale nanophase
JPS6283402A (en) Dispersed reinforced composite alloy powder and its production
JP2002256400A (en) Highly corrosion resistant and high strength austenitic stainless steel and production method therefor
EP4083244A1 (en) Heat-resistant powdered aluminium material
CN108277412A (en) A kind of nanometer tungsten based alloy material and preparation method thereof
CN106435318B (en) A kind of vanadium alloy of high-strength and high ductility and preparation method thereof
JP3006120B2 (en) Ti-Al alloy and method for producing the same
US20080017278A1 (en) High Melting Point Metal Based Alloy Material Lexhibiting High Strength and High Recrystallization Temperature and Method for Production Thereof
KR20100010181A (en) Metal matrix composite with atom-infiltrated porous-materials/nano-fibers and the casting method thereof
US11919075B2 (en) Method for manufacturing oxide dispersion strengthened alloy using organic/inorganic mixed composition as raw material
US3472709A (en) Method of producing refractory composites containing tantalum carbide,hafnium carbide,and hafnium boride
JP4281857B2 (en) Sintered tool steel and manufacturing method thereof
JPH0742539B2 (en) High strength / high ductility tungsten alloy and method for producing the same
US4908182A (en) Rapidly solidified high strength, ductile dispersion-hardened tungsten-rich alloys
JPS62196306A (en) Production of double layer tungsten alloy
JPH05269812A (en) Composite cylinder for high-temperature and high-pressure molding
JP3017794B2 (en) Composite cylinder with lining layer made of corrosion resistant and wear resistant sintered alloy
CN110835703A (en) Single-phase tungsten alloy and preparation method thereof
US3676084A (en) Refractory metal base alloy composites