JPH0742482B2 - Light molding method - Google Patents

Light molding method

Info

Publication number
JPH0742482B2
JPH0742482B2 JP2210271A JP21027190A JPH0742482B2 JP H0742482 B2 JPH0742482 B2 JP H0742482B2 JP 2210271 A JP2210271 A JP 2210271A JP 21027190 A JP21027190 A JP 21027190A JP H0742482 B2 JPH0742482 B2 JP H0742482B2
Authority
JP
Japan
Prior art keywords
powder
mixed
resin
metal
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2210271A
Other languages
Japanese (ja)
Other versions
JPH0499203A (en
Inventor
淳 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2210271A priority Critical patent/JPH0742482B2/en
Publication of JPH0499203A publication Critical patent/JPH0499203A/en
Publication of JPH0742482B2 publication Critical patent/JPH0742482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/12Formation of a green body by photopolymerisation, e.g. stereolithography [SLA] or digital light processing [DLP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光硬化性樹脂を用いた光成形技術により金属ま
たはセラミック粉末もしくは金属とセラミックの混合粉
末よりなる焼結成形体の製造方法に係り、特に金型等の
型を用いることなく金属やセラミック粉末またはその混
合物を立体成形する方法および成分配合比を変化させた
機能傾斜材料等を作製する方法に関する。
The present invention relates to a method for producing a sintered compact comprising metal or ceramic powder or a mixed powder of metal and ceramic by an optical molding technique using a photocurable resin, In particular, the present invention relates to a method for three-dimensionally molding a metal or ceramic powder or a mixture thereof without using a mold such as a mold, and a method for producing a functionally graded material or the like in which the component mixture ratio is changed.

〔従来の技術〕[Conventional technology]

従来の光硬化性樹脂を用いた光成形技術は、光硬化性樹
脂を主成分とした組成物に光を照射して所定形状の成形
品を製造する方法が主であり、その組成からいって機械
的強度および熱的な耐性が不十分であるために、専らモ
デル(模型)などの作製に利用されていた〔化学便覧、
応用編(日本化学会)、改訂3版、昭和55年3月15日発
行、第799頁から第806頁(丸善)〕。
The conventional photo-molding technology using a photo-curable resin is mainly a method of irradiating a composition containing a photo-curable resin as a main component with light to produce a molded article having a predetermined shape. Due to its insufficient mechanical strength and thermal resistance, it was exclusively used for making models (models, etc.)
Application (Chemical Society of Japan), 3rd revised edition, published March 15, 1980, pages 799 to 806 (Maruzen)].

また、従来の金属粉末、セラミック粉末、またはその混
合粉末の成形技術は、金型をベースとした成形技術が主
流であり、そのため高価な金型の製作、あるいは製品の
種類変更時における金型交換などの煩雑な作業も必要と
なり、多品種少量生産には適さないという欠点があった
〔精密工作便覧、第11版、昭和61年10月15日発行、第17
45頁から1750頁(コロナ社)〕。
In addition, the conventional molding technology for metal powder, ceramic powder, or mixed powder thereof is mainly based on a mold, and therefore, expensive molds are manufactured or molds are changed when changing product types. However, complicated work such as the above was also required, and it was not suitable for high-mix low-volume production [Precision Handbook, 11th edition, issued October 15, 1986, 17th
Pages 45 to 1750 (Corona).

さらに、例えば成分配合比を段階的に変化させた、いわ
ゆる機能傾斜材料などの製造方法において、従来はプラ
ズマ溶射等〔精密工作便覧、第11版、昭和61年10月15日
発行、第1344頁から第1345頁(コロナ社)〕により吹き
付ける材料の成分を変化させたり、あるいはイオンプレ
ーティング法等により金属表面に他の原子を打ち込む方
法により作製されていたため、得られる機能傾斜材料の
面積が小さく、また作製に長時間かかるという問題があ
った。
Furthermore, for example, in a method for producing a so-called functionally graded material in which the component mixture ratio is changed stepwise, conventionally, plasma spraying or the like [Precision Work Handbook, 11th edition, issued October 15, 1986, p. 1344] From 1345 to 1345 (Corona Corp.)], the area of the functionally gradient material obtained is small because it was prepared by changing the composition of the material to be sprayed or by implanting other atoms on the metal surface by the ion plating method or the like. Moreover, there is a problem that it takes a long time to manufacture.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

上述したごとく、従来の金属粉末やセラミック粉末より
なる成形体を製造する方法は、金型をベースにした成形
技術であるため多品種少量生産には適さないという問題
があり、また機能傾斜材料の製造においては、得られる
材料の面積が小さく、かつ作製に長時間必要とするなど
の問題があった。
As described above, the conventional method for producing a molded body made of metal powder or ceramic powder has a problem that it is not suitable for high-mix low-volume production because it is a mold-based molding technology. In the production, there are problems that the area of the obtained material is small and the production requires a long time.

本発明の目的は、上記従来技術における問題点を解消す
るものであって、本発明の第1の目的とするところは、
金属粉末、セラミック粉末、またはその混合粉末よりな
る焼結成形体を製造する方法において、従来技術の主流
である金型などを用いることなく、光硬化性樹脂を用い
た光成形技術により容易に製造することができる多品種
少量生産に適した光成形法を提供することにあり、第2
の目的とするところは、所定の基板上に成分配合比を変
化させた機能傾斜材料を成形する方法において、光硬化
性樹脂を用いた光成形技術により連続的に積層化し、面
積の大きい大型の機能傾斜材料を効率的に製造する方法
を提供することにある。
An object of the present invention is to solve the above problems in the prior art, and the first object of the present invention is to:
A method for producing a sintered compact made of a metal powder, a ceramic powder, or a mixed powder thereof, which can be easily produced by a photoforming technique using a photocurable resin without using a mold which is a mainstream of conventional techniques. To provide an optical molding method suitable for high-mix low-volume production that can
The purpose of the method is to form a functionally graded material with a different component mixture ratio on a predetermined substrate by a photo-molding technique using a photo-curable resin, which is continuously laminated to produce a large area with a large area. An object of the present invention is to provide a method for efficiently manufacturing a functionally graded material.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明の第1の目的である光成形法を達成するために、
以下に示す製造工程を実施することにより、所望する金
属粉末、セラミック粉末、もしくはその混合粉末よりな
る焼結成形体を得ることができる。
To achieve the first object of the present invention, the photoforming method,
By carrying out the following manufacturing steps, it is possible to obtain a sintered compact made of a desired metal powder, ceramic powder, or a mixed powder thereof.

(1)例えば、鉄、銅、アルミニウムおよびそれをベー
スとした合金等よりなる金属粉末、炭化ケイ素、窒化ケ
イ素、アルミナ等のセラミック粉末の単独もしくはそれ
らの混合粉末、または必要に応じて樹脂、パラフィン、
低融点金属粉末、コバルト粉末等を含むバインダ物質と
共に、液状の光硬化性樹脂中に混合して、粉末混合光硬
化性樹脂液を調製する工程。
(1) For example, a metal powder made of iron, copper, aluminum and an alloy based on it, a ceramic powder such as silicon carbide, silicon nitride, alumina, etc., alone or as a mixed powder thereof, or if necessary, a resin or paraffin. ,
A step of preparing a powder-mixed photocurable resin liquid by mixing it in a liquid photocurable resin together with a binder material containing a low melting point metal powder, cobalt powder, and the like.

(2)上記粉末混合光硬化性樹脂液を、例えば基板上に
塗布し、設定形状の照射面を持つようにX線、レーザ、
紫外線あるいは可視光線等の電磁波を照射して光硬化性
樹脂を硬化させる操作を少なくとも1回以上繰り返して
行い、粉末混合樹脂層を積層した立体成形体を形成する
工程、または上記粉末混合光硬化性樹脂液中に設置した
移動ステージの表面を、上記樹脂液の表面より所定の深
さ下部に位置させて移動ステージの表面に所定厚さの上
記樹脂液が形成されるようにした後、所定形状の照射面
を持つように電磁波を照射して上記樹脂液を硬化させ、
ついで段階的に移動ステージを上記樹脂液中に降下させ
て該ステージ表面に所定厚さの上記樹脂液を形成しなが
ら上記電磁波を照射して、順次光硬化性樹脂を積層硬化
させて立体成形体を形成する工程。
(2) The above powder-mixed photo-curable resin liquid is applied onto, for example, a substrate, and X-ray, laser, and so on so as to have an irradiation surface of a set shape
The step of irradiating an electromagnetic wave such as an ultraviolet ray or a visible ray to cure the photocurable resin is repeated at least once to form a three-dimensional molded body in which a powder mixed resin layer is laminated, or the above powder mixed photocurable The surface of the moving stage installed in the resin liquid is positioned below the surface of the resin liquid by a predetermined depth so that the resin liquid having a predetermined thickness is formed on the surface of the moving liquid, and then the predetermined shape is obtained. The resin solution is cured by irradiating electromagnetic waves so that it has an irradiation surface of
Then, the moving stage is lowered stepwise into the resin liquid to form the resin liquid having a predetermined thickness on the surface of the stage, and the electromagnetic wave is irradiated to successively laminate and cure the photocurable resin to form a three-dimensional molded body. Forming step.

(3)高温の雰囲気中で加熱して、上記の硬化させた粉
末混合光硬化性樹脂からなる立体成形体中の樹脂成分を
燃焼させて除去すると共に、含有する粉末同志を結合さ
せ、金属粉末またはセラミック粉末もしくはその混合粉
末よりなる3次元立体形状の焼結成形体を形成する工
程。
(3) Metal powder by heating in a high temperature atmosphere to burn and remove the resin component in the three-dimensional molded body made of the above-mentioned cured powder-mixed photo-curable resin, and to combine the powders contained therein. Alternatively, a step of forming a three-dimensionally-shaped sintered compact made of ceramic powder or a mixed powder thereof.

本発明の第2の目的である成分配合比を変化させた機能
傾斜材料の光形成法を達成するために、以下に示す製造
工程を実施することにより、所望する金属、セラミック
粉末、もしくはその混合粉末よりなる機能傾斜材料を得
ることができる。
In order to achieve the second object of the present invention, which is a method of forming a functionally graded material with a changed composition ratio, the following manufacturing steps are performed to obtain a desired metal, ceramic powder, or a mixture thereof. A functionally graded material made of powder can be obtained.

(1)金属粉末、セラミック粉末の単独もしくはそれら
の混合粉末、または必要に応じてバインダ物質と共に、
液状の光硬化性樹脂中に混合し、粉末混合光硬化性樹脂
液を調製する工程。
(1) Metal powder, ceramic powder alone or a mixed powder thereof, or together with a binder material, if necessary,
A step of preparing a powder-mixed photocurable resin liquid by mixing it with a liquid photocurable resin.

(2)上記粉末混合光硬化性樹脂液を基板上に所定の厚
さ塗布し、上部から電磁波を照射して光硬化性樹脂を硬
化させる工程。
(2) A step of applying the powder-mixed photocurable resin liquid on a substrate to a predetermined thickness and irradiating an electromagnetic wave from above to cure the photocurable resin.

(3)金属とセラミック粉末の配合比を段階的に変化さ
せながら上記(1)および(2)の工程を繰り返して所
定回数行い成分配合比を変化させた積層構造の樹脂成形
体を形成した後、高温の雰囲気中で加熱して、上記成形
体中の樹脂成分を燃焼させて除去すると共に、含有する
上記粉末同士を結合させ、厚さ方向に金属とセラミック
の配合比分布を変化させた所望形状の機能傾斜焼結成形
体を形成する工程。
(3) After the steps (1) and (2) are repeated while changing the compounding ratio of the metal and the ceramic powder stepwise, the resin compounded body having a laminated structure is formed by changing the compounding ratio of the components a predetermined number of times. , Heating in a high-temperature atmosphere to burn and remove the resin component in the molded body, bond the powders contained therein, and change the mixing ratio distribution of metal and ceramic in the thickness direction. Process of forming a functionally graded sintered compact of shape.

なお、光硬化性樹脂としては、ケイ皮酸類のようなα,
β−不飽和カルボニル化合物よりなる光二量化型、また
は各種ビニルモノマなどよりなる光重合型の感光性樹脂
等が好適に用いられる。
As the photo-curable resin, α, such as cinnamic acid,
A photodimerization type photosensitive resin made of a β-unsaturated carbonyl compound, or a photopolymerization type photosensitive resin made of various vinyl monomers is preferably used.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げ、図面を用いてさらに詳
細に説明する。
Hereinafter, one embodiment of the present invention will be described in more detail with reference to the drawings.

(実施例1) 第1図(a)、(b)、(c)に示す立体形状の成形体
を、第2図に示す構成の装置を用いて作製した。まず、
液状の光硬化性樹脂中に、金属粉末またはセラミック粉
末もしくはその混合粉末を添加して、粉末混合光硬化性
樹脂液9を調製するか、または上記樹脂液にバインダ物
質を加えて粉末混合光硬化性樹脂液9を調製し、これを
タンク8中に充填する。
(Example 1) A three-dimensional molded body shown in Figs. 1 (a), (b), and (c) was produced using the apparatus having the configuration shown in Fig. 2. First,
A metal powder, a ceramic powder, or a mixed powder thereof is added to a liquid photocurable resin to prepare a powder-mixed photocurable resin liquid 9, or a binder substance is added to the resin liquid to powder-mix photocurable resin. A resin solution 9 is prepared and filled in the tank 8.

タンク8中には、段階的に降下移動が可能な構造のステ
ージ7を配設し、これを粉末混合光硬化性樹脂液9の液
面より所定の深さだけ沈めて、ステージ7の上面に、硬
化させる所定の厚さの粉末混合光硬化性樹脂液層〔第1
図(a)〕が形成されるように制御して、上部より電磁
波を、成形しようとする3次元物体のX、Y軸平面投影
形状、つまり輪切り形状の照射面を持つように電磁波を
照射して上記樹脂液層を硬化させた後、成形しようとす
る3次元物体のZ軸方向に上記ステージ7を段階的に降
下して、第1回目の露光硬化層の上部に硬化させる上記
樹脂液層の厚さを制御し、上記所定形状の照射面を持つ
ように電磁波を照射して樹脂液層を硬化させる操作を所
定回数繰り返して行うことにより、成形しようとする3
次元物体の粉末混合樹脂硬化成形体〔第1図(b)〕を
形成することができる。
A stage 7 having a structure capable of gradually descending and moving is disposed in the tank 8, and the stage 7 is submerged by a predetermined depth from the liquid surface of the powder-mixed photocurable resin liquid 9 so that it is placed on the upper surface of the stage 7. , A powder-mixed photocurable resin liquid layer having a predetermined thickness to be cured [first
[Fig. (A)] is controlled so that the electromagnetic wave is radiated from above so that it has an X- and Y-axis plane projection shape of the three-dimensional object to be molded, that is, a circular slice-shaped irradiation surface. After the resin liquid layer is cured by the above, the stage 7 is gradually lowered in the Z-axis direction of the three-dimensional object to be molded, and the resin liquid layer is cured on top of the first exposure-cured layer. The thickness of the resin is controlled, and the operation of irradiating an electromagnetic wave so as to have the irradiation surface having the above-mentioned predetermined shape to cure the resin liquid layer is repeated a predetermined number of times, thereby attempting to form the resin 3.
It is possible to form a powder-mixed resin cured molding of a three-dimensional object [Fig. 1 (b)].

次に、上記電磁波を照射して硬化させた成形体を、必要
に応じて成形体を整形加工した後、高温の雰囲気焼成炉
に装入して、樹脂成分を燃焼除去すると共に、粉末を焼
結して、金属、セラミックもしくは金属セラミックより
なる焼結成形品を作製することができる〔第1図
(c)〕。
Next, the molded body that has been cured by irradiation with the electromagnetic wave is shaped into a molded body if necessary, and then placed in a high-temperature atmosphere firing furnace to burn off the resin component and burn the powder. By tying, a sintered molded product made of metal, ceramic or metal ceramic can be produced [Fig. 1 (c)].

上述のごとく、本発明の金属および/またはセラミック
焼結体の光成形法は、金型を使用することなく、直接的
に必要とする任意の形状の成形体を形成することが可能
であり、多品種少量生産を効率的に実施することができ
るので、設計および加工時間を著しく短縮させることが
でき、製品コストを一段と低減することが可能となる。
As described above, the optical molding method for a metal and / or ceramic sintered body of the present invention can directly form a molded body of any desired shape without using a mold, Since high-mix low-volume production can be carried out efficiently, the design and processing time can be significantly shortened, and the product cost can be further reduced.

(実施例2) 第4図に示すごとく、液状の光硬化性樹脂中に混合した
金属粉末またはセラミック粉末もしくはその混合粉末
を、移動ステージ上の担体基板上に均一に塗布する樹脂
塗布ユニットと、塗布された上記粉末混合樹脂層に所定
形状に照射面を持つように電磁波を照射して光硬化性樹
脂を硬化する樹脂硬化ユニットと、硬化した粉末混合樹
脂層表面をロール等により加圧して表面の均質化と、加
圧により粉末結合度合を高める樹脂加圧ユニットからな
製造モジュールを用い、これを、例えば第5図(a)に
示すごとく、粉体の成分配合比をモジュールごとに変え
た製造モジュールを連続的に配置して、ステージを移動
させながら連続的にシーケンシャルに上記粉末混合樹脂
層を積層させるタンデム結合型、もしくは第5図(b)
に示すように、一つの製造モジュールの中の樹脂塗布ユ
ニット中の成分配合比を一層ごとに変化させ、移動ステ
ージ上の担体基板を往復移動させながら上記粉末混合樹
脂層を積層する繰り返し型の製造システムにより、成分
配合比を変化させた所定形状の機能傾斜材料の成形を行
うことができる。なお、繰り返し型の製造システムにお
いては、塗布ユニットと成分配合比が異なる複数の粉末
混合樹脂液供給系の切換え制御機構が必要となる。
Example 2 As shown in FIG. 4, a resin coating unit for uniformly coating a carrier substrate on a moving stage with a metal powder or a ceramic powder mixed with a liquid photocurable resin or a mixed powder thereof, A resin curing unit that irradiates electromagnetic waves to the coated powder mixed resin layer so as to have an irradiation surface in a predetermined shape to cure the photocurable resin, and the surface of the cured powder mixed resin layer that is pressed by a roll or the like. Was used and a manufacturing module composed of a resin pressurizing unit for increasing the powder bonding degree by pressurization was used, and the powder component composition ratio was changed for each module as shown in FIG. 5 (a), for example. A tandem combination type in which manufacturing modules are continuously arranged and the powder-mixed resin layers are sequentially and sequentially laminated while moving the stage, or FIG. 5 (b).
As shown in Fig. 2, the repeating type manufacturing in which the powder mixture resin layer is laminated while the carrier substrate on the moving stage is reciprocally moved by changing the component mixture ratio in the resin coating unit in one manufacturing module for each layer The system makes it possible to mold a functionally graded material having a predetermined shape with a changed composition ratio. In the repetitive manufacturing system, a switching control mechanism for a plurality of powder mixed resin liquid supply systems having different component mixing ratios from the coating unit is required.

上記の製造システムを用いて、第3図に示す構成の機能
傾斜材料を、以下に示す手順で作製した。
Using the above manufacturing system, a functionally graded material having the structure shown in FIG. 3 was manufactured by the following procedure.

移動ステージ上に載置した金属薄板またはセラミック薄
板よりなる基板6の法線上から、金属/セラミック粉末
(必要に応じてバインダ物質を添加)を所定量混合した
液状の光硬化性樹脂を塗布し、一定量の上記粉末混合樹
脂液を上記基板上に塗布した後〔第3図(a)〕、電磁
波源により露光して硬化させた〔第3図(b)〕。
From the normal line of the substrate 6 made of a metal thin plate or a ceramic thin plate placed on the moving stage, a liquid photo-curable resin mixed with a predetermined amount of metal / ceramic powder (adding a binder substance as necessary) is applied, After coating a certain amount of the powdered resin solution on the substrate [FIG. 3 (a)], it was exposed to an electromagnetic wave source and cured [FIG. 3 (b)].

次に、金属/セラミック粉末の混合組成を変えた上記粉
末混合樹脂液を、上記と同様の操作を行って積層化し、
これを所要回数繰り返して、必要とする組成配分に傾斜
させた粉末混合樹脂層の積層体よりなる板状の原素材を
形成した。次に、これを高温の雰囲気焼成炉に装入し
て、樹脂成分を燃焼除去させると共に、粉末を焼結し
て、成分配合比を変化させた所望形状の機能傾斜材料を
得ることができた。
Next, the powder-mixed resin liquid in which the mixed composition of the metal / ceramic powder is changed is laminated in the same manner as described above,
This was repeated a required number of times to form a plate-shaped raw material composed of a laminated body of powder mixed resin layers inclined to the required composition distribution. Next, this was charged into a high-temperature atmosphere firing furnace, the resin component was burned and removed, and the powder was sintered to obtain a functionally graded material with a desired shape in which the component mixture ratio was changed. .

本実施例においては、基板6を機能傾斜材料の表面素材
として、その上に成分配合比を変化させた粉末混合樹脂
層を積層させたが、基板6を単に担体として使用し、上
記の粉末混合樹脂層を積層して硬化させた後の段階で基
板6を分離する方法で所定形状の機能傾斜材料を得るこ
とも可能である。
In this example, the substrate 6 was used as the surface material of the functionally graded material, and the powder-mixed resin layer having a different component mixture ratio was laminated thereon. However, the substrate 6 was merely used as a carrier, and the above-mentioned powder mixture was used. It is also possible to obtain a functionally gradient material having a predetermined shape by a method of separating the substrate 6 at a stage after the resin layers are laminated and cured.

上述のごとく、本発明の光成形法を用いることにより、
材料の表面と裏面との間で材料成分配合比が変化した所
定形状の機能傾斜材料を極めて効率的に得ることができ
る。なお、繰り返し型の製造システムにおいては、装置
構成が比較的簡単で、多品種少量生産に効果があり、ま
たタンデム結合型の製造システムにおいては、比較的品
種の少ない機能傾斜材料を大量生産するのに適してい
る。
As described above, by using the photoforming method of the present invention,
It is possible to extremely efficiently obtain a functionally graded material having a predetermined shape in which the material component mixing ratio is changed between the front surface and the back surface of the material. It should be noted that in the repeatable manufacturing system, the device configuration is relatively simple, and it is effective for high-mix low-volume production, and in the tandem coupled manufacturing system, the functionally graded material of relatively low variety is mass-produced. Suitable for

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したごとく、本発明の光成形法を用いて
金属粉末、セラミック粉末またはその混合粉末よりなる
焼結成形体あるいは成分配合比を変化させた機能傾斜材
料を作製する場合に、以下に示す優れた効果がある。
As described in detail above, in the case of producing a sintered compact made of a metal powder, a ceramic powder or a mixed powder thereof or a functionally graded material in which the component mixture ratio is changed by using the photoforming method of the present invention, the following will be shown. It has an excellent effect.

(1)CAD/CAMデータから直接、必要とする製品形状に
成形することができるので、多品種少量生産を効率的に
実施することができる。
(1) Since the desired product shape can be formed directly from the CAD / CAM data, it is possible to efficiently carry out small-lot production of a wide variety of products.

(2)金属粉末やセラミック粉末材料から直接、必要と
する構造体を成形することができるので、設計および加
工時間の短縮がはかられる。
(2) Since the required structure can be molded directly from the metal powder or ceramic powder material, the design and processing time can be shortened.

(3)高価で複雑な金型等の型の使用が不用となり、生
産数量の少ない製品の加工コストを大幅に低減すること
ができる。
(3) The use of expensive and complicated molds and the like becomes unnecessary, and the processing cost of products with small production quantities can be greatly reduced.

(4)光成形法に線発光光源もしくは面発光光源を使用
すれば、さらに成形加工時間の短縮が可能となり、製品
コストの低減がはかられる。
(4) If a linear light emitting light source or a surface emitting light source is used in the optical molding method, the molding processing time can be further shortened and the product cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)、(b)、(c)は本発明の実施例1にお
いて作製した成形体の構成を示す模式図、第2図は本発
明の実施例1において作製した成形体の製造に用いた装
置の概要を示す模式図、第3図(a)、(b)は本発明
の実施例2において作製した機能傾斜材料の構成を示す
模式図、第4図は本発明の実施例2において作製した機
能傾斜材料の作製に用いた製造モジュールを示す説明
図、第5図(a)、(b)は本発明の実施例2において
用いたタンデム結合型および繰り返し型の製造システム
の構成を示す説明図である。 1……金属粒子、2……セラミック粒子 3……バインダ物質、4……光硬化性樹脂 5……金属/セラミック粒子 6……基板、7……ステージ 8……タンク 9……粉末混合光硬化性樹脂液
FIGS. 1 (a), (b), and (c) are schematic views showing the structure of the molded body produced in Example 1 of the present invention, and FIG. 2 is the production of the molded body produced in Example 1 of the present invention. 3 is a schematic diagram showing an outline of the apparatus used in FIG. 3, FIGS. 3 (a) and 3 (b) are schematic diagrams showing the constitution of the functionally graded material produced in Example 2 of the present invention, and FIG. 4 is an example of the present invention. 2 is an explanatory view showing a production module used for producing the functionally graded material produced in FIG. 2, and FIGS. 5 (a) and 5 (b) are configurations of the tandem coupling type and repetitive type production systems used in Example 2 of the present invention. FIG. 1 ... Metal particles, 2 ... Ceramic particles, 3 ... Binder material, 4 ... Photocurable resin, 5 ... Metal / ceramic particles, 6 ... Substrate, 7 ... Stage, 8 ... Tank, 9 ... Powder mixed light Curable resin liquid

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】金属またはセラミックの単独粉末、もしく
は金属とセラミックの混合粉末を、液状の光硬化性樹脂
中に混合して粉末混合光硬化性樹脂液とするか、もしく
は上記粉末混合樹脂液に、さらにバインダ物質を加えて
粉末混合光硬化性樹脂液となし、上記粉末混合樹脂液を
基板上に所定の厚さに塗布する工程と、上記塗布した粉
末混合樹脂層に電磁波を照射して光硬化性樹脂を硬化さ
せる工程とを基本工程となし、上記粉末混合光硬化性樹
脂液中の金属とセラミックの配合比を工程ごとに変化さ
せながら上記基本工程を所定回数繰り返して行うことに
より、金属とセラミックの成分配合比を塗布層ごとに変
化させた粉末混合樹脂層の積層体よりなる所定形状の樹
脂成形体を形成し、該樹脂成形体を高温の雰囲気中で加
熱して樹脂成分を燃焼除去すると共に、含有する粉末を
焼結して所望形状の機能傾斜材料を形成することを特徴
とする光成形法。
1. A single powder of metal or ceramic or a mixed powder of metal and ceramic is mixed into a liquid photocurable resin to prepare a powder mixed photocurable resin liquid, or a powder mixed resin liquid described above. Further, a step of adding a binder substance to form a powder-mixed photocurable resin liquid, applying the powder-mixed resin liquid on a substrate to a predetermined thickness, and irradiating electromagnetic waves to the applied powder-mixed resin layer to apply light. The step of curing the curable resin is referred to as a basic step, and the basic step is repeated a predetermined number of times while changing the compounding ratio of the metal and the ceramic in the powder-mixed photocurable resin liquid for each step, thereby forming a metal. And a ceramic component mixture ratio is changed for each coating layer to form a resin molded body of a predetermined shape consisting of a laminate of powder mixed resin layer, the resin molded body is heated in a high temperature atmosphere While baked removed, light shaping method characterized by forming a functional gradient material having a desired shape by sintering a powder containing.
JP2210271A 1990-08-10 1990-08-10 Light molding method Expired - Fee Related JPH0742482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2210271A JPH0742482B2 (en) 1990-08-10 1990-08-10 Light molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2210271A JPH0742482B2 (en) 1990-08-10 1990-08-10 Light molding method

Publications (2)

Publication Number Publication Date
JPH0499203A JPH0499203A (en) 1992-03-31
JPH0742482B2 true JPH0742482B2 (en) 1995-05-10

Family

ID=16586631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2210271A Expired - Fee Related JPH0742482B2 (en) 1990-08-10 1990-08-10 Light molding method

Country Status (1)

Country Link
JP (1) JPH0742482B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122571A (en) * 2017-02-03 2018-08-09 日本特殊陶業株式会社 Method for producing ceramic molded body

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311207A (en) * 1992-05-14 1993-11-22 Sharp Corp Production of three-dimensional sintered body made of metal or ceramics
US5496682A (en) * 1993-10-15 1996-03-05 W. R. Grace & Co.-Conn. Three dimensional sintered inorganic structures using photopolymerization
JPH0891940A (en) * 1994-09-21 1996-04-09 Toshiba Ceramics Co Ltd Optical molding method for ceramic
US7418993B2 (en) 1998-11-20 2008-09-02 Rolls-Royce Corporation Method and apparatus for production of a cast component
US6932145B2 (en) 1998-11-20 2005-08-23 Rolls-Royce Corporation Method and apparatus for production of a cast component
JP2010511092A (en) 2006-11-29 2010-04-08 コーニング インコーポレイテッド Plasticized mixture and its curing method
JP5288758B2 (en) * 2007-09-28 2013-09-11 Jsr株式会社 Photocurable composition for stereolithography, metal molding and method for producing the same
JP6573510B2 (en) 2015-09-11 2019-09-11 日本碍子株式会社 Porous material manufacturing method and manufacturing apparatus
US11427725B2 (en) 2016-04-28 2022-08-30 Hewlett-Packard Development Company, L.P. Photoluminescent material sets
US11241828B2 (en) 2016-04-28 2022-02-08 Hewlett-Packard Development Company, L.P. 3-dimensional printing
EP3448658B1 (en) 2016-04-28 2022-12-28 Hewlett-Packard Development Company, L.P. 3-dimensional printed parts
US10821669B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by-layer
US10821668B2 (en) 2018-01-26 2020-11-03 General Electric Company Method for producing a component layer-by- layer
KR102198408B1 (en) * 2018-02-06 2021-01-06 고려대학교 산학협력단 3D printing technique using multiple materials for functionally graded materials
EP3663074B1 (en) * 2018-12-03 2023-03-15 Ivoclar Vivadent AG Method for additive production of moulded bodies
US11104066B2 (en) * 2018-12-23 2021-08-31 General Electric Company Additive manufacturing method for functionally graded material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290903A (en) * 1989-04-28 1990-11-30 Citizen Watch Co Ltd Composition for powder compacting and manufacture of powder green compact using the composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018122571A (en) * 2017-02-03 2018-08-09 日本特殊陶業株式会社 Method for producing ceramic molded body

Also Published As

Publication number Publication date
JPH0499203A (en) 1992-03-31

Similar Documents

Publication Publication Date Title
JPH0742482B2 (en) Light molding method
US20160303798A1 (en) Method and device for manufacturing of three dimensional objects utilizing direct plasma arc
EP1117518B1 (en) Fabrication of three-dimensional objects
JP2023113828A (en) Apparatus and method for producing metal matrix composite manufactured by additive manufacturing and manufactured article thereof
US5997795A (en) Processes for forming photonic bandgap structures
CN105764674B (en) 3D printing method using slip
CN101917925B (en) Process and freeform fabrication system for producing a three-dimensional object
US5173220A (en) Method of manufacturing a three-dimensional plastic article
US20050288813A1 (en) Direct write and freeform fabrication apparatus and method
US6471800B2 (en) Layer-additive method and apparatus for freeform fabrication of 3-D objects
US8996155B2 (en) Apparatus and methods for digital manufacturing
US20040207123A1 (en) 3-D model maker
US20020093115A1 (en) Layer manufacturing method and apparatus using a programmable planar light source
US11420384B2 (en) Selective curing additive manufacturing method
KR20180122466A (en) Lamination fabrication methods for ceramics using microwaves
CN109591289B (en) Selective sintering additive manufacturing method
Parupelli Understanding hybrid additive manufacturing of functional devices
JP2004124201A (en) Method of laser beam lithography using metal powder
CN107932691A (en) A kind of increasing material manufacturing method of labyrinth ceramic material
US20060290772A1 (en) Method of manufacturing rapid prototyping workpiece by using laser transfer printing technology
JP3147744B2 (en) Lamination molding method of sand mold and method of manufacturing casting using the same
CN113400437A (en) Method for preparing ceramic material through ultraviolet beam synchronous curing assisted direct-writing 3D printing
CN112074397B (en) Molding apparatus and method for producing molded body
CN110253015A (en) A kind of method of photocuring 3D printing liquid metal
JPH0899360A (en) Optically shaped body by powder-mixed resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees