JPH074230A - Electrically heated catalyst device - Google Patents

Electrically heated catalyst device

Info

Publication number
JPH074230A
JPH074230A JP5149592A JP14959293A JPH074230A JP H074230 A JPH074230 A JP H074230A JP 5149592 A JP5149592 A JP 5149592A JP 14959293 A JP14959293 A JP 14959293A JP H074230 A JPH074230 A JP H074230A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
flow
heated
heating portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5149592A
Other languages
Japanese (ja)
Inventor
Masahiko Watanabe
聖彦 渡辺
Toru Yoshinaga
融 吉永
Yukihiro Shinohara
幸弘 篠原
Osamu Fujishiro
修 藤城
Akihiro Izawa
明宏 井沢
Masahiko Kokayu
真彦 小粥
Hiroshi Hirayama
洋 平山
Masahiko Hibino
雅彦 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Nippon Steel Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Nippon Steel Corp, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP5149592A priority Critical patent/JPH074230A/en
Publication of JPH074230A publication Critical patent/JPH074230A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/38Honeycomb supports characterised by their structural details flow channels with means to enhance flow mixing,(e.g. protrusions or projections)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To provide an electrically heated catalyst device enabling the improvement of an exhaust purification factor. CONSTITUTION:A catalyst 2 is disposed in a case 1 to be an exhaust passage, and heated parts (non-jointed areas 11) are formed at part of the catalyst 2 and heated by current application. A stream fairing catalyst 12 is disposed upstream of the catalyst 2 in the case 1. Inward louvers 14a are formed at the outer peripheral area 15 of the stream fairing catalyst 12, and outward louvers 14b are formed at the center area 16. The exhaust gas drifts toward the heated parts (non-jointed areas 11) by the louvers 14a, 14b of the stream fairing catalyst 12, and the flow of exhaust gas is concentrated onto the heated parts.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、通電加熱式触媒装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrically heated catalyst device.

【0002】[0002]

【従来の技術】本出願人は既に特願平3−338556
号により、通電加熱式触媒装置を提案している。つま
り、両面に絶縁被膜が形成された金属性の波板と平板と
を重ねて巻き込み、波板と平板との交互の層を形成する
金属性触媒担体の中心に円柱状電極を接続し、外周に外
筒を接続している。又、金属性触媒担体の中心から複数
層および最外周から複数層において、波板と平板を接合
し、電気抵抗値を小さくした金属性触媒担体に通電し、
部分的な加熱を行うようにしている。
2. Description of the Related Art The present applicant has already filed Japanese Patent Application No. 3-338556.
Proposed an electrically heated catalyst device. That is, a metallic corrugated plate and a flat plate on both sides of which an insulating coating is formed are stacked and rolled up, and a cylindrical electrode is connected to the center of a metallic catalyst carrier that forms alternating layers of the corrugated plate and the flat plate. The outer cylinder is connected to. In addition, in a plurality of layers from the center of the metallic catalyst carrier and in a plurality of layers from the outermost periphery, corrugated plates and flat plates are joined and electricity is applied to the metallic catalyst carrier having a reduced electric resistance value.
Partial heating is performed.

【0003】[0003]

【発明が解決しようとする課題】部分加熱型触媒の排気
ガス浄化率を向上させるためには、加熱部分に排気ガス
を集中的に流せばよいことが知られている。しかしなが
ら、排気ガスの集中度合いは触媒入口側のコーン形状等
により決定され、車両毎に違い、又、集中度合いも大き
くなく、浄化率の向上には限界があった。
In order to improve the exhaust gas purification rate of the partially heated catalyst, it is known that exhaust gas should be concentratedly flown to the heated portion. However, the degree of concentration of exhaust gas is determined by the shape of the cone on the catalyst inlet side and the like, and varies from vehicle to vehicle, and the degree of concentration is not large, and there is a limit to the improvement of the purification rate.

【0004】そこで、この発明の目的は、排気ガス浄化
率を向上させることができる通電加熱式触媒装置を提供
することにある。
Therefore, an object of the present invention is to provide an electrically heated catalyst device which can improve the exhaust gas purification rate.

【0005】[0005]

【課題を解決するための手段】請求項1においては、排
気通路に触媒が配置されるとともに、その触媒における
一部に通電にて加熱される加熱部分を有する通電加熱式
触媒装置において、排気通路での前記触媒の上流側に、
前記加熱部分に向かって排気ガスを偏流させる排気ガス
偏流部材を配置した通電加熱式触媒装置をその要旨とす
るものである。
According to a first aspect of the present invention, a catalyst is arranged in an exhaust passage, and a part of the catalyst has a heating portion which is heated by electric conduction. Upstream of the catalyst in
The gist of the present invention is an electrically heated catalyst device in which an exhaust gas biasing member that biases the exhaust gas toward the heating portion is arranged.

【0006】請求項2においては、請求項1での前記排
気ガス偏流部材をルーバにより排気ガスを偏流させるも
のとする。請求項3においては、排気通路に触媒が配置
されるとともに、その触媒における一部に通電にて加熱
される加熱部分を有する通電加熱式触媒装置において、
排気通路での排気ガスの流れが最大となる中心流速部分
に前記加熱部分を配置した通電加熱式触媒装置をその要
旨とするものである。
According to a second aspect of the present invention, the exhaust gas biasing member according to the first aspect is used to bias the exhaust gas. According to a third aspect of the present invention, in the electrically heated catalytic device, the catalyst is disposed in the exhaust passage, and a part of the catalyst has a heating portion that is heated by electricity.
The gist of the present invention is an electrically heated catalyst device in which the heating portion is arranged in a central flow velocity portion where the flow of exhaust gas in the exhaust passage is maximized.

【0007】[0007]

【作用】請求項1においては、触媒の上流側の排気ガス
偏流部材により、加熱部分に向かって排気ガスが偏流し
て排気ガスの流れが加熱部分に集中する。その結果、排
ガスは高温となった触媒部分を通過するため浄化性能が
向上する。
According to the first aspect of the present invention, the exhaust gas biasing member on the upstream side of the catalyst causes the exhaust gas to drift toward the heating portion, so that the flow of the exhaust gas concentrates on the heating portion. As a result, the exhaust gas passes through the catalyst portion having a high temperature, so that the purification performance is improved.

【0008】第2項においては、第1での排気ガス偏流
部材としてのルーバにより排気ガスが偏流させられる。
請求項3においては、排気ガスの流れが最大となるガス
流が加熱部分に当たる。
In the second aspect, the exhaust gas is diverted by the louver as the first exhaust gas diverging member.
In the third aspect, the gas flow having the maximum exhaust gas flow hits the heating portion.

【0009】[0009]

【実施例】【Example】

(第1実施例)以下、この発明を具体化した第1実施例
を図面に従って説明する。
(First Embodiment) A first embodiment of the present invention will be described below with reference to the drawings.

【0010】図1には通電加熱式触媒装置の断面図を示
し、図2には図1のA矢視図を示す。図2において、排
気通路を形成する円筒状ケース1内には部分加熱型触媒
2が配置されている。この部分加熱型触媒2は、図3に
示すように、正電極3に溶接した金属製の薄い波板4と
平板5とが重ねて巻き込まれて渦巻き状の交互の層を形
成し、ハニカム状の金属触媒担体6が形成されている。
波板4及び平板5は、例えば、20%Cr−5%Al−
75%Feの組成を有し、板厚50μ程度の箔材料であ
る。又、非接合領域の波板4及び平板5の表面には予め
酸化処理により電気的に絶縁被膜のアルミナ層が形成さ
れている。
FIG. 1 shows a cross-sectional view of an electrically heating type catalyst device, and FIG. 2 shows a view taken in the direction of arrow A in FIG. In FIG. 2, a partially heated catalyst 2 is arranged in a cylindrical case 1 that forms an exhaust passage. As shown in FIG. 3, this partially heated catalyst 2 has a thin corrugated plate 4 and a flat plate 5 made of metal welded to the positive electrode 3 and overlapped with each other to form spiral alternating layers. The metal catalyst carrier 6 is formed.
The corrugated plate 4 and the flat plate 5 are, for example, 20% Cr-5% Al-.
It is a foil material having a composition of 75% Fe and a plate thickness of about 50 μm. Further, on the surfaces of the corrugated plate 4 and the flat plate 5 in the non-bonding region, an alumina layer which is an electrically insulating film is formed beforehand by an oxidation treatment.

【0011】図1,2に示すように、触媒担体6の中心
には、その軸線方向に沿って正電極3が配置され、この
正電極3は触媒担体6に通電可能に接続されている。触
媒担体6は、金属製の円筒状ケース1内に挿入されて例
えばロウ付けによってケース1に固定されており、触媒
担体6は、ケース1と通電可能とされている。図2に示
されているように、ケース1の側面には、負電極7が接
続されている。
As shown in FIGS. 1 and 2, a positive electrode 3 is arranged in the center of the catalyst carrier 6 along the axial direction thereof, and the positive electrode 3 is electrically connected to the catalyst carrier 6. The catalyst carrier 6 is inserted into the metal cylindrical case 1 and fixed to the case 1 by brazing, for example, and the catalyst carrier 6 can be electrically connected to the case 1. As shown in FIG. 2, the negative electrode 7 is connected to the side surface of the case 1.

【0012】図1に示すように、正電極3はケース1の
軸線方向に延びた後L字状に曲げられてケース1の直径
方向に延び、ケース1側面を貫通している。正電極3
は、絶縁材8によってケース1と電気的に絶縁されてい
る。
As shown in FIG. 1, the positive electrode 3 extends in the axial direction of the case 1 and is then bent into an L shape to extend in the diametrical direction of the case 1 and penetrates the side surface of the case 1. Positive electrode 3
Are electrically insulated from the case 1 by the insulating material 8.

【0013】図2を参照すると、触媒担体6の中心部の
円筒状領域9(図中斜線領域)および外周部の円筒状領
域10(図中斜線領域)においては、波板4の山および
谷と平板5とが、例えば、ロウ付け、放電溶接、レーザ
溶接等によって通電可能に接合されている。中心部接合
領域(円筒状領域9)と外周部接合領域(円筒状領域1
0)との間の領域11では、波板4と平板5とは接合さ
れておらず、従って波板4と平板5とは絶縁被膜Al2
3 によって絶縁されている。
Referring to FIG. 2, in the cylindrical region 9 (hatched region in the drawing) at the center of the catalyst carrier 6 and the cylindrical region 10 (hatched region in the drawing) at the outer periphery, the peaks and valleys of the corrugated plate 4 are formed. The flat plate 5 and the flat plate 5 are electrically connected to each other by brazing, discharge welding, laser welding, or the like. The central joining region (cylindrical region 9) and the outer joining region (cylindrical region 1)
In a region 11 between the corrugated plate 4 and the flat plate 5, the corrugated plate 4 and the flat plate 5 are not bonded to each other, and thus the insulating film Al 2
Insulated by O 3 .

【0014】又、図1に示すように、部分加熱型触媒2
の上流側には、排気ガス偏流部材としての整流触媒12
が設置されている。整流触媒12はSUS430系フェ
ライト箔よりなっている。整流触媒12は一枚の板状の
触媒を渦巻き状に巻回したものである。
Further, as shown in FIG. 1, the partially heated catalyst 2
On the upstream side of the rectifying catalyst 12 as an exhaust gas drift member.
Is installed. The rectifying catalyst 12 is made of SUS430 series ferrite foil. The rectifying catalyst 12 is formed by spirally winding a plate-shaped catalyst.

【0015】図4に示すように、整流触媒12における
軸流方向の中央部分には平板13が形成され、平板13
にはルーバ14が設けられている。同ルーバ14は平板
に対し一方の面に突出するようにプレス加工され、後半
部(下流部)が開口されたお椀型に形成されている。そ
して、図1に示すように、整流触媒12の外周領域15
では内向きルーバ14aが、中心領域16では外向きル
ーバ14bが取り付けられている。
As shown in FIG. 4, a flat plate 13 is formed in the central portion of the rectifying catalyst 12 in the axial flow direction.
The louver 14 is provided in the. The louver 14 is pressed into a flat plate so as to project to one surface, and is formed in a bowl shape having an opening in the latter half (downstream). Then, as shown in FIG. 1, the outer peripheral region 15 of the rectifying catalyst 12
An inward louver 14a is attached to the central area 16, and an outward louver 14b is attached to the central area 16.

【0016】又、図4に示すように、この整流触媒12
における平板13の上流側および下流側には波板17が
形成されている。図1〜図3に示す通電加熱式触媒装置
は、内燃機関の排気通路に配置され、この通電加熱式触
媒装置下流の排気通路に主触媒装置が配置されている。
Further, as shown in FIG. 4, this rectifying catalyst 12
Corrugated plates 17 are formed on the upstream and downstream sides of the flat plate 13 in FIG. 1 to 3 are arranged in an exhaust passage of an internal combustion engine, and a main catalyst device is arranged in an exhaust passage downstream of the electric heating catalyst device.

【0017】触媒は活性化温度以上にならないと排気ガ
ス浄化作用を奏することができない。このため、機関冷
間においては通電加熱式触媒装置に通電して加熱し、短
時間で触媒を活性化温度以上に昇温せしめて排気ガス中
の有害成分を浄化せしめるようにしている。
The catalyst cannot exhibit the exhaust gas purification action unless it becomes higher than the activation temperature. Therefore, while the engine is cold, the electrically heated catalyst device is energized and heated to raise the temperature of the catalyst above the activation temperature in a short time to purify harmful components in the exhaust gas.

【0018】次に、このように構成された通電加熱式触
媒装置の作用を説明する。部分加熱型触媒2の正電極3
と負電極7との間に電圧を印加すると中心部接合領域9
および外周部接合領域10では波板4と平板5とが通電
可能に接続されているために電気抵抗値が低くほとんど
発熱しない。
Next, the operation of the electrically heated catalytic device thus constructed will be described. Positive electrode 3 of partially heated catalyst 2
When a voltage is applied between the negative electrode 7 and the negative electrode 7, the central junction region 9
Also, in the outer peripheral joint region 10, since the corrugated plate 4 and the flat plate 5 are electrically connected to each other, the electric resistance value is low and almost no heat is generated.

【0019】一方、非接合領域11では、波板4と平板
5とは、絶縁されているために電気抵抗値は大きくな
る。従って、非接合領域11は、通電によって発熱し発
熱部(加熱部分)となる。
On the other hand, in the non-bonding region 11, the corrugated plate 4 and the flat plate 5 are insulated from each other, so that the electric resistance value becomes large. Therefore, the non-bonding region 11 generates heat by energization and becomes a heat generating portion (heating portion).

【0020】図1において、整流触媒12に排気ガスが
流入すると、中心近傍の流れαは外向きルーバ14bに
より外側へ流れ、外周近傍の流れβは内向きルーバ14
aにより内側へ流れる。
In FIG. 1, when the exhaust gas flows into the rectifying catalyst 12, the flow α near the center flows outward by the outward louver 14b, and the flow β near the outer periphery flows inward louver 14b.
Flows inward by a.

【0021】その結果、流速分布は、図5に示すよう
に、整流触媒12の上流側においては中心程速い速度分
布であるのに対し、整流触媒12の下流側においては中
心では遅く外周寄りの箇所が最大速度となる速度分布に
なる。よって、部分加熱型触媒2の発熱部(非接合領域
11)に気流が集中することになる。その結果、排気ガ
スは大部分触媒の活性化領域を通過することになり、排
気ガス中の有害成分を効率よく浄化することができる。
As a result, as shown in FIG. 5, the flow velocity distribution has a velocity distribution that is faster toward the center on the upstream side of the rectifying catalyst 12, whereas it is later on the downstream side and closer to the outer periphery of the rectifying catalyst 12. The velocity distribution becomes the maximum velocity at the location. Therefore, the airflow is concentrated on the heat generating portion (non-bonding region 11) of the partially heated catalyst 2. As a result, most of the exhaust gas passes through the activation area of the catalyst, and the harmful components in the exhaust gas can be efficiently purified.

【0022】つまり、部分加熱型触媒2の発熱部(非接
合領域11)に流れを集中させる機能を有する整流触媒
12を前置することで、排気ガス浄化率を大幅に向上せ
しめることができる。
That is, the exhaust gas purification rate can be greatly improved by providing the rectifying catalyst 12 having the function of concentrating the flow in the heat generating portion (non-bonding area 11) of the partially heated catalyst 2 in advance.

【0023】このように本実施例では、排気通路に触媒
2が配置されるとともに、その触媒2における一部に通
電にて加熱される加熱部分(非接合領域11)を有する
通電加熱式触媒装置において、排気通路での触媒2の上
流側に、加熱部分(非接合領域11)に向かって排気ガ
スを偏流させる整流触媒12(排気ガス偏流部材)を配
置した。よって、触媒2の上流側の整流触媒12によ
り、加熱部分(非接合領域11)に向かって排気ガスが
偏流して排気ガスの流れが加熱部分に集中する。その結
果、排気ガスは高温となった触媒部分を通過するため浄
化性能が向上する。
As described above, in this embodiment, the catalyst 2 is disposed in the exhaust passage, and a part of the catalyst 2 has a heating portion (non-bonding area 11) that is heated by energization. In the above, the rectifying catalyst 12 (exhaust gas non-uniform flow member) that causes the exhaust gas to flow non-uniformly toward the heating portion (non-bonding region 11) is arranged upstream of the catalyst 2 in the exhaust passage. Therefore, the rectifying catalyst 12 on the upstream side of the catalyst 2 causes the exhaust gas to flow unevenly toward the heating portion (non-bonding region 11), so that the flow of the exhaust gas concentrates on the heating portion. As a result, the exhaust gas passes through the catalyst portion having a high temperature, so that the purification performance is improved.

【0024】尚、この第1実施例の応用例としては、例
えば、上記実施例では巻回型の部分加熱型触媒について
説明したが、積層型の部分加熱型触媒に具体化してもよ
い。又、図6に示すように、軸流の中心領域16に内向
きルーバ19を、軸流の外周領域15に外向きルーバ2
0を、それぞれ開口部が上流を向くように配置してもよ
い。 (第2実施例)次に、第2実施例を第1実施例との相違
点を中心に説明する。
As an application example of the first embodiment, for example, the wound type partially heated catalyst has been described in the above embodiment, but may be embodied as a laminated partially heated catalyst. Further, as shown in FIG. 6, an inward louver 19 is provided in the central region 16 of the axial flow and an outward louver 2 is provided in the outer peripheral region 15 of the axial flow.
The 0s may be arranged so that their openings face upstream. (Second Embodiment) Next, the second embodiment will be described focusing on the differences from the first embodiment.

【0025】図7は第2実施例における通電加熱式触媒
装置の断面図を示し、図8は図7のB−B断面図を示
す。本実施例においては、排気ガスを偏流させる構造と
して、簡便な90°エルボ21を用いたこと、及び、触
媒における加熱部分23を排気ガス流れの集中する片側
のみに設けたことである。以下、構成を示す。
FIG. 7 is a sectional view of an electrically heating type catalyst device in the second embodiment, and FIG. 8 is a sectional view taken along line BB of FIG. In the present embodiment, a simple 90 ° elbow 21 is used as the structure for diverting the exhaust gas, and the heating portion 23 of the catalyst is provided only on one side where the exhaust gas flow is concentrated. The configuration is shown below.

【0026】図7に示すように、触媒22の上流側には
排気ガス偏流部材としての90°エルボ21が設置され
ている。又、図7,図8に示すように触媒22中におい
て加熱部分23は、図8中の中心部接合領域24(図中
斜線部分)と外周部接合領域25(図中斜線部分)との
間の領域においてその一部分の上流側端面にのみ設けら
れている。加熱部分23は中心部接合領域24と外周部
接合領域25を放電溶接、もしくは、レーザ溶接等によ
って通電可能に接合することによって形成されている。
即ち、正電極3とケース1との間に電圧を加えた場合、
加熱部分23以外の中間領域26は絶縁被膜によって絶
縁されているため電流はほとんど流れず、加熱部分23
に電流が集中して流れるため加熱部分23のみを加熱す
ることができる。そして、この加熱部分23はエルボ2
1によって流れが集中する部分(図7における下部)に
設けられている。
As shown in FIG. 7, a 90 ° elbow 21 as an exhaust gas drift member is installed upstream of the catalyst 22. Further, as shown in FIGS. 7 and 8, the heating portion 23 in the catalyst 22 is located between the central joining region 24 (hatched portion in the figure) and the outer circumferential joining region 25 (hatched portion in the figure) in FIG. Is provided only on a part of the upstream end face in the region. The heating portion 23 is formed by joining the central joining region 24 and the outer circumferential joining region 25 so that they can be energized by discharge welding or laser welding.
That is, when a voltage is applied between the positive electrode 3 and the case 1,
Since the intermediate region 26 other than the heating portion 23 is insulated by the insulating coating, almost no current flows, and the heating portion 23
Since the electric current concentrates on, the heating portion 23 alone can be heated. And this heating part 23 is the elbow 2.
It is provided in the portion where the flow is concentrated by 1 (the lower portion in FIG. 7).

【0027】図7において、排気管27を流れてきた排
気ガスはエルボ21によって流れが曲げられるがその慣
性により流れは図7中下部に集中する(排気ガスの流れ
を矢印で示す)。この流れの集中する部分に触媒22の
加熱部分23が設けられているため、部分加熱であって
も排気ガスの大部分は加熱部分23を通り触媒の活性化
温度に達するため、排気ガスの有害成分を効率よく浄化
することができる。しかも、部分加熱であるため、消費
電力も小さく抑えることができる。尚、触媒22の加熱
部分23は上流側にのみ設けておけば触媒の反応熱と排
気ガスの流れによって下流側まで即座に暖めることがで
きる。 (第3実施例)次に、第3実施例を第1実施例との相違
点を中心に説明する。
In FIG. 7, the exhaust gas flowing through the exhaust pipe 27 is bent by the elbow 21, but due to its inertia, the flow is concentrated in the lower part in FIG. 7 (the flow of the exhaust gas is indicated by an arrow). Since the heating portion 23 of the catalyst 22 is provided in the portion where the flow is concentrated, most of the exhaust gas passes through the heating portion 23 and reaches the activation temperature of the catalyst even in the partial heating, so that the exhaust gas is harmful. The components can be efficiently purified. Moreover, since it is partial heating, power consumption can be suppressed to a small level. If the heating portion 23 of the catalyst 22 is provided only on the upstream side, the reaction heat of the catalyst and the flow of exhaust gas can immediately warm up to the downstream side. (Third Embodiment) Next, the third embodiment will be described focusing on the differences from the first embodiment.

【0028】図9は第3実施例における通電加熱式触媒
装置の断面図を示し、図10は図9のC−C断面図を示
す。本実施例においては、排気ガスを偏流させる構造と
して、管の分流・合流を利用したこと、及び、触媒29
の中心電極を偏流部分に設け、その周囲に加熱部分30
を設けたことである。以下、構造を示す。
FIG. 9 shows a sectional view of an electrically heating type catalyst device in the third embodiment, and FIG. 10 shows a sectional view taken along line CC of FIG. In the present embodiment, as a structure that causes the exhaust gas to flow in a non-uniform manner, the splitting / merging of pipes is used, and the catalyst 29
The center electrode of the is provided in the drift portion, and the heating portion 30 is provided around it.
Is provided. The structure is shown below.

【0029】図9に示すように、排気管28には排ガス
偏流部材としての分流・合流管63が接続され、この分
流・合流管63には触媒29のケース1が接続されてい
る。つまり、分流・合流管63は、図9のa部で分流さ
れ、その後b部で合流して触媒29に至っている。分流
・合流管63の形状は図9のように菱形をしているた
め、排気ガスは触媒29の図中の下部に集中するように
なっている。又、図9,図10に示すように触媒29の
正電極3は中心よりも図中の下部に設けられている。正
電極3から波板及び平板が渦巻き状に巻かれるのである
が、その波板の高さが図中の上部にいく程高く、下部に
いく程低くなっているためケース1に収納した時には正
電極3は図のように中心よりも図中の下部になる。
As shown in FIG. 9, the exhaust pipe 28 is connected with a divert / merge pipe 63 as an exhaust gas biasing member, and the case 1 of the catalyst 29 is connected to the divert / merge pipe 63. That is, the branching / merging pipe 63 is branched at the portion a in FIG. 9 and then merges at the portion b to reach the catalyst 29. Since the shape of the flow dividing / merging pipe 63 is rhombic as shown in FIG. 9, the exhaust gas is concentrated on the lower portion of the catalyst 29 in the drawing. Further, as shown in FIGS. 9 and 10, the positive electrode 3 of the catalyst 29 is provided below the center of the figure. The corrugated plate and the flat plate are spirally wound from the positive electrode 3, but the height of the corrugated plate is higher toward the upper part of the figure and lower toward the lower part of the figure. The electrode 3 is located below the center as shown in the figure.

【0030】そして、加熱部分30は、正電極3を中心
とするドーナツ状部分の上流側端面に設けられている。
この加熱部分30は中心部接合領域31(図中斜線領
域)と外周部接合領域32(図中斜線領域)との間の絶
縁された領域の上流側端面部分をレーザ溶接等によって
通電可能に接合することによって形成される。即ち、正
電極3と負電極7との間に電圧を印加すると、中心部接
合領域31と外周部接合領域32は電気抵抗値が低くほ
とんど発熱しない。そして、電流はその間の触媒端面に
設けられたレーザ溶接部分を集中的に通るため、レーザ
溶接部分が発熱する。レーザ溶接は加熱部分30に広く
分布しているため、加熱部分30はほぼ均一に発熱す
る。
The heating portion 30 is provided on the upstream end face of the doughnut-shaped portion centering on the positive electrode 3.
In this heating portion 30, the upstream end face portion of the insulated area between the central joining area 31 (hatched area in the figure) and the outer circumferential joining area 32 (hatched area in the figure) is energized by laser welding or the like. Is formed by That is, when a voltage is applied between the positive electrode 3 and the negative electrode 7, the central joint region 31 and the outer peripheral joint region 32 have low electric resistance values and hardly generate heat. Then, the electric current intensively passes through the laser welded portion provided on the end face of the catalyst, so that the laser welded portion generates heat. Since the laser welding is widely distributed in the heating portion 30, the heating portion 30 generates heat almost uniformly.

【0031】本実施例においても排気管28の分流及び
合流によって流れの集中する部分のみ加熱部分30を設
けているため、浄化性能の向上と低電力化を両立するこ
とができる。 (第4実施例)次に、第4実施例を第1実施例との相違
点を中心に説明する。
Also in this embodiment, since the heating portion 30 is provided only in the portion where the flow is concentrated due to the diverging and merging of the exhaust pipe 28, the improvement of the purification performance and the reduction of the electric power can be achieved at the same time. (Fourth Embodiment) Next, the fourth embodiment will be described focusing on the differences from the first embodiment.

【0032】図11は第4実施例における通電加熱式触
媒装置の断面図を示し、図12は図11のD−D断面図
を示す。本実施例においては、正電極33を触媒端面よ
り上流側に突き出すことで偏流を生じさせることであ
る。以下、構成を示す。
FIG. 11 shows a sectional view of an electrically heated catalyst device in the fourth embodiment, and FIG. 12 shows a sectional view taken along the line DD of FIG. In this embodiment, the positive electrode 33 is projected to the upstream side from the end face of the catalyst to generate a drift. The configuration is shown below.

【0033】図11に示すように、L字状の正電極33
は触媒34の排気ガス流れ下流側より挿入され、触媒3
4の上流側端面よりも約20mm突き出している。又、
触媒34において加熱部分35は図12中の中心部接合
領域36(図中斜線領域)と外周部接合領域37(図中
斜線領域)との間の領域における上流側端面にのみ設け
られている。加熱部分35の形成方法は第3実施例と同
じである。又、排気管38がテーパ状の拡大管39を介
して触媒34のケース1に取り付けられている。
As shown in FIG. 11, an L-shaped positive electrode 33
Is inserted from the exhaust gas flow downstream side of the catalyst 34, and the catalyst 3
4 protrudes from the upstream end surface of No. 4 by about 20 mm. or,
In the catalyst 34, the heating portion 35 is provided only on the upstream end face in the region between the central joining region 36 (hatched region in the drawing) and the outer circumferential joining region 37 (hatched region in the drawing) in FIG. The method of forming the heating portion 35 is the same as in the third embodiment. An exhaust pipe 38 is attached to the case 1 of the catalyst 34 via a tapered expansion pipe 39.

【0034】図11において排気管38を流れてきた排
気ガスの内、特に中心部を流れてきた排気ガスは触媒3
4の上流側端面より突き出た正電極33によって流れを
変えられ、触媒34の加熱部分35を集中的に流れる。
よって、排気ガスは高温になった触媒部分を通過するた
め浄化性能が向上する。
In FIG. 11, among the exhaust gases flowing through the exhaust pipe 38, especially the exhaust gas flowing through the central portion is the catalyst 3
The flow is changed by the positive electrode 33 protruding from the upstream end surface of No. 4, and flows intensively through the heating portion 35 of the catalyst 34.
Therefore, the exhaust gas passes through the catalyst portion having a high temperature, so that the purification performance is improved.

【0035】本実施例では、正電極33における触媒3
4の端面からの突出部33aを、排気ガス偏流部材とし
ている。 (第5実施例)次に、第5実施例を第1実施例との相違
点を中心に説明する。
In this embodiment, the catalyst 3 in the positive electrode 33 is used.
The protruding portion 33a from the end face of No. 4 serves as an exhaust gas drift member. (Fifth Embodiment) Next, the fifth embodiment will be described focusing on the differences from the first embodiment.

【0036】図13は第5実施例における通電加熱式触
媒装置の断面図を示し、図14は図13のE−E断面図
を示す。本実施例においては、触媒上流側に存在する排
気管のエルボ46によって生じた偏流、触媒端面より上
流側に突き出た正電極40によって整流させてドーナツ
状に設けた加熱部分42に効果的に排気ガスを流すもの
である。以下、構成を示す。
FIG. 13 is a sectional view of an electrically heating type catalyst device in the fifth embodiment, and FIG. 14 is a sectional view taken along line EE of FIG. In this embodiment, the uneven flow generated by the elbow 46 of the exhaust pipe existing on the upstream side of the catalyst is rectified by the positive electrode 40 protruding on the upstream side from the end face of the catalyst, and is effectively exhausted to the heating portion 42 provided in a donut shape. It is a gas flow. The configuration is shown below.

【0037】図13に示すように、正電極40は触媒4
1の排気ガス流れ下流側より挿入され、触媒41の上流
側端面よりも約20mm突き出ている。そして、その正
電極40の突き出た部分は図中の下部に向かって約30
°曲げられている。触媒41中において加熱部分42は
図14中の中心部接合領域43(図中斜線領域)と外周
部接合領域44(図中斜線領域)との間の領域における
上流側端面にのみ設けられている。加熱部分42の形成
方法は第3実施例と同じである。又、排気管45は90
°エルボ46とテーパ状の拡大管47を介して触媒41
のケース1に取り付けられている。
As shown in FIG. 13, the positive electrode 40 is the catalyst 4
No. 1 is inserted from the downstream side of the exhaust gas flow, and protrudes about 20 mm from the upstream end surface of the catalyst 41. Then, the protruding portion of the positive electrode 40 is about 30 toward the lower part in the figure.
° Bent. In the catalyst 41, the heating portion 42 is provided only on the upstream end face in the region between the central joining region 43 (hatched region in the drawing) and the outer circumferential joining region 44 (hatched region in the drawing) in FIG. 14. . The method of forming the heating portion 42 is the same as in the third embodiment. Also, the exhaust pipe 45 is 90
° Catalyst 41 through elbow 46 and tapered expansion tube 47
It is attached to the case 1.

【0038】図13において排気管45を流れてきた排
気ガスはエルボ46によって曲げられ、偏流が生じその
流れは図中の下部に多くが集中するが、その後、触媒4
1の上流側端面より突き出し、かつ、図中の下部方向に
曲げられた正電極40によって図中の上部方向に流れを
整流し、排気ガスはドーナツ状に設けた触媒41の加熱
部分42を効率的に流れる。
In FIG. 13, the exhaust gas flowing through the exhaust pipe 45 is bent by the elbow 46, and a non-uniform flow occurs, and most of the flow concentrates in the lower part of the figure.
1, the positive electrode 40 protruding from the upstream end surface and bent downward in the figure rectifies the flow in the upward direction in the figure, and the exhaust gas efficiently uses the heating portion 42 of the catalyst 41 provided in a donut shape. Flow.

【0039】即ち、触媒41の直前にエルボ46等があ
って偏流が生じた場合でも、突き出し電極40の効果に
よって整流され、ドーナツ状の加熱部分42を集中的に
流すことができる。
That is, even if the elbow 46 or the like immediately before the catalyst 41 causes a nonuniform flow, it is rectified by the effect of the protruding electrode 40, and the donut-shaped heating portion 42 can be made to flow intensively.

【0040】本実施例では、正電極40における触媒4
1の端面からの突出部40a、及び90°エルボ46
を、排気ガス偏流部材としている。 (第6実施例)次に、第6実施例を第1実施例との相違
点を中心に説明する。
In this embodiment, the catalyst 4 in the positive electrode 40 is used.
40a from the end face of 1 and the 90 ° elbow 46
Is an exhaust gas drift member. (Sixth Embodiment) Next, a sixth embodiment will be described focusing on the differences from the first embodiment.

【0041】図15には第6実施例における通電加熱式
触媒装置を示す。ヒータ触媒担体48の上流側に、排気
ガス偏流部材としての邪魔板49が配置されている。邪
魔板49は支点50を中心に回動自在に取り付けられて
いる。邪魔板49はヒータ触媒担体48が加熱される際
には図15のように排気ガス流れYに対し垂直に、加熱
されない際は図16のように排気ガス流れに対し水平に
なる。
FIG. 15 shows an electric heating type catalyst device in the sixth embodiment. A baffle plate 49 as an exhaust gas biasing member is arranged on the upstream side of the heater catalyst carrier 48. The baffle plate 49 is attached so as to be rotatable around a fulcrum 50. The baffle plate 49 is vertical to the exhaust gas flow Y as shown in FIG. 15 when the heater catalyst carrier 48 is heated, and is horizontal to the exhaust gas flow as shown in FIG. 16 when it is not heated.

【0042】図17に邪魔板49の形状を示す。又、図
18に示すように加熱部分51が外周部にあり、邪魔板
49の外径R1は排気管径より小さくなっており、か
つ、図18の非加熱部分52の外径R2(加熱部分52
の内径)とほぼ同じ寸法となっている。
FIG. 17 shows the shape of the baffle plate 49. Further, as shown in FIG. 18, the heating portion 51 is on the outer peripheral portion, the outer diameter R1 of the baffle plate 49 is smaller than the exhaust pipe diameter, and the outer diameter R2 (heating portion) of the non-heating portion 52 of FIG. 52
(Inside diameter) is almost the same size.

【0043】エンジンの始動直後等、ヒータ付触媒が加
熱される条件の際は図15のように邪魔板49が排気の
流れに垂直にする。その結果、排気ガスは図15の矢印
Yのように邪魔板49と排気管53の隙間54を通るた
めヒータ付触媒担体48の外周部に集中し、加熱部51
を主に通過し、排ガスを大部分浄化することが可能とな
る。ヒータ付触媒担体48を通電する必要のない場合に
は、図16のように邪魔板49を排気流れに対し水平に
し圧損の増加を防ぐ。このような構成とすることで排気
流れを集中でき、ヒータ付触媒の加熱部を小さくするこ
とで、省電力化を図ることができる。
Under the condition that the catalyst with heater is heated, such as immediately after starting the engine, the baffle plate 49 is made vertical to the flow of exhaust gas as shown in FIG. As a result, the exhaust gas passes through the gap 54 between the baffle plate 49 and the exhaust pipe 53 as shown by the arrow Y in FIG.
It is possible to purify most of the exhaust gas after passing through. When it is not necessary to energize the heater-equipped catalyst carrier 48, the baffle plate 49 is made horizontal with respect to the exhaust flow as shown in FIG. 16 to prevent an increase in pressure loss. With such a configuration, the exhaust flow can be concentrated, and the heating portion of the catalyst with a heater can be made small, so that power saving can be achieved.

【0044】本実施例の応用例として、図20に示すよ
うに加熱部51が中心部にある場合においては、図19
に示すように、邪魔板49における加熱部分51に相対
する部分には貫通穴55が設けられ、又、邪魔板49の
外径は、排気管径とほぼ同等になっている。 (第7実施例)次に、第7実施例を第1実施例との相違
点を中心に説明する。
As an application example of this embodiment, as shown in FIG. 20, in the case where the heating section 51 is located at the center, as shown in FIG.
As shown in, a through hole 55 is provided in a portion of the baffle plate 49 facing the heating portion 51, and the outer diameter of the baffle plate 49 is substantially equal to the exhaust pipe diameter. (Seventh Embodiment) Next, the seventh embodiment will be described focusing on the differences from the first embodiment.

【0045】図21,図22には第7実施例における通
電加熱式触媒装置を示す。本実施例はヒータ付触媒の上
流側に、排気ガス偏流部材としての図21に示すような
開閉自在なバルブ56を付ける。そして、ヒータ通電時
は図21に示すようにバルブ56を閉じ通路穴57を狭
め流れを集中させる。又、非通電時は図22に示すよう
にバルブ56を開け、通路管57を拡げ排気流れをスム
ーズにするものである。
21 and 22 show an electrically heated catalyst device according to the seventh embodiment. In the present embodiment, an openable and closable valve 56 as shown in FIG. 21 is attached as an exhaust gas distribution member on the upstream side of the catalyst with heater. When the heater is energized, the valve 56 is closed and the passage hole 57 is narrowed to concentrate the flow, as shown in FIG. Further, when the power is not supplied, the valve 56 is opened and the passage pipe 57 is expanded to smooth the exhaust flow as shown in FIG.

【0046】図23に示すように、ヒータ通電時には、
バルブ56を閉じると排気ガスの流れZが集中しヒータ
付触媒58の中央部の加熱部分64に当たる。ヒータ付
触媒58の中央部のみを加熱しておくことで浄化性能を
下げることなく低電力化を図ることが可能となる。又、
ヒータ非通電時には、図24に示すようにバルブ56を
開け、排気ガスを均一に流す。
As shown in FIG. 23, when the heater is energized,
When the valve 56 is closed, the flow Z of exhaust gas concentrates and hits the central heating portion 64 of the heater-equipped catalyst 58. By heating only the central portion of the heater-equipped catalyst 58, it is possible to reduce the power consumption without lowering the purification performance. or,
When the heater is not energized, the valve 56 is opened as shown in FIG. 24 to allow the exhaust gas to flow uniformly.

【0047】尚、図23において本実施例ではバルブ5
6を開閉自在なバルブとした。しかしながら、本発明は
これに限るものではなく排気ガスの低温時には絞ること
により排気ガスを集中させ、排気ガスの高温時には絞ら
ない感温式の形状記憶合金としてもよい。 (第8実施例)次に、第8実施例を第1実施例との相違
点を中心に説明する。
In FIG. 23, the valve 5 is used in this embodiment.
6 is a valve that can be opened and closed. However, the present invention is not limited to this, and may be a temperature-sensitive shape memory alloy that concentrates exhaust gas by constricting it when the exhaust gas is at a low temperature and does not constrict it when the exhaust gas is at a high temperature. (Eighth Embodiment) Next, an eighth embodiment will be described with a focus on differences from the first embodiment.

【0048】図25は第8実施例における通電加熱式触
媒装置の断面図を示し、図26は図25のF−F断面図
を示す。上述した各実施例においては排気ガス偏流部材
を設けたが、本実施例においては、排気ガス偏流部材を
設けずに、触媒中の排気ガスの流れの多い箇所に正電極
3を設けないことでヒートマスを低減し速熱化、低電力
化を実現している。以下、構成を示す。
FIG. 25 shows a sectional view of an electrically heating type catalyst device in the eighth embodiment, and FIG. 26 shows a sectional view taken along the line FF of FIG. In each of the above-described embodiments, the exhaust gas drift member is provided. However, in the present embodiment, the positive electrode 3 is not provided at a location where the exhaust gas flow in the catalyst is large without providing the exhaust gas drift member. The heat mass is reduced to achieve faster heating and lower power consumption. The configuration is shown below.

【0049】排気管59はストレートであり、テーパ状
の拡大部60を介して触媒61のケース1に取り付けら
れている。従って、排気ガス流れは触媒61の中心部に
ほとんどが集中する。正電極3は触媒61の流れの集中
する中心部を外した、図中の下部寄りに設けられてい
る。それは第3実施例と同様に波板の高さを変えること
で実現している。加熱部62は流れの集中する中心部に
設けられている。その形成方法は第2実施例と同様であ
る。
The exhaust pipe 59 is straight, and is attached to the case 1 of the catalyst 61 via a tapered enlarged portion 60. Therefore, the exhaust gas flow is mostly concentrated in the central portion of the catalyst 61. The positive electrode 3 is provided near the lower part in the figure, excluding the central part where the flow of the catalyst 61 is concentrated. This is realized by changing the height of the corrugated plate as in the third embodiment. The heating unit 62 is provided in the central portion where the flow is concentrated. The forming method is the same as in the second embodiment.

【0050】流れの集中する箇所に発熱部を配置するの
は、いままでの実施例と同じであるが、さらに、正電極
3をその流れの集中する部分に設けないことでヒートマ
スを低減し、速熱化と低電力化を実現することができ
る。
The heat generating portion is arranged at the location where the flow is concentrated as in the previous embodiments, but the heat mass is reduced by not providing the positive electrode 3 at the location where the flow is concentrated. It is possible to achieve faster heating and lower power consumption.

【0051】このように本実施例では、排気通路での排
気ガスの流れが最大となる中心流速部分に加熱部分62
を配置している。
As described above, in this embodiment, the heating portion 62 is provided in the central flow velocity portion where the flow of exhaust gas in the exhaust passage is maximum.
Are arranged.

【0052】[0052]

【発明の効果】以上詳述したようにこの発明によれば、
排気ガス浄化率を向上させることができる優れた効果を
発揮する。
As described above in detail, according to the present invention,
It has an excellent effect of improving the exhaust gas purification rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例の通電加熱式触媒装置の断面図であ
る。
FIG. 1 is a cross-sectional view of an electrically heated catalyst device according to a first embodiment.

【図2】図1のA矢視図である。FIG. 2 is a view on arrow A in FIG.

【図3】部分加熱型触媒の分解図である。FIG. 3 is an exploded view of a partially heated catalyst.

【図4】整流触媒を説明するための説明図である。FIG. 4 is an explanatory diagram for explaining a rectifying catalyst.

【図5】流速の分布を示す分布図である。FIG. 5 is a distribution diagram showing a distribution of flow velocity.

【図6】第1実施例の応用例の通電加熱式触媒装置の断
面図である。
FIG. 6 is a cross-sectional view of an electrically heated catalyst device of an application example of the first embodiment.

【図7】第2実施例の通電加熱式触媒装置の断面図であ
る。
FIG. 7 is a cross-sectional view of an electrically heated catalyst device according to a second embodiment.

【図8】図7のB−B断面図である。8 is a cross-sectional view taken along line BB of FIG.

【図9】第3実施例の通電加熱式触媒装置の断面図であ
る。
FIG. 9 is a sectional view of an electric heating type catalyst device of a third embodiment.

【図10】図9のC−C断面図である。10 is a cross-sectional view taken along line CC of FIG.

【図11】第4実施例の通電加熱式触媒装置の断面図で
ある。
FIG. 11 is a cross-sectional view of an electrically heated catalyst device according to a fourth embodiment.

【図12】図11のD−D断面図である。12 is a cross-sectional view taken along the line DD of FIG.

【図13】第5実施例の通電加熱式触媒装置の断面図で
ある。
FIG. 13 is a cross-sectional view of an electrically heated catalyst device according to a fifth embodiment.

【図14】図13のE−E断面図である。14 is a sectional view taken along line EE in FIG.

【図15】第6実施例の通電加熱式触媒装置の断面図で
ある。
FIG. 15 is a sectional view of an electrically heating type catalyst device of a sixth embodiment.

【図16】第6実施例の通電加熱式触媒装置の断面図で
ある。
FIG. 16 is a cross-sectional view of an electrically heated catalyst device according to a sixth embodiment.

【図17】第6実施例の邪魔板の斜視図である。FIG. 17 is a perspective view of a baffle plate according to a sixth embodiment.

【図18】第6実施例の触媒の加熱部分の正面図であ
る。
FIG. 18 is a front view of a heated portion of the catalyst of the sixth embodiment.

【図19】第6実施例の応用例の邪魔板の斜視図であ
る。
FIG. 19 is a perspective view of a baffle plate of an application example of the sixth embodiment.

【図20】第6実施例の応用例の触媒の加熱部分の正面
図である。
FIG. 20 is a front view of a heated portion of a catalyst according to an application example of the sixth embodiment.

【図21】第7実施例の通電加熱式触媒装置のバルブの
正面図である。
FIG. 21 is a front view of a valve of an electrically heated catalyst device according to a seventh embodiment.

【図22】第7実施例の通電加熱式触媒装置のバルブの
正面図である。
FIG. 22 is a front view of the valve of the electrically heated catalyst device of the seventh embodiment.

【図23】第7実施例の通電加熱式触媒装置の断面図で
ある。
FIG. 23 is a sectional view of an electric heating type catalyst device of a seventh embodiment.

【図24】第7実施例の通電加熱式触媒装置の断面図で
ある。
FIG. 24 is a sectional view of an electric heating type catalyst device of a seventh embodiment.

【図25】第8実施例の通電加熱式触媒装置の断面図で
ある。
FIG. 25 is a sectional view of an electrically heating type catalyst device of an eighth embodiment.

【図26】図25のF−F断面図である。26 is a cross-sectional view taken along the line FF of FIG.

【符号の説明】[Explanation of symbols]

1 ケース 2 触媒 12 排気ガス偏流部材としての整流触媒 21 排気ガス偏流部材としての90°エルボ 33a 排気ガス偏流部材としての正電極の突出部 40a 排気ガス偏流部材としての正電極の突出部 46 排気ガス偏流部材としての90°エルボ 49 排気ガス偏流部材としての邪魔板 56 排気ガス偏流部材としてのバルブ 63 排気ガス偏流部材としての分流・合流管 DESCRIPTION OF SYMBOLS 1 Case 2 Catalyst 12 Rectifying catalyst as an exhaust gas deflecting member 21 90 ° elbow as an exhaust gas deflecting member 33a Positive electrode protrusion 40a as an exhaust gas deflecting member 40a Positive electrode protrusion as an exhaust gas deflecting member 46 Exhaust gas 90 ° elbow as a drift member 49 Baffle plate as an exhaust gas drift member 56 Valve as an exhaust gas drift member 63 Dividing / merging pipe as an exhaust gas drift member

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 35/04 321 A 8017−4G F01N 3/24 ZAB N (72)発明者 吉永 融 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 篠原 幸弘 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 藤城 修 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 井沢 明宏 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 小粥 真彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車 株式会社内 (72)発明者 平山 洋 愛知県豊田市トヨタ町1番地 トヨタ自動 車 株式会社内 (72)発明者 日比野 雅彦 愛知県豊田市トヨタ町1番地 トヨタ自動 車 株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location B01J 35/04 321 A 8017-4G F01N 3/24 ZAB N (72) Inventor Yoshinaga Nishi Nishio, Aichi prefecture 14 Iwatani, Shimohakaku-cho, Ichi, Japan Research Institute for Automotive Parts, Inc. (72) Inventor Yukihiro Shinohara 14 Iwatani, Shimohakaku-cho, Nishio-shi, Aichi Ltd., Japan Automotive Parts Research Institute (72) Inventor Osamu Fujishiro Nishio, Aichi 14 Iwatani, Shimohakaku-cho, Japan Within the Japan Auto Parts Research Institute, Inc. (72) Inventor Akihiro Izawa 14 Iwatani, Shimohakaku-cho, Nishio-shi, Aichi Japan Auto Parts Research Institute (72) Inventor Masahiko Koporu Toyota, Aichi Prefecture Toyota-cho, Toyota-shi, Japan (72) Inventor Hiroshi Hirayama 1 Toyota-cho, Toyota-shi, Aichi Earth Toyota Motor Co., Ltd. in the (72) inventor Masahiko Hibino Toyota City, Aichi Prefecture, Toyota-cho, Toyota first address Toyota Motor Co., Ltd. in

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 排気通路に触媒が配置されるとともに、
その触媒における一部に通電にて加熱される加熱部分を
有する通電加熱式触媒装置において、 排気通路での前記触媒の上流側に、前記加熱部分に向か
って排気ガスを偏流させる排気ガス偏流部材を配置した
ことを特徴とする通電加熱式触媒装置。
1. A catalyst is disposed in the exhaust passage, and
In an electrically heated catalyst device having a heating portion that is heated by energization in a part of the catalyst, an exhaust gas drift member that biases the exhaust gas toward the heating portion is provided upstream of the catalyst in the exhaust passage. An electrically heated catalyst device characterized by being arranged.
【請求項2】 前記排気ガス偏流部材はルーバにより排
気ガスを偏流させるものである請求項1に記載の通電加
熱式触媒装置。
2. The electric heating type catalyst device according to claim 1, wherein the exhaust gas biasing member biases the exhaust gas by a louver.
【請求項3】 排気通路に触媒が配置されるとともに、
その触媒における一部に通電にて加熱される加熱部分を
有する通電加熱式触媒装置において、 排気通路での排気ガスの流れが最大となる中心流速部分
に前記加熱部分を配置したことを特徴とする通電加熱式
触媒装置。
3. A catalyst is arranged in the exhaust passage, and
In an electrically heated catalyst device having a heating portion heated by energization in a part of the catalyst, the heating portion is arranged at a central flow velocity portion where the flow of exhaust gas in the exhaust passage is maximum. Electric heating type catalyst device.
JP5149592A 1993-02-24 1993-06-21 Electrically heated catalyst device Withdrawn JPH074230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5149592A JPH074230A (en) 1993-02-24 1993-06-21 Electrically heated catalyst device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3585593 1993-02-24
JP5-35855 1993-02-24
JP5149592A JPH074230A (en) 1993-02-24 1993-06-21 Electrically heated catalyst device

Publications (1)

Publication Number Publication Date
JPH074230A true JPH074230A (en) 1995-01-10

Family

ID=26374860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5149592A Withdrawn JPH074230A (en) 1993-02-24 1993-06-21 Electrically heated catalyst device

Country Status (1)

Country Link
JP (1) JPH074230A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231947A (en) * 2006-03-02 2007-09-13 J Eberspecher Gmbh & Co Kg Static mixer and exhaust treatment device
JP2009024654A (en) * 2007-07-23 2009-02-05 Bosch Corp Exhaust emission control device for internal combustion engine, mixer plate, mixer unit, and press molding device for mixer plate
CN101793182A (en) * 2009-01-23 2010-08-04 通用汽车环球科技运作公司 The electrically heated particulate filter that has zoned exhaust flow control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007231947A (en) * 2006-03-02 2007-09-13 J Eberspecher Gmbh & Co Kg Static mixer and exhaust treatment device
JP2009024654A (en) * 2007-07-23 2009-02-05 Bosch Corp Exhaust emission control device for internal combustion engine, mixer plate, mixer unit, and press molding device for mixer plate
CN101793182A (en) * 2009-01-23 2010-08-04 通用汽车环球科技运作公司 The electrically heated particulate filter that has zoned exhaust flow control
US8205439B2 (en) 2009-01-23 2012-06-26 GM Global Technology Operations LLC Electrically heated particulate filter with zoned exhaust flow control

Similar Documents

Publication Publication Date Title
JP4065023B2 (en) Catalyst body of traveling vehicle with internal combustion engine
JPH05137959A (en) Catalytic converter for catalytic treatment of exhaust gas
JP5418680B2 (en) Electric heating catalyst
JP2011528416A (en) Filter device for purifying automobile exhaust gas
JPH06320014A (en) Metallic carrier
US5839276A (en) Engine catalytic converter
JPH07293232A (en) Metallic catalyst support for purifying exhaust gas
US20190160429A1 (en) Gaseous emissions treatment structure and method for induction heating
JPH074230A (en) Electrically heated catalyst device
EP0604868B1 (en) Electrically heating catalytic apparatus
US5758498A (en) Catalytic device of electrically heated type
JPH0719035A (en) Partially heating type catalytic converter
JPH05288036A (en) Heating type honeycomb construction
JPH07197808A (en) Electric heating type catalytic device for controlling exhaust emission
JP3237364B2 (en) Induction heating catalytic converter for automobiles
JPH05184938A (en) Current supply heating type catalyst converter
JPH04250855A (en) Metallic carrier for gas purifying catalyst
JP3089444B2 (en) Electric heater
JP3269653B2 (en) Electric heating type honeycomb body
JP3474357B2 (en) Electric heating carrier
JP2000179332A (en) Heat-insulating metal carrier for purifying exhaust gas
JP3260898B2 (en) Electrically heated catalytic converter
JPH078802A (en) Catalytic carrier for electro-exothermic catalytic convertor
JPH05285394A (en) Electrical heating type catalyst converter
JPH04194311A (en) Heater device for honeycomb catalytic converter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000905