JPH0742231Y2 - Electromagnetic induction prime mover - Google Patents

Electromagnetic induction prime mover

Info

Publication number
JPH0742231Y2
JPH0742231Y2 JP8588490U JP8588490U JPH0742231Y2 JP H0742231 Y2 JPH0742231 Y2 JP H0742231Y2 JP 8588490 U JP8588490 U JP 8588490U JP 8588490 U JP8588490 U JP 8588490U JP H0742231 Y2 JPH0742231 Y2 JP H0742231Y2
Authority
JP
Japan
Prior art keywords
electromagnet
electrode
cylinder part
inner cylinder
liquid metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8588490U
Other languages
Japanese (ja)
Other versions
JPH0443387U (en
Inventor
勝秀 大平
玄隆 辻村
栄一 馬場
章雄 祖式
滋 菅野
正敏 千手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8588490U priority Critical patent/JPH0742231Y2/en
Publication of JPH0443387U publication Critical patent/JPH0443387U/ja
Application granted granted Critical
Publication of JPH0742231Y2 publication Critical patent/JPH0742231Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、船舶、水中航走体などに適用される電磁誘導
原動機に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electromagnetic induction prime mover applied to ships, underwater vehicles, and the like.

〔従来の技術〕[Conventional technology]

従来の船舶等の電磁推進装置に関する原理を第6図及び
第7図により説明する。
The principle of a conventional electromagnetic propulsion device for a ship or the like will be described with reference to FIGS. 6 and 7.

第6図及び第7図において、51,52は磁界を発生する電
磁石(または超伝動電磁石)、53は電磁石51,52を励磁
するための電源、54は電磁力を受ける海水である。55,5
6は電磁石51,52の間に対向して設けられ同電磁石51,52
の発生する磁界(この磁界は磁束密度Bで、方向は第6
図、第7図に示す矢印の方向)と直行する電流I(方向
は第7図に示す矢印の方向)を海水54中に流すための電
極、57は電極55,56に電流を供給するための電源であ
る。
In FIGS. 6 and 7, 51 and 52 are electromagnets (or superconducting electromagnets) that generate a magnetic field, 53 is a power source for exciting the electromagnets 51 and 52, and 54 is seawater that receives an electromagnetic force. 55,5
6 is provided between the electromagnets 51, 52 so as to face each other.
The magnetic field generated by the
An electrode for flowing a current I (the direction is the direction of the arrow shown in FIG. 7) perpendicular to the seawater 54 into the seawater 54, and 57 for supplying a current to the electrodes 55, 56. Power source.

上記において、磁界発生用の電磁石(または超伝導電磁
石)51,52に電源53より電流を流し海水54中に大きな磁
界を発生させておき、この磁界と交差する電流を電極5
5,56より海水54中に流すことにより電磁力F(方向は第
6図に示す矢印の方向)を発生させる。この電磁力Fに
より海水54を移動させることができる。
In the above, a current is supplied from the power source 53 to the electromagnets (or superconducting electromagnets) 51, 52 for generating a magnetic field to generate a large magnetic field in the seawater 54, and a current intersecting this magnetic field is applied to the electrode 5
An electromagnetic force F (the direction is the direction of the arrow shown in FIG. 6) is generated by flowing the seawater 54 from 5,56. This electromagnetic force F can move the seawater 54.

船舶の電磁推進方式においては、第6図、第7図に示す
装置を船体の一部に設置し、海水54に働く電磁力の反作
用により船体の推進力を得ることができる。
In the electromagnetic propulsion system of a ship, the devices shown in FIGS. 6 and 7 are installed in a part of the hull, and the propulsive force of the hull can be obtained by the reaction of the electromagnetic force acting on the seawater 54.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

従来の船舶等の電磁推進装置においては、海水に電磁力
を発生させる場合、海水中に大きな電流(例えば数1000
A)を流す必要がある。この場合、海水の電気抵抗が非
常に大きく、従って、海水通電時の電力損失が非常に大
きくなり電磁推進方式の効率を大幅に低下させていた。
In a conventional electromagnetic propulsion device for a ship or the like, when an electromagnetic force is generated in seawater, a large current (for example, several thousand
A) need to be flushed. In this case, the electric resistance of seawater is very large, and accordingly, the power loss during energization of seawater is very large, and the efficiency of the electromagnetic propulsion system is greatly reduced.

また、この低効率の理由により、装置全体の大型化、重
量の増大を招いていた。(所要の推進力を得るために
は、磁界、電流を大きくする必要があり、その結果、電
磁石、電極、電源等の大型化、重量増大となる。) 本考案は上記課題を解決しようとするものである。
Further, due to this low efficiency, the size and weight of the entire apparatus have been increased. (In order to obtain the required propulsive force, it is necessary to increase the magnetic field and the electric current, resulting in an increase in the size and weight of the electromagnet, electrode, power source, etc.) The present invention is intended to solve the above problems. It is a thing.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案の電磁誘導原動機は、内部を貫通する磁界を発生
する円筒形状の電磁石、同電磁石内に設けられ外周面に
放射状に配設された翼を有し両端に回転軸が設けられた
内筒部、同内筒部と翼を包むように配設され上記回転軸
と軸シール部及び軸受部を介して接合された外筒部、同
外筒部の内周面と上記内筒部の外周面にそれぞれ設けら
れた一方の電極と他方の電極、同一方の電極と他方の電
極の間に接続された一方の電源と上記電磁石に接続され
た他方の電源、および上記外筒部と内筒部の間に充填さ
れた液体金属を備えたことを特徴としている。
The electromagnetic induction motor of the present invention is a cylindrical electromagnet that generates a magnetic field penetrating the inside, an inner cylinder that has blades radially arranged on the outer peripheral surface and has rotating shafts at both ends. Section, an outer cylindrical section which is arranged so as to enclose the inner cylindrical section and the wing and is joined to the rotary shaft via a shaft seal section and a bearing section, an inner peripheral surface of the outer cylindrical section and an outer peripheral surface of the inner cylindrical section. One electrode and the other electrode, respectively, one power source connected between the same electrode and the other electrode and the other power source connected to the electromagnet, and the outer cylinder part and the inner cylinder part It is characterized by having a liquid metal filled between the two.

〔作用〕[Action]

上記において、電磁石には一方の電源より電流を供給
し、電磁石を貫通する磁界を発生させる。また、一方の
電源より電流を供給し、液体金属が充填された一方の電
極と他方の電極の間に電流を流す。この液体金属中を流
れる電流は上記磁界と交差する方向に流れるため、液体
金属は電流と磁界が作用して発生する電磁力を受け、そ
の力は内筒部の翼に伝えられ内筒部を回転させる。
In the above, a current is supplied to the electromagnet from one power source to generate a magnetic field penetrating the electromagnet. Further, an electric current is supplied from one power source, and an electric current is caused to flow between the one electrode filled with the liquid metal and the other electrode. Since the current flowing in the liquid metal flows in the direction intersecting with the magnetic field, the liquid metal receives an electromagnetic force generated by the action of the current and the magnetic field, and the force is transmitted to the blade of the inner cylinder portion and the inner cylinder portion Rotate.

上記液体金属は、従来の船舶等の電磁推進装置において
電磁力を受ける海水に比べ、その電気抵抗が極めて小さ
いため、電力損失を大幅に低減することができる。
Since the liquid metal has an extremely small electric resistance as compared with seawater which receives an electromagnetic force in a conventional electromagnetic propulsion device such as a ship, the power loss can be significantly reduced.

上記により、本考案においては、電力損失を大幅に低減
することができるため、原動機の効率向上が可能となる
と共に、電磁石、電極、電源等装置のコンパクト化及び
重量低減が可能となる。
As described above, in the present invention, the power loss can be significantly reduced, so that the efficiency of the prime mover can be improved and the apparatus such as the electromagnet, the electrode and the power source can be made compact and the weight can be reduced.

〔実施例〕〔Example〕

本考案の一実施例を第1図及び第2図に示す。 One embodiment of the present invention is shown in FIGS.

第1図及び第2図において、1は磁界を発生する円筒形
状の電磁石(または超伝導電磁石)で、発生する磁界
(磁束密度B)の向きは第1図に示す矢印の方向であ
る。2は上記電磁石1に接続されこれを励磁するための
電流を供給する電源である。8は上記円筒形状の電磁石
1内に設けられ内部に内筒部7を有する外筒部(ケーシ
ング)である。
1 and 2, 1 is a cylindrical electromagnet (or superconducting electromagnet) that generates a magnetic field, and the direction of the generated magnetic field (magnetic flux density B) is the direction of the arrow shown in FIG. A power source 2 is connected to the electromagnet 1 and supplies a current for exciting the electromagnet 1. Reference numeral 8 denotes an outer cylindrical portion (casing) provided in the cylindrical electromagnet 1 and having an inner cylindrical portion 7 therein.

3は上記内筒部7と外筒部8の間に充填されナトリウ
ム、カリウム、水銀等よりなる液体金属であり、4,5は
上記外筒部8の内面と内筒部7の外面にそれぞれ設けら
れた電極で、電磁石1が発生する磁界と直交する電流I
(方向は第2図に示す矢印の方向)を液体金属3中に流
す。6は電極4,5に電流を供給するための電源である。
9は内筒部7の外周面に放射状に複数個設置された翼
で、その外周面に設置された電極5とは絶縁されてい
る。さらに、上記外筒部8自身は回転しないよう外部に
固定されている。10は内筒部7に接続された回転軸で、
いずれか一方の軸10に推進器(プロペラ等)が接続され
る。11は液体金属3が外部に漏えいしないため、また、
回転軸10が円滑に回転するための軸シールおよび軸受部
である。
Reference numeral 3 is a liquid metal filled between the inner tubular portion 7 and the outer tubular portion 8 and made of sodium, potassium, mercury or the like, and 4,5 are provided on the inner surface of the outer tubular portion 8 and the outer surface of the inner tubular portion 7, respectively. With the electrodes provided, a current I orthogonal to the magnetic field generated by the electromagnet 1
(The direction is the direction of the arrow shown in FIG. 2) is poured into the liquid metal 3. 6 is a power supply for supplying a current to the electrodes 4 and 5.
A plurality of blades 9 are radially installed on the outer peripheral surface of the inner tubular portion 7, and are insulated from the electrodes 5 installed on the outer peripheral surface thereof. Further, the outer cylinder portion 8 itself is fixed to the outside so as not to rotate. 10 is a rotary shaft connected to the inner cylinder portion 7,
A propeller (such as a propeller) is connected to either one of the shafts 10. 11 is because liquid metal 3 does not leak outside,
A shaft seal and a bearing portion for the rotating shaft 10 to rotate smoothly.

上記において、電磁石1を電源2より供給される電流に
より励磁し磁界を発生させた後、電極4,5に電源6より
供給される電流Iを流すと、液体金属3は第2図の矢印
に示すような右回り円周接線方向の電磁力Fを受ける。
内筒部7に設けられた翼9は電極4の間の隙間が小さ
く、従って液体金属3の漏えいは小さいため、電磁力F
の作用により翼9は回転力を得ることができる。その結
果、翼9が接続された内筒部7と共に回転軸10も回転
し、推進器(プロペラ等)は推進力を得ることになる。
In the above, when the electromagnet 1 is excited by the current supplied from the power source 2 to generate a magnetic field and then the current I supplied from the power source 6 is passed through the electrodes 4 and 5, the liquid metal 3 is changed to the arrow in FIG. It receives an electromagnetic force F in the tangential direction of the clockwise circumference as shown.
The blade 9 provided on the inner cylinder portion 7 has a small gap between the electrodes 4 and therefore the leakage of the liquid metal 3 is small.
By the action of, the blade 9 can obtain a rotational force. As a result, the rotary shaft 10 also rotates together with the inner cylinder portion 7 to which the blades 9 are connected, and the propulsion device (propeller or the like) obtains propulsive force.

本実施例においては、推進器の回転数は電極4,5に流す
電流Iにより制御が可能である。
In this embodiment, the number of revolutions of the thruster can be controlled by the current I flowing through the electrodes 4 and 5.

また、従来の電磁推進装置で電磁力を発生する海水と本
実施例で電磁力を発生する液体金属とを比較した場合、
液体金属の方がその電気抵抗は非常に小さい。例えば、
電気伝導度(比抵抗/m、即ち抵抗の逆数)は海水の場
合、常温にておおよそ 4/m 22%ナトリウム、78%カリウムの液体金属の場合、常温
にておおよそ 2×106/m であり、海水に対して液体金属は約100万倍の電気伝導
度を示し、液体金属に通電時の電力損失は海水の場合と
比較すると無視できる程小さい値である。
Further, when comparing the seawater that generates the electromagnetic force in the conventional electromagnetic propulsion device and the liquid metal that generates the electromagnetic force in this embodiment,
Liquid metal has a much smaller electrical resistance. For example,
The electrical conductivity (specific resistance / m, that is, the reciprocal of resistance) is about 4 / m at room temperature for seawater, and about 2 × 10 6 / m at room temperature for liquid metal containing 22% sodium and 78% potassium. However, liquid metal exhibits about 1 million times the electrical conductivity with respect to seawater, and the power loss when liquid metal is energized is a negligibly small value compared to the case of seawater.

更に、22%ナトリウム、78%カリウムの液体金属の融点
は約−13℃であり、通常の常温雰囲気では液体金属が固
化することはない。
Further, the melting point of the liquid metal of 22% sodium and 78% potassium is about -13 ° C, and the liquid metal does not solidify in a normal room temperature atmosphere.

上記により、液体金属を使用した本実施例の電磁誘導原
動機においては通電時の電力損失を大幅に低減すること
ができ、効率向上を図ることが可能となる。
As described above, in the electromagnetic induction prime mover of the present embodiment using the liquid metal, the power loss during energization can be significantly reduced, and the efficiency can be improved.

第3図は本実施例を船舶、水中航走体に応用した場合の
例を示しており、大きな推進力を得るため電磁誘導原動
機21,22を2台直列に配置した場合である。23は船舶、
あるいは水中航走体の船体、24は回転力を伝達する回転
軸、25はプロペラ等の推進器を示す。
FIG. 3 shows an example in which the present embodiment is applied to a ship and an underwater vehicle, and two electromagnetic induction motors 21 and 22 are arranged in series to obtain a large propulsive force. 23 is a ship,
Alternatively, a hull of an underwater vehicle, 24 is a rotating shaft for transmitting a rotational force, and 25 is a propeller such as a propeller.

本考案の他の実施例を第4図に示す。Another embodiment of the present invention is shown in FIG.

第4図に示す本実施例は、第1図及び第2図に示す一実
施例の内筒部7の内部に直接プロペラ等の推進器31を取
り付けたものであり、32は内筒部7と推進器31を固定す
るための支持部である。本実施例においては、装置全体
が一層コンパクトとなる。
In this embodiment shown in FIG. 4, a propeller 31 such as a propeller is directly attached to the inside of the inner cylinder portion 7 of the embodiment shown in FIGS. 1 and 2, and 32 is the inner cylinder portion 7. And a support portion for fixing the propeller 31. In this embodiment, the entire device becomes more compact.

第5図は第4図に示す他の実施例の電磁誘導原動機43を
水中航走体41に設置した状態の説明図であり、42は水中
航走体に設けられた海水の通路を示している。
FIG. 5 is an explanatory view showing a state in which the electromagnetic induction motor 43 of another embodiment shown in FIG. 4 is installed in the underwater vehicle 41, and 42 indicates a seawater passage provided in the underwater vehicle. There is.

〔考案の効果〕[Effect of device]

本考案の電磁誘導原動機は、円筒形状の電磁石が磁界を
発生し、外筒部の内周面と内筒部の外周部にそれぞれ設
けられた電極間を流れる電流が上記磁界と交差して液体
金属に電磁力を作用させ、その力を翼に伝えて内筒部を
回転させることによって、従来の海水に電磁力を作用さ
せる船舶等の電磁推進装置に比して電力損失を大幅に低
減することができるため、原動機の効率向上が可能とな
ると共に、電磁石、電極、電源等装置のコンパクト化及
び重量低減が可能となる。
In the electromagnetic induction motor of the present invention, the cylindrical electromagnet generates a magnetic field, and the current flowing between the electrodes provided on the inner peripheral surface of the outer cylindrical portion and the outer peripheral portion of the inner cylindrical portion intersects with the magnetic field to cause the liquid to flow. By applying electromagnetic force to metal and transmitting that force to the wing to rotate the inner cylinder, power loss is greatly reduced compared to conventional electromagnetic propulsion devices such as ships that apply electromagnetic force to seawater. Therefore, the efficiency of the prime mover can be improved, and the apparatus such as the electromagnet, the electrode, and the power supply can be made compact and the weight can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例の説明図、第2図は第1図の
II-II矢視図、第3図は上記一実施例を船舶に取付けた
状態の説明図、第4図は本考案の他の実施例の説明図、
第5図は上記他の実施例を水中走行体に取付けた状態の
説明図で、(a)は断面図、(b)は(a)のVb−Vb
矢視図、第6図は従来の装置の説明図、第7図は第6図
のVII-VII矢視図である。 1……電磁石、2……電源、3……液体金属、4,5……
電極、6……電源、7……内筒部、8……外筒部、9…
…翼、10……回転軸、11……軸シール及び軸受部、21,2
2……電磁誘導原動機、23……船体、24……回転軸、25,
31……推進器、32……支持部、41……水中走行体、42…
…海水通路、43……電磁誘導原動機。
FIG. 1 is an illustration of an embodiment of the present invention, and FIG. 2 is an illustration of FIG.
II-II arrow view, FIG. 3 is an explanatory view of the above-mentioned one embodiment attached to a ship, and FIG. 4 is an illustration of another embodiment of the present invention,
In illustration of the state FIG. 5 is fitted with the other embodiments in water traveling body, (a) shows the cross sectional view, V b -V b in (b) is (a)
FIG. 6 is an explanatory view of a conventional device, and FIG. 7 is a view taken in the direction of arrows VII-VII in FIG. 1 ... electromagnet, 2 ... power supply, 3 ... liquid metal, 4,5 ...
Electrodes, 6 ... Power supply, 7 ... Inner tube, 8 ... Outer tube, 9 ...
… Wings, 10 …… Rotating shafts, 11 …… Shaft seals and bearings, 21,2
2 …… electromagnetic induction motor, 23 …… hull, 24 …… rotating shaft, 25,
31 ... Propeller, 32 ... Support, 41 ... Underwater vehicle, 42 ...
… Seawater passages, 43 …… Electromagnetic induction motors.

───────────────────────────────────────────────────── フロントページの続き (72)考案者 祖式 章雄 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)考案者 菅野 滋 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 (72)考案者 千手 正敏 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akio Soki 1-1 1-1 Atsunoura-machi, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Shigeru Sugano 1-1 Atsunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries, Ltd. Nagasaki Shipyard (72) Inventor Masatoshi Sente 1-1, Atsunoura-cho, Nagasaki-shi, Nagasaki Mitsubishi Heavy Industries Ltd. Nagasaki Shipyard

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】内部を貫通する磁界を発生する円筒形状の
電磁石、同電磁石内に設けられ外周面に放射状に配設さ
れた翼を有し両端に回転軸が設けられた内筒部、同内筒
部と翼を包むように配設され上記回転軸と軸シール部及
び軸受部を介して接合された外筒部、同外筒部の内周面
と上記内筒部の外周面にそれぞれ設けられた一方の電極
と他方の電極、同一方の電極と他方の電極の間に接続さ
れた一方の電源と上記電磁石に接続された他方の電源、
および上記外筒部と内筒部の間に充填された液体金属を
備えたことを特徴とする電磁誘導原動機。
1. A cylindrical electromagnet for generating a magnetic field penetrating through the inside, an inner cylinder portion provided in the electromagnet, having blades radially arranged on an outer peripheral surface, and having rotary shafts at both ends, An outer cylinder part which is arranged so as to enclose the inner cylinder part and the wing and is joined to the rotary shaft through a shaft seal part and a bearing part, respectively provided on the inner peripheral surface of the outer cylinder part and the outer peripheral surface of the inner cylinder part. One electrode and the other electrode, one power supply connected between the same electrode and the other electrode and the other power supply connected to the electromagnet,
And an electromagnetic induction motor equipped with the liquid metal filled between the outer cylinder part and the inner cylinder part.
JP8588490U 1990-08-16 1990-08-16 Electromagnetic induction prime mover Expired - Lifetime JPH0742231Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8588490U JPH0742231Y2 (en) 1990-08-16 1990-08-16 Electromagnetic induction prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8588490U JPH0742231Y2 (en) 1990-08-16 1990-08-16 Electromagnetic induction prime mover

Publications (2)

Publication Number Publication Date
JPH0443387U JPH0443387U (en) 1992-04-13
JPH0742231Y2 true JPH0742231Y2 (en) 1995-09-27

Family

ID=31635240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8588490U Expired - Lifetime JPH0742231Y2 (en) 1990-08-16 1990-08-16 Electromagnetic induction prime mover

Country Status (1)

Country Link
JP (1) JPH0742231Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7171853B1 (en) * 2005-09-30 2007-02-06 Applied Technology Associates Magnetohydrodynamic (MHD) actuator sensor

Also Published As

Publication number Publication date
JPH0443387U (en) 1992-04-13

Similar Documents

Publication Publication Date Title
US5185545A (en) Dual propeller shock resistant submersible propulsor unit
US3708251A (en) Gearless drive method and means
US3143972A (en) Axial flow unit
JP3045754B2 (en) Thrust generator
JPH039000B2 (en)
US5702273A (en) Marine propulsion system for underwater vehicles
KR20120096956A (en) Submarine with a propulsive derive comprising an annular electric motor
JPS63217968A (en) Superconducting driving device with double reverse propeller
RU2722873C1 (en) Propulsion system with annular electric motor for underwater vehicles of large autonomy
JPH0742231Y2 (en) Electromagnetic induction prime mover
US3106058A (en) Propulsion system
JP2513217B2 (en) Electric propulsion system for ships
Brown Submersible Outboard Electric MotorPropulsor
JPS626892A (en) Water jet generating device
JP2660865B2 (en) Drive device of contra-rotating propeller device
JP2002534316A (en) Equipment to propel a ship
US3135111A (en) Eddy current dynamometer
CN107472495A (en) A kind of bow thruster peculiar to vessel of rim magneto driving
Holt et al. High efficiency, counter-rotating ring thruster for underwater vehicles
US2295019A (en) Electrodynamic brake
US5087215A (en) Ocean-going vessel and method for increasing the speed
JPS6380759A (en) Electromagnetic induction prime mover
JPH03227797A (en) Counter-rotating propeller apparatus
US20230128150A1 (en) High efficiency rotating equipment having contra-rotating propeller
RU2687397C2 (en) Electrical underwater motor