JPH0741879A - Apparatus and method for refining aluminum alloy - Google Patents

Apparatus and method for refining aluminum alloy

Info

Publication number
JPH0741879A
JPH0741879A JP20467193A JP20467193A JPH0741879A JP H0741879 A JPH0741879 A JP H0741879A JP 20467193 A JP20467193 A JP 20467193A JP 20467193 A JP20467193 A JP 20467193A JP H0741879 A JPH0741879 A JP H0741879A
Authority
JP
Japan
Prior art keywords
melt
processing container
inert gas
aluminum alloy
metal impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20467193A
Other languages
Japanese (ja)
Inventor
Koichi Yoshida
浩一 吉田
Mitsuhiro Otaki
光弘 大滝
Hideaki Kudo
秀明 工藤
Koichi Ohara
弘一 尾原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20467193A priority Critical patent/JPH0741879A/en
Publication of JPH0741879A publication Critical patent/JPH0741879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To provide an apparatus and a method for refining an aluminum alloy containing metallic impurities having higher vaporizing pressures than aluminum, such as Zn, Mg. CONSTITUTION:The molten aluminum alloy 1 containing the metallic impurities enabling the vaporization and having comparatively high vaporizing pressures is dispersed as grains by blowing high temp. inert gas in a high temp. reduced pressure treating vessel 3. The dispersed granular molten materials 9 are exposed to the inert gas-flowing reduced pressure. The metallic impurities in the molten metal is vaporized because the molten material 1 is exposed to the high temp. and the reduced pressure in the granular state having the large surface area. Further, the vapor of the metallic impurities around the granular molten metal is removed from the surroundings of the granular molten metal by the flow of the inert gas, and the partial pressure of the metallic impurities around the granular molten metal is lowered. Therefore, the metallic impurities having high vapor pressure in the molten aluminum alloy are rapidly vaporized and removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Zn、Mg、Pb等の
アルミより蒸気圧の高い不純物金属を含有するアルミ合
金を精錬する為の精錬装置及び精錬方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refining apparatus and a refining method for refining an aluminum alloy containing an impurity metal such as Zn, Mg and Pb having a vapor pressure higher than that of aluminum.

【0002】[0002]

【従来の技術】資源の有効活用の一環として屑の再生が
重要課題となっている。例えば自動車用アルミ材料につ
いて現状を述べれば、アルミ製ラジエータの冷媒を通す
チューブには、芯材の片面にろう材を、他面に犠牲陽極
材をクラッドした3層複合材が使用されており、このチ
ューブの製造過程において発生した屑は、複合層の分離
が困難な為、複合したまま低級屑としてアルミ鋳物の原
料や鉄鋼溶湯の脱酸剤等として使用されている。又前記
アルミ製ラジエータのスクラップも、解体に手間が掛か
る為そのまま低級屑として使用されている。又他のアル
ミ屑も大部分は、前記ラジエータと同様の使われ方をし
ている。ところで、前記チューブの芯材にはZnを2wt
%(以下%と略記)添加したJIS-3003合金等が、又ろう
材にはMgを 1.5%含有するJIS-4004合金等が、又犠牲
陽極材には芯材より電位が卑なJIS-7072合金(Al−Z
n系)等が使用されており、又ラジエータの他の構成材
料のフィンやヘッダープレートにも、MgやZnを主成
分とするアルミ合金又はアルミ合金複合材が用いられて
いる。このように、アルミ製ラジエータには合金元素と
してMgやZnが多量に含有されており、これらの合金
元素を除去する精錬技術が開発されれば、例えば前記チ
ューブやラジエータの屑は、芯材やろう材、又はフィン
の原料として再利用が可能になって原料コストが低減さ
れ、更に省資源に結びつくのである。
2. Description of the Related Art Recycling of waste has become an important issue as part of effective use of resources. For example, to describe the current state of aluminum materials for automobiles, a three-layer composite material in which a brazing material is clad on one side of a core material and a sacrificial anode material is clad on the other side is used for a tube through which a refrigerant of an aluminum radiator passes, Since it is difficult to separate the composite layer, the scraps generated in the process of manufacturing this tube are used as a low-grade scrap as it is as a raw material for aluminum casting, a deoxidizing agent for molten steel, and the like. The scrap of the aluminum radiator is also used as a low-grade scrap because it takes time to disassemble. Most of the other aluminum scraps are also used in the same manner as the radiator. By the way, 2 wt% Zn was used for the core material of the tube.
% (Hereinafter abbreviated as%) added JIS-3003 alloy, etc., brazing filler metal such as JIS-4004 alloy containing 1.5% Mg, and sacrificial anode material JIS-7072 whose potential is lower than the core material Alloy (Al-Z
(n-type) and the like, and also for the fins and header plates of other constituent materials of the radiator, an aluminum alloy or an aluminum alloy composite material containing Mg or Zn as a main component is used. As described above, the aluminum radiator contains a large amount of Mg and Zn as alloying elements, and if refining technology for removing these alloying elements is developed, for example, the scraps of the tubes and the radiator are It can be reused as a raw material for brazing filler metal or fins, reducing the raw material cost and saving resources.

【0003】[0003]

【発明が解決しようとする課題】アルミ合金屑からZn
やMg等の蒸気圧の高い金属不純物を除去する方法とし
て、真空処理法(特開昭63年20421 号)が提案されてい
た。この方法は、図2に示したように、緩衝容器31内の
溶融物1を溶湯ポンプ32により上昇管33を通して汲上
げ、前記上昇管33内の溶融物1を真空処理容器34内にて
図示しないそらせ板に衝突させて霧状化し、この霧状溶
融物35の表面から金属不純物を蒸発させて除去し、前記
金属不純物の蒸発物は図示しない真空ポンプにより吸引
し、途中の凝縮器36内にて回収される。金属不純物を除
去した後の霧状溶融物35は真空処理容器34の下部に貯留
され、降下管37を通って緩衝容器38に溜められたのち、
溶解炉39に戻されるものであった。しかしながら、この
方法では、金属不純物の除去効率が低い為実用化に至ら
なかった。
[Problems to be Solved by the Invention] Zn from aluminum alloy scrap
A vacuum treatment method (Japanese Unexamined Patent Publication No. 20421/1988) has been proposed as a method for removing metallic impurities having a high vapor pressure such as Mg and Mg. In this method, as shown in FIG. 2, the melt 1 in the buffer container 31 is pumped by a melt pump 32 through a rising pipe 33, and the melt 1 in the rising pipe 33 is shown in a vacuum processing container 34. Do not collide with the baffle plate to atomize it, evaporate and remove metal impurities from the surface of this atomized melt 35, suck the vapor of metal impurities by a vacuum pump (not shown), and in the condenser 36 on the way. Will be collected at. After the metal impurities are removed, the atomized melt 35 is stored in the lower part of the vacuum processing container 34, and after being stored in the buffer container 38 through the downcomer pipe 37,
It was returned to the melting furnace 39. However, this method has not been put to practical use because the removal efficiency of metal impurities is low.

【0004】[0004]

【課題を解決する為の手段】本発明は、このような状況
に鑑み鋭意研究を行ない、前記真空処理法における金属
不純物の除去効率が低い理由は、粒状溶融物の周囲を金
属不純物の蒸気が覆う為粒状溶融物周辺の金属不純物の
分圧が高まり、その結果金属不純物の蒸発速度が低下す
る為であることを知見し、更に研究を進めて本発明を完
成するに到ったものである。
DISCLOSURE OF THE INVENTION The present invention has conducted extensive studies in view of such circumstances, and the reason why the removal efficiency of metal impurities in the vacuum treatment method is low is that the vapor of metal impurities is present around the granular melt. It was discovered that the partial pressure of the metal impurities around the granular melt increased due to the covering, and as a result the evaporation rate of the metal impurities decreased, and further research was conducted to complete the present invention. .

【0005】即ち、請求項1の発明は、アルミより蒸気
圧の高い、1種以上の金属不純物を含有するアルミ合金
の精錬装置であって、前記アルミ合金の溶融物を保持す
る溶融物保持炉、前記溶融物を減圧処理する為の減圧処
理容器、前記溶融物保持炉から前記減圧処理容器への溶
融物の通路となる導管、前記保持炉内の溶融物を前記減
圧処理容器内に供給する為の溶融物供給手段、前記減圧
処理容器内に供給された溶融物を粒状化する為の粒状化
手段、前記減圧処理容器内を脱気し又前記減圧処理容器
内の粒状化溶融物から蒸発する金属不純物を排出する為
の排気手段、前記減圧処理容器と排気手段との間に配置
された溶融物から蒸発する金属不純物を回収する為の金
属不純物回収室、前記金属不純物が蒸発したあとの溶融
物を貯留する為の溶融物貯留槽から構成されたアルミ合
金の精錬装置であって、前記溶融物供給手段が溶融物保
持炉内の空間を加圧する気体加圧器からなり、前記粒状
化手段が、前記導管の減圧処理容器内開口端に不活性ガ
ス供給パイプを、その開口端を前記導管の開口端に向
け、近接させて取付けたものであり、前記不活性ガス供
給パイプの途中に不活性ガス加熱器が配置されており、
前記減圧処理容器の壁部に発熱体が埋設されており、前
記溶融物貯留槽が前記減圧処理容器内の下部に、少なく
ともその一部が、前記減圧処理容器の下端が開通した側
壁部の下側を通って減圧処理容器から突出して設けられ
ていることを特徴とするアルミ合金の精錬装置である。
That is, the invention of claim 1 is a refining apparatus for an aluminum alloy having a vapor pressure higher than that of aluminum and containing one or more kinds of metal impurities, and a melt holding furnace for holding a melt of the aluminum alloy. A depressurization processing container for decompressing the melt, a conduit serving as a passage for the melt from the melt holding furnace to the depressurization processing container, and supplying the melt in the holding furnace into the depressurization processing container. A melt supply means for granulating, a granulating means for granulating the melt supplied in the reduced pressure treatment container, deaeration in the reduced pressure treatment container and evaporation from the granulated melt in the reduced pressure treatment container Exhaust means for discharging the metal impurities, a metal impurity recovery chamber for recovering the metal impurities evaporated from the melt disposed between the decompression processing container and the exhaust means, and a metal impurity recovery chamber after the metal impurities are evaporated. For storing the melt An apparatus for refining an aluminum alloy comprising a melt storage tank, wherein the melt supply means comprises a gas pressurizer for pressurizing a space in a melt holding furnace, and the granulation means decompresses the conduit. An inert gas supply pipe is attached to the open end of the container, the open end of which is directed close to the open end of the conduit, and an inert gas heater is disposed in the middle of the inert gas supply pipe. And
A heating element is embedded in a wall portion of the decompression processing container, the melt storage tank is located in a lower portion of the decompression processing container, and at least a part thereof is below a side wall portion where the lower end of the decompression processing container is opened. The aluminum alloy refining device is characterized in that it is provided so as to project from the decompression processing container through the side.

【0006】この発明装置において、不活性ガス加熱器
を設けたのは、不活性ガスを加熱して、不活性ガス吹付
けにより溶融物の温度が低下しないようにする為であ
り、減圧処理容器の側壁にヒーターを埋設したのは、減
圧処理容器を高温に加熱することにより粒状溶融物を高
温に保持し、依って溶融物からの金属不純物の蒸発を促
進する為である。不活性ガス供給パイプは、その開口端
を溶融物供給導管の開口端に向け、近接させて取付ける
が、この本数は複数本であっても差支えない。更に溶融
物供給導管の開口端から離れた箇所にも取付けて、粒状
溶融物周辺を流動する不活性ガスの量を増やしても良
い。この場合の取付け箇所は、不活性ガスが、粒状溶融
物が落下する部分をできるだけ長く通過するような位置
にするのが好ましい。溶融物保持炉は減圧処理容器の上
方に配置して、溶融物を重力を利用して供給するように
すると供給量が楽に制御できる。溶融物保持炉を複数基
配置して或いは1個の溶融物保持炉に複数の導管を取付
けて、減圧処理容器内への溶融物の供給量を増加させる
ことができる。又溶融物保持炉を2基配置して溶融物を
交互に補給することにより、連続操業が可能になる。
In the apparatus of the present invention, the inert gas heater is provided in order to heat the inert gas and prevent the temperature of the melt from being lowered by spraying the inert gas. The reason why the heater was embedded in the side wall of the device is to heat the decompression treatment container to a high temperature to hold the granular melt at a high temperature, thereby promoting evaporation of metal impurities from the melt. The inert gas supply pipe is mounted in close proximity with its open end facing the open end of the melt supply conduit, but this number may be plural. Further, it may be mounted at a position away from the open end of the melt supply conduit to increase the amount of inert gas flowing around the granular melt. In this case, it is preferable that the mounting position is such that the inert gas passes through the portion where the granular melt falls, as long as possible. The melt holding furnace is arranged above the depressurization processing container, and the melt is supplied by utilizing gravity, so that the supply amount can be easily controlled. A plurality of melt-holding furnaces may be arranged or a plurality of conduits may be attached to one melt-holding furnace to increase the supply amount of the melt into the vacuum processing container. Further, by arranging two melt holding furnaces and supplying the melt alternately, continuous operation becomes possible.

【0007】請求項2の発明は、請求項1記載の装置を
用いて、アルミより蒸気圧の高い、1種以上の金属不純
物を含有するアルミ合金を精錬する方法であって、その
構成は、溶融物保持炉内で所定温度に加熱保持されたア
ルミ合金の溶融物を導管を通して、排気手段により減圧
された減圧処理容器内に供給し、前記導管からの溶融物
の供給量を前記保持炉の空間を加圧する気体加圧器によ
り制御し、前記導管から減圧処理容器内へ供給される溶
融物を、不活性ガス加熱器にて高温に加熱された不活性
ガスを不活性ガス供給パイプから吹付けて粒状化させ、
前記減圧処理容器内にて前記粒状溶融物から金属不純物
を蒸発させ、前記粒状溶融物周辺の金属不純物蒸気を前
記不活性ガスの流動により取除き、前記蒸発した金属不
純物を前記排出手段により吸引して、減圧処理容器と排
出手段との間に配置された金属不純物回収室にて回収
し、前記金属不純物蒸発後の粒状溶融物を減圧処理容器
内下部の溶融物貯留槽に落下させて貯留し、この貯留し
た溶融物を前記溶融物貯留槽の減圧処理容器から突出し
た部分から汲み出すことを特徴とするものである。
A second aspect of the present invention is a method for refining an aluminum alloy containing one or more metal impurities having a vapor pressure higher than that of aluminum, using the apparatus according to the first aspect. The melt of the aluminum alloy heated and held at a predetermined temperature in the melt-holding furnace is supplied through a conduit into a decompression processing container whose pressure is reduced by an exhaust means, and the amount of the melt supplied from the conduit is controlled by the holding furnace. The melt that is controlled by the gas pressurizer that pressurizes the space and is supplied from the conduit into the depressurization processing container is sprayed with the inert gas heated from the inert gas supply pipe to the high temperature inert gas. And granulate,
Metal impurities are evaporated from the granular melt in the decompression treatment container, metal impurity vapor around the granular melt is removed by the flow of the inert gas, and the evaporated metal impurities are sucked by the discharge means. Then, the metal impurities are collected in a metal impurity recovery chamber arranged between the depressurization processing container and the discharging means, and the granular melt after evaporation of the metal impurities is dropped and stored in a melt storage tank inside and under the depressurization processing container. The stored melt is pumped out from a portion of the melt storage tank projecting from the decompression processing container.

【0008】この発明方法は、蒸発させることができる
アルミより高い蒸気圧の金属不純物を含有するアルミ合
金溶融物に、高温の減圧処理容器内にて高温の不活性ガ
スを吹付けて、前記溶融物を粒状化させて表面積を大な
らしめ、この粒状溶融物を高温且つ減圧下に曝して前記
粒状溶融物から金属不純物を蒸発させ、更に前記粒状溶
融物周辺の金属不純物の蒸発物を、前記不活性ガスの流
動によって粒状溶融物の周辺から取除いて粒状溶融物周
辺の金属不純物の分圧を低下させ、依ってアルミ合金溶
融物中の蒸気圧の高い金属不純物を効率よく除去しよう
とするものである。
According to the method of the present invention, a high temperature inert gas is blown in a high temperature decompression treatment vessel to an aluminum alloy melt containing a metal impurity having a vapor pressure higher than that of aluminum, which is capable of being vaporized. The material is granulated to increase the surface area, and the granular melt is exposed to high temperature and reduced pressure to evaporate the metal impurities from the granular melt, and further to evaporate the metal impurities around the granular melt, The flow of the inert gas removes from the periphery of the granular melt to reduce the partial pressure of metal impurities around the granular melt, thereby attempting to efficiently remove metal impurities with high vapor pressure in the aluminum alloy melt. It is a thing.

【0009】この発明方法において、導管から供給され
る溶融物は高温な程、不活性ガス吹付けにより細かく粒
状化する。又粒状溶融物は細かい程、高温な程、金属不
純物の蒸発が促進される。従って減圧処理容器内及び不
活性ガスは高温に加熱して溶融物の温度低下を防止す
る。不活性ガスにはN2 ガスやArガスの他、アルミを
酸化させない任意の不活性ガスが用いられる。
In the method of the present invention, the higher the temperature of the melt supplied from the conduit, the more finely it is granulated by spraying with an inert gas. Further, the finer the particulate melt is and the higher the temperature is, the more the evaporation of metal impurities is promoted. Therefore, the inside of the decompression processing container and the inert gas are heated to a high temperature to prevent the temperature of the melt from decreasing. As the inert gas, N 2 gas, Ar gas, or any inert gas that does not oxidize aluminum is used.

【0010】[0010]

【作用】本発明では、溶融物保持炉から減圧処理容器に
溶融物を供給するのに、溶融物保持炉内の空間を加圧す
る気体加圧器を用いるので、溶融物の供給量を精度よく
制御できる。又減圧処理容器内に供給される溶融物を粒
状化する手段が、前記導管の減圧処理容器内開口端に不
活性ガス供給パイプを、その開口端を前記導管の開口端
に向け近接させて取付けたものなので、溶融物が微細に
粒状化する。又不活性ガス供給パイプの途中に不活性ガ
ス加熱器が配置されているので、不活性ガスを加熱する
ことができ、又減圧処理容器の側壁にヒーターが埋設さ
れているので、減圧処理容器内の粒状溶融物の温度低下
を防止でき、従って金属不純物の蒸発促進が可能とな
る。又粒状溶融物が貯留される溶融物貯留槽が前記減圧
処理容器内の下部に、少なくともその一部が、前記減圧
処理容器の下端が開通した側壁部の下側を通って減圧処
理容器から突出して設けられているので、操業中に溶融
物を容易に汲み出せる。又貯留槽に溶融物を所定高さ貯
留することにより、減圧処理容器内を液体シールするこ
とができる。
In the present invention, since the gas pressurizer for pressurizing the space inside the melt holding furnace is used to supply the melt from the melt holding furnace to the depressurization processing container, the amount of the melt supplied can be controlled accurately. it can. Further, means for granulating the melt supplied into the depressurization processing container is equipped with an inert gas supply pipe at the opening end of the conduit inside the depressurization processing container, the opening end of which is close to the opening end of the conduit. The melt is finely granulated. In addition, since the inert gas heater is arranged in the middle of the inert gas supply pipe, the inert gas can be heated, and since the heater is embedded in the side wall of the depressurization processing container, It is possible to prevent the temperature of the granular melt from being lowered, and thus to accelerate the evaporation of metal impurities. Further, a melt storage tank in which the granular melt is stored is located in the lower portion of the depressurization processing container, and at least a part thereof projects from the depressurization processing container through the lower side of the side wall portion where the lower end of the depressurization processing container is opened. Since it is installed in the room, the melt can be easily pumped out during the operation. Further, by storing the melted material at a predetermined height in the storage tank, the inside of the decompression processing container can be liquid-sealed.

【0011】[0011]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 図1は本発明の精錬装置の一実施例を示す側断面図であ
る。1はアルミ合金の溶融物、2は前記溶融物を保持す
る溶融物保持炉、3は前記溶融物を減圧下にて粒状化し
て金属不純物を蒸発させる減圧処理容器である。アルミ
合金の溶融物1が保持された溶融物保持炉2が、減圧処
理容器3上に2基並列配置されている。前記溶融物保持
炉2と減圧処理容器3との間に、保持炉内溶融物を減圧
処理容器内に供給する為の導管4が取付けられている。
前記溶融物1の供給量は、前記保持炉2に設置された保
持炉2内の空間を加圧する気体加圧器5により制御す
る。導管4の減圧処理容器3内の開口端に、不活性ガス
供給パイプ6がその開口端を、前記導管4の開口端に向
け、近接させて配置されている。不活性ガス供給パイプ
6の途中に不活性ガス加熱器7が配置されている。又減
圧処理容器3の側壁には、溶融物保持炉と同様にヒータ
ー17が埋設されており、前記不活性ガス加熱器7共々溶
融物を高温に保持することが可能である。
EXAMPLES The present invention will be described in detail below with reference to examples. Example 1 FIG. 1 is a side sectional view showing an example of a refining apparatus of the present invention. Reference numeral 1 is a melt of an aluminum alloy, 2 is a melt holding furnace for holding the melt, and 3 is a depressurization treatment container for granulating the melt under reduced pressure to evaporate metal impurities. Two melt holding furnaces 2 each holding a melt 1 of an aluminum alloy are arranged in parallel on a decompression processing container 3. A conduit 4 for supplying the melt in the holding furnace into the depressurization processing container is attached between the melt holding furnace 2 and the depressurization processing container 3.
The supply amount of the melt 1 is controlled by a gas pressurizer 5 that pressurizes the space inside the holding furnace 2 installed in the holding furnace 2. An inert gas supply pipe 6 is arranged close to the open end of the conduit 4 in the decompression treatment container 3 with its open end facing the open end of the conduit 4. An inert gas heater 7 is arranged in the middle of the inert gas supply pipe 6. Further, a heater 17 is embedded in the side wall of the decompression treatment container 3 like the melt holding furnace, and the melt can be held at a high temperature together with the inert gas heater 7.

【0012】減圧処理容器3の一方の側壁に設けられた
連通孔8には粒状溶融物9から蒸発した金属不純物を回
収する為の金属不純物回収室10が配置されており、この
回収室10の先にフィルタ11を介在させて排気ポンプ12が
取付けられている。この排気ポンプ12は、減圧処理容器
3の内部を減圧する作用も果たす。減圧処理容器3の下
部には、金属不純物が蒸発したあとの溶融物を貯留する
溶融物貯留槽13が配置されている。この貯留槽13は、そ
の一部が、前記減圧処理容器3の下端が開通した側壁部
14の下側を通って減圧処理容器3から突出して設けられ
ている。この貯留槽13に溶融物21を所定高さ貯留するこ
とにより、減圧処理容器3内部は外界からシールされ
る。前記減圧処理容器3中央には上下に仕切壁15が配設
されている。この仕切壁15は不活性ガスの減圧処理容器
3内の流動距離を長くして、粒状溶融物9周辺の金属不
純物の蒸気を取除く効果を高めるものである。この仕切
壁15の中央には開放穴16が設けてあり、排気ポンプ12に
連通されている。
A metal impurity recovery chamber 10 for recovering metal impurities evaporated from the granular melt 9 is arranged in a communication hole 8 provided on one side wall of the decompression treatment container 3, and the recovery chamber 10 has The exhaust pump 12 is attached with the filter 11 interposed therebetween. The exhaust pump 12 also serves to reduce the pressure inside the pressure reduction processing container 3. A melt storage tank 13 that stores a melt after evaporation of metal impurities is arranged below the decompression processing container 3. A part of the storage tank 13 is a side wall portion in which the lower end of the decompression processing container 3 is opened.
It is provided so as to protrude from the decompression processing container 3 through the lower side of 14. By storing the melt 21 at a predetermined height in the storage tank 13, the inside of the depressurization processing container 3 is sealed from the outside. A partition wall 15 is provided at the top and bottom in the center of the decompression processing container 3. The partition wall 15 increases the flow distance of the inert gas in the decompression processing container 3 to enhance the effect of removing the vapor of metal impurities around the granular melt 9. An opening hole 16 is provided in the center of the partition wall 15 and communicates with the exhaust pump 12.

【0013】次に、図1に示した本発明装置を用いて、
Znを2%添加したJIS-3003合金芯材にJIS-4043合金を
クラッドしたチューブ用アルミ複合材屑(屑全体のZn
濃度は 1.5%)を 600kg精錬した。前記複合材屑を保
持炉内にて加熱溶融して1073K又は1173Kの温度に保持
した。次に前記保持炉内の溶融物を導管を通して減圧処
理容器内へ供給した。前記溶融物の供給速度が 100kg
/hになるように、保持炉内の気圧を気体加圧器により
制御した。前記導管から供給される溶融物に不活性ガス
を吹付けて粒状化した。前記不活性ガスは気体加熱室で
600℃に加熱したものを不活性ガスパイプから吹付け
た。前記減圧処理容器内は排気ポンプにより減圧した。
減圧処理容器内の圧力、温度、及び不活性ガスの吹付量
はそれぞれ種々に変化させた。原料は2基の保持炉に交
互に補給して減圧処理を連続して行った。
Next, using the device of the present invention shown in FIG.
JIS-3003 alloy core with 2% Zn added and JIS-4043 alloy clad aluminum composite material for tubes (Zn
600 kg was smelted (concentration: 1.5%). The composite waste was heated and melted in a holding furnace and held at a temperature of 1073K or 1173K. Next, the melt in the holding furnace was supplied into the depressurization treatment container through a conduit. The melt feed rate is 100 kg
The pressure in the holding furnace was controlled by a gas pressurizer so that the pressure became / h. The melt supplied through the conduit was granulated by spraying an inert gas. The inert gas is heated in the gas heating chamber.
What was heated to 600 ° C was sprayed from an inert gas pipe. The inside of the decompression processing container was decompressed by an exhaust pump.
The pressure, temperature, and spray amount of the inert gas in the depressurization processing container were variously changed. The raw material was supplied to the two holding furnaces alternately, and the pressure reduction treatment was continuously performed.

【0014】前記溶融物から蒸発した金属不純物は回収
室にて回収した。又金属不純物蒸発後の粒状溶融物は減
圧処理容器内下部の溶融物貯留槽に落下させて貯留し、
減圧処理容器から突出した貯留槽部分から汲出した。精
錬開始前の貯留槽には、予め減圧処理容器の側壁下端が
沈むまでAl-1.5%Zn合金溶融物を入れておくことに
より、減圧処理容器内部を液体シールした。比較の為、
図2に示した従来装置についても同じ組成のアルミ複合
屑を精錬した。
The metal impurities evaporated from the melt were recovered in the recovery chamber. Also, the granular melt after evaporation of metal impurities is dropped and stored in the melt storage tank in the lower part of the depressurization processing container,
It was pumped out from the storage tank portion protruding from the depressurization processing container. The Al-1.5% Zn alloy melt was previously put into the storage tank before the refining was started until the lower end of the side wall of the depressurization container was submerged, thereby liquid-sealing the inside of the depressurization container. For comparison,
With the conventional apparatus shown in FIG. 2, aluminum composite scrap having the same composition was refined.

【0015】精錬効果を知る為に、溶融物貯留槽の減圧
処理容器から突出した部分から溶融物を定期的にサンプ
リングしてZnを定量分析した。減圧処理開始前に、溶
融物貯留槽にAl-1.5%Zn合金溶融物を入れておいた
為、Znの分析値は経時的に減少したが、1〜2時間経
過後には一定になった。そこで減圧処理開始後3時間後
と5時間後のZn除去率を求めて精錬効果を調べた。Z
n除去率aは、a= [(1.5−b)/1.5]×100 の式(但
しbはZnの分析値)にて算出した。粒状溶融物の粒径
は、粒状溶融物が固化後採取できるように精錬装置を部
分改造して予備実験を行い、得られた固相粒子径を実測
して求めた。結果を表1に示した。
In order to know the refining effect, the melt was periodically sampled from the portion protruding from the decompression treatment container of the melt storage tank to quantitatively analyze Zn. Since the Al-1.5% Zn alloy melt was put in the melt storage tank before the depressurization treatment was started, the analysis value of Zn decreased with time, but became constant after 1 to 2 hours. Therefore, the refining effect was examined by obtaining the Zn removal rates 3 hours and 5 hours after the start of the pressure reduction treatment. Z
The n removal rate a was calculated by the formula a = [(1.5−b) /1.5] × 100 (where b is the analysis value of Zn). The particle size of the granular melt was determined by conducting a preliminary experiment by partially modifying the refining device so that the granular melt could be collected after solidification, and measuring the obtained solid phase particle size. The results are shown in Table 1.

【0016】[0016]

【表1】 使用装置:図1に示した本発明装置、図2に示した
従来装置。
[Table 1] Device used: The device of the present invention shown in FIG. 1 and the conventional device shown in FIG.

【0017】表1より明らかなように、本発明例品(No
1〜5)は、Zn除去率がいずれも高かった。これは溶
融物を粒状化させた不活性ガスが、減圧処理容器内の粒
状溶融物の間を通過する間に前記粒状溶融物周辺のZn
蒸気を取除き、粒状溶融物周辺のZn分圧を低めて、粒
状溶融物内部のZnの蒸発を促進した為である。これに
対し、比較例品(No6、7)は、除去率がいずれも低か
った。これは不活性ガスを流入させなかった為、Zn蒸
気が粒状溶融物周辺を覆ってZnの蒸発速度が低下した
為である。
As is clear from Table 1, the products of the present invention (No.
1 to 5) had a high Zn removal rate. This is because the inert gas that has granulated the melt passes through the space between the granular melts in the depressurization treatment vessel while Zn around the granular melts is formed.
This is because the vapor was removed and the Zn partial pressure around the granular melt was lowered to promote the evaporation of Zn inside the granular melt. In contrast, the comparative examples (Nos. 6 and 7) had low removal rates. This is because the inert gas was not flowed in, and the Zn vapor covered the periphery of the granular melt and the evaporation rate of Zn decreased.

【0018】以上Znを含有するアルミ製ラジエータの
チューブ屑の精錬について説明したが、本発明は、他の
アルミ製品屑に適用しても、そこに含有される合金元素
がZn、Mg、Pb等の蒸気圧の高い元素であれば、同
様の効果が得られる。
Although the refining of the tube waste of the aluminum radiator containing Zn has been described above, the present invention can be applied to other aluminum product scraps and the alloy elements contained therein are Zn, Mg, Pb, etc. If the element has a high vapor pressure, the same effect can be obtained.

【0019】[0019]

【効果】以上述べたように、本発明によれば、Zn、M
g、Pb等のアルミより蒸気圧の高い合金元素を含有す
るアルミ合金を効率よく除去することができるので、工
業上顕著な効果を奏する。
As described above, according to the present invention, Zn, M
Since an aluminum alloy containing an alloy element having a vapor pressure higher than that of aluminum such as g and Pb can be efficiently removed, a remarkable effect is industrially achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の精錬装置の実施例を示す側断面図であ
る。
FIG. 1 is a side sectional view showing an embodiment of a refining device of the present invention.

【図2】従来の精錬装置の斜視図である。FIG. 2 is a perspective view of a conventional refining device.

【符号の説明】[Explanation of symbols]

1,21 アルミ合金の溶融物 2 溶融物保持炉 3 減圧処理容器 4 溶融物供給導管 5 気体加圧器 6 不活性ガス供給パイプ 7 不活性ガス加熱器 8 連通孔 9 粒状溶融物 10 金属不純物回収室 11 フィルタ 12 排気ポンプ 13 溶融物貯留槽 14 下端が開通した側壁部 15 仕切壁 16 開放穴 17 ヒーター 31,38 緩衝容器 32 溶湯ポンプ 33 上昇管 34 真空処理容器 35 霧状溶融物 36 凝縮器 37 降下管 39 溶解炉 1,21 Melt of aluminum alloy 2 Melt holding furnace 3 Decompression treatment vessel 4 Melt supply conduit 5 Gas pressurizer 6 Inert gas supply pipe 7 Inert gas heater 8 Communication hole 9 Granular melt 10 Metal impurity recovery chamber 11 Filter 12 Exhaust pump 13 Melt storage tank 14 Side wall with open lower end 15 Partition wall 16 Open hole 17 Heater 31,38 Buffer container 32 Melt pump 33 Ascending pipe 34 Vacuum processing container 35 Mist-like melt 36 Condenser 37 Descent Tube 39 melting furnace

───────────────────────────────────────────────────── フロントページの続き (72)発明者 尾原 弘一 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koichi Ohara 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミより蒸気圧の高い、1種以上の金
属不純物を含有するアルミ合金の精錬装置であって、前
記アルミ合金の溶融物を保持する溶融物保持炉、前記溶
融物を減圧処理する為の減圧処理容器、前記溶融物保持
炉から前記減圧処理容器への溶融物の通路となる導管、
前記保持炉内の溶融物を前記減圧処理容器内に供給する
為の溶融物供給手段、前記減圧処理容器内に供給された
溶融物を粒状化する為の粒状化手段、前記減圧処理容器
内を脱気し又前記減圧処理容器内の粒状化溶融物から蒸
発する金属不純物を排出する為の排気手段、前記減圧処
理容器と排気手段との間に配置された溶融物から蒸発す
る金属不純物を回収する為の金属不純物回収室、前記金
属不純物が蒸発したあとの溶融物を貯留する為の溶融物
貯留槽から構成されたアルミ合金の精錬装置であって、
前記溶融物供給手段が溶融物保持炉内の空間を加圧する
気体加圧器からなり、前記粒状化手段が、前記導管の減
圧処理容器内開口端に不活性ガス供給パイプを、その開
口端を前記導管の開口端に向け、近接させて取付けたも
のであり、前記不活性ガス供給パイプの途中に不活性ガ
ス加熱器が配置されており、前記減圧処理容器の壁部に
発熱体が埋設されており、前記溶融物貯留槽が前記減圧
処理容器内の下部に、少なくともその一部が、前記減圧
処理容器の下端が開通した側壁部の下側を通って減圧処
理容器から突出して設けられていることを特徴とするア
ルミ合金の精錬装置。
1. A refining device for an aluminum alloy having a vapor pressure higher than that of aluminum and containing one or more kinds of metal impurities, wherein the melt holding furnace holds a melt of the aluminum alloy, and the melt is depressurized. A reduced pressure processing container for, a conduit that serves as a passage for the melt from the melt holding furnace to the reduced pressure processing container,
A melt supply means for supplying the melt in the holding furnace into the reduced pressure processing container, a granulating means for granulating the melt supplied in the reduced pressure processing container, and the inside of the reduced pressure processing container. Exhaust means for degassing and discharging metal impurities evaporated from the granulated melt in the depressurization processing container, and recovering metal impurities evaporated from the melt disposed between the depressurization processing container and the exhaust means. A refining apparatus for an aluminum alloy comprising a metal impurity recovery chamber for carrying out, a melt storage tank for storing the melt after the metal impurities are evaporated,
The melt supply means comprises a gas pressurizer for pressurizing the space inside the melt holding furnace, and the granulation means has an inert gas supply pipe at the open end of the conduit inside the depressurization processing container, and the open end is at the open end. It is installed in close proximity to the open end of the conduit, an inert gas heater is arranged in the middle of the inert gas supply pipe, and a heating element is embedded in the wall portion of the decompression processing container. The melt storage tank is provided in a lower portion of the decompression processing container, at least a part of which is provided so as to project from the decompression processing container through a lower side of a side wall portion where a lower end of the decompression processing container is opened. Aluminum alloy refining equipment characterized by
【請求項2】 請求項1記載の装置を用いて、アルミよ
り蒸気圧の高い、1種以上の金属不純物を含有するアル
ミ合金を精錬する方法であって、溶融物保持炉内で所定
温度に加熱保持されたアルミ合金の溶融物を導管を通し
て、排気手段により減圧された減圧処理容器内に供給
し、前記導管からの溶融物の供給量を前記保持炉の空間
を加圧する気体加圧器により制御し、前記導管から減圧
処理容器内へ供給される溶融物を、不活性ガス加熱器に
て高温に加熱された不活性ガスを不活性ガス供給パイプ
から吹付けて粒状化させ、前記減圧処理容器内にて前記
粒状溶融物から金属不純物を蒸発させ、前記粒状溶融物
周辺の金属不純物蒸気を前記不活性ガスの流動により取
除き、前記蒸発した金属不純物を前記排出手段により吸
引して、減圧処理容器と排出手段との間に配置された金
属不純物回収室にて回収し、前記金属不純物蒸発後の粒
状溶融物を減圧処理容器内下部の溶融物貯留槽に落下さ
せて貯留し、この貯留した溶融物を前記溶融物貯留槽の
減圧処理容器から突出した部分から汲み出すことを特徴
とするアルミ合金の精錬方法。
2. A method for refining an aluminum alloy containing one or more metal impurities having a vapor pressure higher than that of aluminum by using the apparatus according to claim 1, wherein the temperature is set to a predetermined temperature in a melt holding furnace. The heat-held aluminum alloy melt is supplied through a conduit into a decompression container whose pressure is reduced by exhaust means, and the amount of the melt supplied from the conduit is controlled by a gas pressurizer that pressurizes the holding furnace space. Then, the melt supplied from the conduit into the decompression processing container is granulated by spraying an inert gas heated at a high temperature by an inert gas heater from an inert gas supply pipe to the decompression processing container. In the inside, the metal impurities are evaporated from the granular melt, the metal impurity vapor around the granular melt is removed by the flow of the inert gas, the evaporated metal impurities are sucked by the discharge means, and the pressure reduction treatment is performed. container And a discharging means for collecting in the metal impurity collecting chamber, the granular melt after evaporation of the metal impurities is dropped and stored in the melt storage tank in the lower part of the depressurization processing container, and the stored melt is melted. A method for refining an aluminum alloy, which comprises pumping a product from a portion of the melt storage tank projecting from a decompression processing container.
JP20467193A 1993-07-26 1993-07-26 Apparatus and method for refining aluminum alloy Pending JPH0741879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20467193A JPH0741879A (en) 1993-07-26 1993-07-26 Apparatus and method for refining aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20467193A JPH0741879A (en) 1993-07-26 1993-07-26 Apparatus and method for refining aluminum alloy

Publications (1)

Publication Number Publication Date
JPH0741879A true JPH0741879A (en) 1995-02-10

Family

ID=16494370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20467193A Pending JPH0741879A (en) 1993-07-26 1993-07-26 Apparatus and method for refining aluminum alloy

Country Status (1)

Country Link
JP (1) JPH0741879A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098549A1 (en) * 2000-06-22 2001-12-27 Hoei Shokai Co., Ltd Method of producing and supplying aluminum alloy and device for producing aluminum alloy
WO2021145398A1 (en) 2020-01-17 2021-07-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal purifying method and metal purifying apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001098549A1 (en) * 2000-06-22 2001-12-27 Hoei Shokai Co., Ltd Method of producing and supplying aluminum alloy and device for producing aluminum alloy
WO2021145398A1 (en) 2020-01-17 2021-07-22 Kabushiki Kaisha Toyota Chuo Kenkyusho Metal purifying method and metal purifying apparatus

Similar Documents

Publication Publication Date Title
JPH11108556A (en) Straight furnace floor-type furnace for refining titanium
CN110819822B (en) Electric heating aluminum smelting device
JP2001294949A (en) Continuous method for vacuum refining molten metal and apparatus therefor
US5142549A (en) Remelting apparatus and method for recognition and recovery of noble metals and rare earths
EP0248459B1 (en) Method and apparatus for purifying a light metal melt, in particular aluminium
US5263044A (en) Remelting method for recognition and recovery of noble metals and rare metals
JPH0741879A (en) Apparatus and method for refining aluminum alloy
US2763542A (en) Method of producing refractory metals
CN108504879A (en) A kind of the electron-beam smelting method and its device of hypoxemia high purity titanium ingot
CN211311551U (en) Electric heating aluminum smelting device
JP3490842B2 (en) Vacuum purification method and apparatus for molten aluminum alloy
JP3464380B2 (en) Continuous vacuum purification method and device for aluminum alloy scrap
GB2250028A (en) Improvements in and relating to melting and refining magnesium and magnesium alloys
JP2005097648A (en) Method for recovering magnesium-based alloy waste material
GB2086941A (en) Recovery of materials from low concentrations
JPH04504283A (en) Medium pressure electron beam furnace
CN213924964U (en) High-purity aluminum purification preprocessing device
JP3076306B2 (en) Condensate retention equipment for low temperature hearth refining.
US2784080A (en) Process for distillation of amalgams
CN208346240U (en) A kind of electron beam melting apparatus of hypoxemia high purity titanium ingot
US5160533A (en) Method for grain refining of metals
JPH10204553A (en) Method and device for dissolving and separating aluminum from raw material containing aluminum and metals with higher melting point than aluminum
JP2762849B2 (en) How to process ferro scrap
JP3533433B2 (en) Metal purification method
US4708190A (en) Treating metals and/or metallic compounds