JPH0741842A - Method for strengthening steel product - Google Patents

Method for strengthening steel product

Info

Publication number
JPH0741842A
JPH0741842A JP20554193A JP20554193A JPH0741842A JP H0741842 A JPH0741842 A JP H0741842A JP 20554193 A JP20554193 A JP 20554193A JP 20554193 A JP20554193 A JP 20554193A JP H0741842 A JPH0741842 A JP H0741842A
Authority
JP
Japan
Prior art keywords
strength
carbon
laser
steel
filler wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20554193A
Other languages
Japanese (ja)
Other versions
JP3073629B2 (en
Inventor
Moriaki Ono
守章 小野
Susumu Kaizu
享 海津
Makoto Kabasawa
真事 樺沢
Yukio Shinpo
幸雄 真保
Aoshi Tsuyama
青史 津山
Hiroyuki Tsunoda
浩之 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, NKK Corp, Nippon Kokan Ltd filed Critical Toyota Motor Corp
Priority to JP05205541A priority Critical patent/JP3073629B2/en
Publication of JPH0741842A publication Critical patent/JPH0741842A/en
Application granted granted Critical
Publication of JP3073629B2 publication Critical patent/JP3073629B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To highly strengthen steel products without generating problems, such as thermal strains. CONSTITUTION:While the steel products 3 are irradiated with a laser 2, high- carbon filler wires 6 are supplied to the part irradiated with the laser, by which carbon is added to a molten part 7 formed by the irradiation with the laser to form a bead-shaped molten and solidified part where carbon is enriched to a hardened structure. The aspect ratio (penetration depth H/penetration width W) of the molten part 7 is preferably specified to >=0.5 in order to effectively enhance the strength and to suppress the generation of the thermal strains.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鋼材を熱歪等の問題を
生じることなく高強度化するための方法に関する。ここ
で、鋼材とは、鋼板その他の未加工材およびこれらをプ
レス等により加工した加工材を含むものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for strengthening a steel material without causing problems such as thermal strain. Here, the steel material includes a steel sheet and other unprocessed materials and processed materials obtained by processing these with a press or the like.

【従来の技術】近年プレス成形品の高強度化・軽量化の
要請は益々高まる傾向にあるが、高強度材は形状凍結性
等の面で問題を生じるため、材料自体の高強度化には限
界がある。プレス成形品の強度は薄鋼板を複雑な形状に
プレス加工することにより向上させることができる。し
かし、炭素鋼板を必要な強度が得られるような複雑な形
状にプレス加工するには、衝撃液圧成形法や爆発成形法
等の高エネルギー速度加工法を用いる必要があり、これ
らの加工方法は生産性が低く、コスト高を招くという欠
点がある。
2. Description of the Related Art In recent years, there has been an increasing demand for higher strength and lighter weight of press-formed products. However, high-strength materials cause problems in terms of shape fixability, etc. There is a limit. The strength of the press-formed product can be improved by pressing a thin steel plate into a complicated shape. However, in order to press the carbon steel sheet into a complicated shape that can obtain the required strength, it is necessary to use high energy velocity processing methods such as impact hydraulic forming method and explosion forming method. It has the disadvantage of low productivity and high cost.

【0002】一方、軽量でしかも強度の高いプレス成形
品を得る技術として、薄鋼板等のプレス成形品にレーザ
やプラズマ等の高密度エネルギーを照射して線状に溶融
し、この溶融部分を焼入れ組織(焼入れ硬化部)とする
ことにより、プレス成形品の強度を向上させる技術が、
特開平4−72010号として提案されている。この技
術は焼入れ硬化能の高い材料、すなわち通常炭素含有量
が0.05wt%以上の材料に適用でき、熱歪による形
状不良等の問題から通常の焼入処理ができない薄鋼板の
プレス成形品の強度を高め、軽量でしかも強度の高いプ
レス成形品を得ることができる。
On the other hand, as a technique for obtaining a press-formed product that is lightweight and has high strength, a press-formed product such as a thin steel plate is irradiated with high-density energy such as laser or plasma to be melted linearly, and the melted portion is quenched. The technology for improving the strength of press-formed products by forming a structure (quenching and hardening part)
It is proposed as JP-A-4-72010. This technology can be applied to materials with high quench-hardenability, that is, materials with a carbon content of usually 0.05 wt% or more. It is possible to obtain a press-formed product that has high strength, is lightweight, and has high strength.

【0003】[0003]

【発明が解決しようとする課題】鋼材の焼入れ硬化能
は、一般に炭素当量(例えば、Ceq=C+Si/24
+Mn/6)によって規定されるが、上記のレーザ処理
材の強度上昇も焼入れ硬化能と同様に炭素当量によって
支配される。上記特開平4−72010号によれば、例
えば、炭素含有量が0.05wt%の鋼材を用いて、長
さ方向に平行に3本のレーザ焼入れ硬化部を形成したJ
IS5号試験片の引張強度は、未処理試験片に対して約
20%の強度上昇が認められる。しかし、炭素含有量の
低い鋼材、例えば炭素含有量が0.03wt%の鋼材で
は、上記と同様のレーザ焼入れ硬化部を形成したJIS
5号試験片は、未処理試験片に対して僅か2%程度の強
度上昇が認められるに過ぎない。このように特開平4−
72010号の技術は、炭素含有量が比較的低い材料で
は強度増加率が低く、事実上適用できないという問題が
ある。また、炭素含有量が高い鋼材でも強度増加率は高
々20%程度であり、それ以上の高強度化は達成できな
い。
The quench hardenability of steel materials is generally determined by the carbon equivalent (for example, Ceq = C + Si / 24).
+ Mn / 6), but the increase in strength of the above laser-treated material is controlled by the carbon equivalent as well as the quench-hardenability. According to the above-mentioned JP-A-4-72010, for example, a steel material having a carbon content of 0.05 wt% is used to form three laser quench-hardened parts in parallel with the lengthwise direction J.
The tensile strength of the IS5 test piece is increased by about 20% as compared with the untreated test piece. However, in the case of a steel material having a low carbon content, for example, a steel material having a carbon content of 0.03 wt%, the JIS in which the laser quench hardening portion similar to the above is formed
The No. 5 test piece has a strength increase of only about 2% as compared with the untreated test piece. As described above,
The technique of No. 72010 has a problem that it cannot be practically applied to a material having a relatively low carbon content because the rate of increase in strength is low. In addition, the strength increase rate of steel materials having a high carbon content is at most about 20%, and higher strength cannot be achieved.

【0004】本発明はこのような従来の問題に鑑みなさ
れたもので、鋼材をその炭素含有量に応じて、しかも熱
歪等の問題を生じることなく高強度化することができ、
従来にも増して軽量且つ高強度の鋼材を得ることを可能
にする方法を提供しようとするものである。
The present invention has been made in view of such conventional problems, and it is possible to increase the strength of a steel material according to its carbon content and without causing problems such as thermal strain.
It is intended to provide a method that makes it possible to obtain a steel material that is lighter and has higher strength than ever before.

【課題を解決するための手段】このような目的を達成す
るため、本発明はレーザ照射による鋼材の溶融部に外部
から炭素を添加することにより、炭素鋼或いは高炭素鋼
を焼入れした場合に得られると同様の焼入れ組織を有す
る溶融凝固部を形成することで鋼材の高強度化を図ろう
とするものである。
In order to achieve such an object, the present invention is obtained when carbon steel or high carbon steel is quenched by externally adding carbon to the molten portion of the steel material by laser irradiation. In order to increase the strength of the steel material, a melt-solidified portion having the same quenched structure as that described above is formed.

【0005】すなわち本発明は、鋼材にレーザを照射し
つつ、該レーザ照射部に高炭素フィラワイヤを供給する
ことにより、レーザ照射により形成される溶融部に炭素
を添加し、炭素が富化されたビード状の溶融凝固部を形
成することを特徴とする鋼材の強化方法である。本発明
法におけるレーザ照射は、強度を効果的に高め且つ熱歪
の発生を抑えるために比較的深溶込みの溶融形状となる
ように実施すること、特に、溶融部のアスペクト比(溶
け込み深さH/溶け込み幅W)が0.5以上になるよう
に実施することが好ましい。
That is, according to the present invention, by irradiating a steel material with a laser and supplying a high carbon filler wire to the laser irradiation portion, carbon is added to the melting portion formed by the laser irradiation to enrich the carbon. A method for strengthening a steel material, which comprises forming a bead-shaped melt-solidified portion. The laser irradiation in the method of the present invention is carried out so that the molten shape has a relatively deep penetration in order to effectively increase the strength and suppress the occurrence of thermal strain, and in particular, the aspect ratio (melting depth It is preferable to carry out so that H / melting width W) becomes 0.5 or more.

【0006】レーザとしては、CO2レーザ、COレー
ザ、Nd−YAGレーザ、ガラスレーザ、エキシマレー
ザ等、熱加工に使用できる任意のレーザ方式を適用でき
る。レーザ照射部に供給する高炭素フィラワイヤの炭素
含有量は、要求される溶融凝固部の硬さおよび材料の強
度に応じて適宜調整される。また、シールドガスとして
は、通常使用されるAr、He等の希ガスが使用でき
る。
As the laser, any laser system that can be used for thermal processing, such as CO 2 laser, CO laser, Nd-YAG laser, glass laser and excimer laser, can be applied. The carbon content of the high carbon filler wire supplied to the laser irradiation part is appropriately adjusted according to the required hardness of the melting and solidifying part and the strength of the material. Moreover, as the shield gas, a rare gas such as Ar or He that is usually used can be used.

【0007】[0007]

【作用】本発明の作用を図1に基づき説明する。図1は
高炭素フィラワイヤをレーザ照射部に送給し、これをレ
ーザビームで溶融しつつ溶融部を形成する例を示してい
る。集光レンズ1(例えば、ZnSeレンズ)で集光し
たレーザビーム2(通常、エネルギー密度:104〜1
7W/cm2)を鋼材3に照射し、この照射部に側方か
ら高炭素フィラワイヤ6を供給すると、鋼材3のレーザ
照射部および高炭素フィラワイヤ6は溶融・混合してキ
ーホール4と呼ばれる溶融孔が形成され、高炭素フィラ
ワイヤの炭素が溶融部7に侵入する。通常、シールドガ
スとしてはAr、He等の希ガスが用いられる。
The operation of the present invention will be described with reference to FIG. FIG. 1 shows an example in which a high carbon filler wire is fed to a laser irradiation section and is melted by a laser beam to form a melting section. Laser beam 2 (normally energy density: 10 4 to 1) condensed by a condenser lens 1 (for example, ZnSe lens)
( 7 W / cm 2 ) is applied to the steel material 3, and the high carbon filler wire 6 is laterally supplied to this irradiation part. The laser irradiation part of the steel material 3 and the high carbon filler wire 6 are melted and mixed to form the keyhole 4. A so-called melting hole is formed, and carbon of the high carbon filler wire penetrates into the melting portion 7. Usually, a rare gas such as Ar or He is used as the shield gas.

【0008】このようにレーザ照射による溶融部には炭
素が富化されしかも溶融部が急速に凝固・冷却されるた
め、炭素鋼或いは高炭素鋼を焼入れした場合に得られる
と同様の焼入れ組織を有する溶融凝固部が形成され、こ
の溶融凝固部は硬さおよび強度が母材に較べて大幅に増
加する。したがって、少なくとも強度が必要とされる鋼
材の部位に対して、上記レーザ照射を適当な間隔で線状
に実施すれば、当該部位に焼入れ組織を有する線状の溶
融凝固部が形成され、その部位の強度を著しく増加させ
ることができる。また、鋼材全体に対して上記レーザ照
射を適当な間隔で線状に実施すれば、鋼材全体の強度を
上昇させ得ることは言うまでもない。通常、上記溶融凝
固部はすじ状または格子状等に適当な間隔で形成され
る。
As described above, carbon is enriched in the melted portion by laser irradiation and the melted portion is rapidly solidified and cooled. Therefore, a quenching structure similar to that obtained when quenching carbon steel or high carbon steel is obtained. A melted and solidified portion having the same is formed, and the hardness and strength of the melted and solidified portion are significantly increased as compared with the base material. Therefore, if the laser irradiation is linearly performed at an appropriate interval for a portion of the steel material requiring at least strength, a linear melt-solidified portion having a quenched structure is formed at the portion, and the portion is formed. The strength of can be significantly increased. Needless to say, the strength of the entire steel material can be increased by linearly irradiating the entire steel material at appropriate intervals. Usually, the melt-solidified portions are formed in a stripe shape or a lattice shape at appropriate intervals.

【0009】また、溶融部のアスペクト比(溶け込み深
さH/溶け込み幅W)を0.5以上とすることにより、
強度をより効果的に高め、しかも熱歪の発生を効果的に
抑えることができる。溶融凝固部の硬さおよび鋼材の強
度は高炭素フィラワイヤの炭素含有量を調整することに
より制御できる。また、鋼材の強度は溶融凝固部の間隔
等を選択することによっても調整することができる。
By setting the aspect ratio (penetration depth H / penetration width W) of the fusion zone to 0.5 or more,
It is possible to increase the strength more effectively and to effectively suppress the occurrence of thermal strain. The hardness of the molten and solidified portion and the strength of the steel material can be controlled by adjusting the carbon content of the high carbon filler wire. The strength of the steel material can also be adjusted by selecting the distance between the melt-solidified portions.

【0010】本発明が対象とする鋼材には一般の炭素鋼
材、極低炭素鋼材が含まれ、また、必要に応じてMn,
Si,Pにより強化した鋼材、粒界強化のためにBを添
加した鋼材、Ti,Nbにより侵入型元素の少なくとも
一部を固定した極低炭素鋼材等、あらゆる種類の鋼材が
含まれる。また、鋼材(加工材、未加工材)の種類も鋼
板に限らず、管、条材、線材等のあらゆる種類のものに
適用することができる。また、表面にめっき(電気めっ
きまたは溶融めっき等)を施した鋼板等の鋼材にも適用
でき、めっきの種類は問わない。
The steel materials targeted by the present invention include general carbon steel materials and ultra-low carbon steel materials, and if necessary, Mn,
It includes all kinds of steel materials such as steel materials strengthened with Si and P, steel materials with B added for grain boundary strengthening, and ultra-low carbon steel materials with at least some of the interstitial elements fixed with Ti and Nb. Further, the types of steel materials (worked materials and unprocessed materials) are not limited to steel plates, and can be applied to all kinds of materials such as pipes, strips, and wire rods. Further, the present invention can be applied to steel materials such as steel plates whose surfaces are plated (electroplating or hot dipping), and the type of plating does not matter.

【0011】[0011]

【実施例】【Example】

〔実施例1〕素材鋼板の成分組成がC:0.01〜0.
20wt%、Si:0.02wt%、Mn:0.69w
t%で、板厚が1.4mmの合金化溶融亜鉛めっき鋼板
に対し、CO2レーザを用いて線状のレーザ照射を実施
した。本発明例ではレーザ照射部に高炭素フィラワイヤ
を供給して実施し、一方、比較例では高炭素フィラワイ
ヤを供給することなくレーザ照射を実施した。供給した
フィラワイヤは直径0.8mmで、化学組成はC:0.
50wt%、Si:0.50wt%、Mn:1.40w
t%である。レーザ照射条件は以下の通りである。 レーザ出力:3.0kW 処理速度:3m/min 集光レンズの焦点距離:254mm 焦点位置:−0.5mm アスペクト比:0.7 ノズル直径:3mm ノズル高さ:5mm センターガスの種類:Ar センターガス流量:10 l/min 高炭素フィラワイヤの供給量:2g/min
[Example 1] The composition of the raw steel sheet was C: 0.01 to 0.
20 wt%, Si: 0.02 wt%, Mn: 0.69w
At t%, a linear laser irradiation was performed using a CO 2 laser on a galvannealed steel sheet having a plate thickness of 1.4 mm. In the example of the present invention, the high-carbon filler wire was supplied to the laser irradiation portion to perform the irradiation, while in the comparative example, the laser irradiation was performed without supplying the high-carbon filler wire. The supplied filler wire had a diameter of 0.8 mm and had a chemical composition of C: 0.
50wt%, Si: 0.50wt%, Mn: 1.40w
t%. The laser irradiation conditions are as follows. Laser output: 3.0 kW Processing speed: 3 m / min Focal length of condenser lens: 254 mm Focal position: -0.5 mm Aspect ratio: 0.7 Nozzle diameter: 3 mm Nozzle height: 5 mm Center gas type: Ar Center gas Flow rate: 10 l / min High carbon filler wire supply: 2 g / min

【0012】レーザ照射によって得られらビード状の溶
融凝固部のマイクロビッカース硬さHv(測定荷重50
gf)を測定した。また、各試験条件により図2に示す
ようなJIS5号試験片に3本のビード状の溶融凝固部
を引張方向と平行に形成させたものを作成し、各試験片
の引張強さを測定した。図3に鋼板(母材)の炭素含有
量と溶融凝固部のマイクロビッカース硬さHvの関係を
示す。これによれば、高炭素フィラワイヤの供給の有無
に関係なく母材の炭素含有量が多いほど溶融凝固部のマ
イクロビッカース硬さは高くなるが、高炭素フィラワイ
ヤを供給した場合には高炭素フィラワイヤを供給しない
場合に較べてマイクロビッカース硬さが200前後高く
なっている。
The micro Vickers hardness Hv (measurement load 50) of the bead-like melted and solidified portion obtained by laser irradiation.
gf) was measured. Further, according to each test condition, a JIS No. 5 test piece as shown in FIG. 2 having three bead-shaped melt-solidified portions formed in parallel with the tensile direction was prepared, and the tensile strength of each test piece was measured. . FIG. 3 shows the relationship between the carbon content of the steel plate (base material) and the micro Vickers hardness Hv of the melt-solidified portion. According to this, the micro-Vickers hardness of the molten and solidified portion becomes higher as the carbon content of the base material increases, regardless of whether or not the high-carbon filler wire is supplied, but when the high-carbon filler wire is supplied, the high-carbon filler wire is The micro Vickers hardness is about 200 higher than when not supplied.

【0013】図4に母材の炭素含有量と高炭素フィラワ
イヤを供給して得られた溶融凝固部の炭素含有量との関
係を示す。これによれば、溶融凝固部の炭素含有量CL
と、母材の炭素含有量COおよびフィラワイヤの炭素含
有量CW(0.5wt%)との間には、CL=(CW
O)/2〔wt%〕という関係が認められる。これ
は、溶融凝固部は、フィラワイヤと母材との希釈率が5
0%であることを意味している。
FIG. 4 shows the relationship between the carbon content of the base material and the carbon content of the melt-solidified part obtained by supplying the high carbon filler wire. According to this, the carbon content C L of the melt-solidified portion is
Between the carbon content C O of the base material and the carbon content C W (0.5 wt%) of the filler wire, C L = (C W +
The relationship of C O ) / 2 [wt%] is recognized. This is because the melt-solidification part has a dilution ratio of the filler wire and the base material of 5
It means 0%.

【0014】図5に鋼板(母材)の炭素含有量とJIS
5号試験片による引張強さおよび未処理材に対する強度
増加率との関係を示す。これによれば、図3に示される
結果と同様、高炭素フィラワイヤの供給の有無に関係な
く母材の炭素含有量が多いほど引張強さが高くなるが、
高炭素フィラワイヤを供給した場合には高炭素フィラワ
イヤを供給しない場合に較べて強度増加率が高くなって
いる。炭素含有量が0.03wt%の鋼板では、高炭素
フィラワイヤを供給しない場合には強度増加率は僅かに
2%程度であるが、高炭素フィラワイヤを供給した場合
には強度増加率は約23%である。また、炭素含有量が
0.05wt%の鋼板について高炭素フィラワイヤを供
給した場合には、強度増加率は約30%にも達してい
る。このように高炭素フィラワイヤを供給することによ
り炭素が溶融凝固部に侵入し、凝固組織が母材に較べて
高炭素のマルテンサイト組織となることで硬度と引張強
さが増加したことが判る。
FIG. 5 shows the carbon content of the steel sheet (base material) and JIS.
The relationship between the tensile strength of the No. 5 test piece and the strength increase rate with respect to the untreated material is shown. According to this, similar to the result shown in FIG. 3, the tensile strength increases as the carbon content of the base material increases, regardless of whether or not the high carbon filler wire is supplied.
When the high carbon filler wire is supplied, the strength increase rate is higher than when the high carbon filler wire is not supplied. In the steel sheet with a carbon content of 0.03 wt%, the strength increase rate is only about 2% when the high carbon filler wire is not supplied, but the strength increase rate is about 23% when the high carbon filler wire is supplied. Is. Further, when a high carbon filler wire is supplied to a steel sheet having a carbon content of 0.05 wt%, the strength increase rate reaches about 30%. It can be seen that by supplying the high-carbon filler wire in this way, carbon penetrates into the molten and solidified portion, and the solidification structure becomes a high-carbon martensite structure as compared with the base material, thereby increasing hardness and tensile strength.

【0015】〔実施例2〕成分組成がC:0.08wt
%、Si:0.15wt%、Mn:1.70wt%で板
厚1.6mmの冷延鋼板に、シールドガスとしてArを
用いNd−YAGレーザにより線状のレーザ照射を実施
した。本発明例では高炭素フィラワイヤを供給してレー
ザ照射を実施し、一方、比較例では高炭素フィラワイヤ
を供給することなくレーザ照射を実施した。
[Example 2] Component composition C: 0.08 wt
%, Si: 0.15 wt%, Mn: 1.70 wt%, and a cold-rolled steel sheet having a thickness of 1.6 mm was subjected to linear laser irradiation by an Nd-YAG laser using Ar as a shield gas. In the example of the present invention, laser irradiation was performed by supplying a high carbon filler wire, while in the comparative example, laser irradiation was performed without supplying a high carbon filler wire.

【0016】本実施例ではレーザビーム径を0.4〜8
mmの範囲で変え、溶融凝固部のアスペクト比(溶け込
み深さH/溶け込み幅W)が異なる試験片を作成し、そ
れらの引張強さ、熱歪およびマイクロビッカース硬さH
v(測定荷重50gf)を測定した。引張試験は、JI
S5号試験片に図2に示すような3本の線状の溶融凝固
部を形成して行った。また、熱歪の測定は300(l)
×25(w)mmの試験片に3本の溶融凝固部を形成し
て試験片の長手方向での反り量(h)を測定し、h/l
×100(%)で評価した。なお、レーザ照射条件は以
下の通りである。 レーザ出力:2.5kW 処理速度:3m/min 集光レンズの焦点距離:127mm 焦点位置:0〜20mm 鋼板上でのレーザビーム径:0.4〜8mm ノズル直径:5mm ノズル高さ:7〜27mm センターガスの種類:Ar センターガス流量:20 l/min 高炭素フィラワイヤの炭素含有量:0.4wt% 高炭素フィラワイヤの供給量:4g/min
In this embodiment, the laser beam diameter is 0.4 to 8
The test pieces having different aspect ratios (penetration depth H / penetration width W) of the molten and solidified portion are prepared by changing the range of mm, and their tensile strength, thermal strain and micro Vickers hardness H
v (measurement load 50 gf) was measured. The tensile test is JI
Three linear melt-solidified portions as shown in FIG. 2 were formed on the S5 test piece. Also, the measurement of thermal strain is 300 (l)
The amount of warpage (h) in the longitudinal direction of the test piece was measured by forming three melt-solidified portions on a test piece of × 25 (w) mm, and h / l
It evaluated by x100 (%). The laser irradiation conditions are as follows. Laser output: 2.5 kW Processing speed: 3 m / min Focal length of condenser lens: 127 mm Focal position: 0-20 mm Laser beam diameter on steel plate: 0.4-8 mm Nozzle diameter: 5 mm Nozzle height: 7-27 mm Type of center gas: Ar Center gas flow rate: 20 l / min Carbon content of high carbon filler wire: 0.4 wt% Supply amount of high carbon filler wire: 4 g / min

【0017】高炭素フィラワイヤを供給した供試材の未
処理材に対する強度増加率および熱歪とアスペクト比と
の関係を図6に示す。これによれば、アスペクト比0.
5未満の表面溶融タイプの溶融凝固部を有する鋼板では
強度増加率が相対的に小さいのに対し、アスペクト比が
0.5以上になると強度増加率が大きくなっている。ま
た、アスペクト比0.5未満の表面溶融タイプでは熱歪
による変形が大きいのに対し、アスペクト比0.5以上
の深溶込みタイプでは熱変形が適切に抑えられている。
FIG. 6 shows the relationship between the rate of increase in strength, the thermal strain, and the aspect ratio of the test material supplied with the high carbon filler wire with respect to the untreated material. According to this, the aspect ratio is 0.
A steel sheet having a surface-melting type melt-solidified portion of less than 5 has a relatively small increase rate of strength, whereas an aspect ratio of 0.5 or more increases the increase rate of strength. Further, in the surface melting type having an aspect ratio of less than 0.5, deformation due to thermal strain is large, whereas in the deep penetration type having an aspect ratio of 0.5 or more, thermal deformation is appropriately suppressed.

【0018】従来、金属材の機械特性や耐熱性等の改善
を目的としてレーザ照射を利用した表面改質技術が知ら
れ、これらの技術では金属材をAc3点直上の温度に加
熱するか或いは溶融させている。しかし、これら従来の
技術はいずれも金属材の表面近傍を薄く処理するだけで
あり、溶融させる場合でも表面溶融タイプのレーザ処理
であって、そのレーザ処理層のアスペクト比は0.5未
満である。上記の試験結果によれば、このようなアスペ
クト比0.5未満の表面溶融タイプのレーザ処理では本
発明法としての一応の効果は得られるものの、鋼材の高
強度化および熱歪の抑制が必ずしも十分でなく、高強度
化および熱歪の抑制を効果的に達成するためにはアスペ
クト比を0.5以上とすることが好ましいことが判る。
Conventionally, surface modification techniques utilizing laser irradiation have been known for the purpose of improving the mechanical properties and heat resistance of metal materials. In these techniques, the metal material is heated to a temperature just above the Ac 3 point, or Melting. However, in all of these conventional techniques, the vicinity of the surface of the metal material is only thinly processed, and even when melting is performed, the surface melting type laser processing is performed, and the aspect ratio of the laser processing layer is less than 0.5. . According to the above test results, although such a surface melting type laser treatment with an aspect ratio of less than 0.5 can provide a tentative effect as the method of the present invention, it is not always possible to increase the strength of a steel material and suppress thermal strain. It is not sufficient, and it is understood that the aspect ratio is preferably 0.5 or more in order to effectively achieve high strength and suppression of thermal strain.

【0019】本実施例中の代表的な処理例と変態焼入れ
処理を行った例について、熱歪、マイクロビッカース硬
さHvおよび強度増加率の結果を表1に示す。同表によ
れば、高炭素フィラワイヤを供給した場合には、深溶込
み溶融および表面溶融いずれのタイプにおいても大幅な
硬度の増加が認められるが、表面溶融タイプでは溶融体
積が十分でないため、深溶込み溶融タイプに比較して強
度増加率が小さく、しかも、熱歪みも大きくなってい
る。
Table 1 shows the results of thermal strain, micro-Vickers hardness Hv, and strength increase rate for the representative example of treatment in this example and the example for which transformation and quenching treatment was performed. According to the same table, when a high carbon filler wire is supplied, a significant increase in hardness is observed in both deep penetration melting and surface melting types. Compared to the penetration-melt type, the strength increase rate is small and the thermal strain is large.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【発明の効果】以上述べた本発明によれば、炭素鋼材、
極低炭素鋼材の別を問わず鋼材の強度を効果的に高める
ことができ、従来にも増して軽量且つ高強度の鋼材を得
ることが可能となる。また、特にアスペクト比が0.5
以上の深溶込み溶融部が形成されるようなレーザ照射条
件とすることにより、強度をより効果的に高めることが
できるとともに、形状不良等の原因となる熱歪みの発生
を効果的に抑えることができ、より高強度でしかも寸法
精度の高い鋼材を得ることができる。
According to the present invention described above, a carbon steel material,
It is possible to effectively increase the strength of the steel material regardless of whether it is an ultra-low carbon steel material, and it is possible to obtain a lighter and higher strength steel material than ever before. Also, especially when the aspect ratio is 0.5
By setting the laser irradiation conditions so that the deep-penetration molten portion is formed, the strength can be more effectively increased, and the occurrence of thermal strain that causes a defective shape or the like can be effectively suppressed. It is possible to obtain a steel material having higher strength and higher dimensional accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施状況の一例を示す説明図FIG. 1 is an explanatory diagram showing an example of the implementation status of the present invention.

【図2】本発明の実施例の引張試験に用いた試験片を示
す平面図
FIG. 2 is a plan view showing a test piece used in a tensile test of an example of the present invention.

【図3】高炭素フィラワイヤを供給した場合としない場
合について、母材の炭素含有量と溶融凝固部のマイクロ
ビッカース硬さHvとの関係を示すグラフ
FIG. 3 is a graph showing the relationship between the carbon content of the base material and the micro-Vickers hardness Hv of the melt-solidified portion with and without the supply of the high-carbon filler wire.

【図4】母材の炭素含有量と高炭素フィラワイヤを供給
して得られた溶融凝固部の炭素含有量との関係を示すグ
ラフ
FIG. 4 is a graph showing the relationship between the carbon content of the base metal and the carbon content of the melt-solidified part obtained by supplying the high carbon filler wire.

【図5】高炭素フィラワイヤを供給した場合としない場
合について、母材の炭素含有量と試験片の引張強さおよ
び未処理材に対する強度増加率との関係を示すグラフ
FIG. 5 is a graph showing the relationship between the carbon content of the base material, the tensile strength of the test piece, and the strength increase rate with respect to the untreated material, with and without the supply of the high carbon filler wire.

【図6】レーザ照射による溶融部のアスペクト比と試験
片の未処理材に対する強度増加率および熱歪との関係を
示すグラフ
FIG. 6 is a graph showing the relationship between the aspect ratio of the melted portion due to laser irradiation, the strength increase rate of the test piece with respect to the untreated material, and the thermal strain.

【符号の説明】[Explanation of symbols]

1…集光レンズ、2…レーザビーム、3…鋼材、4…キ
ーホール、5…シールドガス、6…高炭素フィラワイ
ヤ、7…溶融部
1 ... Focusing lens, 2 ... Laser beam, 3 ... Steel material, 4 ... Keyhole, 5 ... Shield gas, 6 ... High carbon filler wire, 7 ... Melting part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樺沢 真事 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 真保 幸雄 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 津山 青史 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 角田 浩之 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shinji Kabazawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan KK (72) Inventor Yukio Maho 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Tube Co., Ltd. (72) Inventor Aotsu Tsuyama, 1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Tube Co., Ltd. (72) Inventor, Hiroyuki Tsunoda 1-2, Marunouchi, Chiyoda-ku, Tokyo Nihon Inside Steel Pipe Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼材にレーザを照射しつつ、該レーザ照
射部に高炭素フィラワイヤを供給することにより、レー
ザ照射により形成される溶融部に炭素を添加し、炭素が
富化されたビード状の溶融凝固部を形成することを特徴
とする鋼材の強化方法。
1. A steel material is irradiated with a laser and a high carbon filler wire is supplied to the laser irradiation portion to add carbon to a molten portion formed by the laser irradiation to form a bead-shaped carbon-enriched material. A method for strengthening a steel material, which comprises forming a melt-solidified portion.
【請求項2】 レーザ照射による溶融部のアスペクト比
が0.5以上である請求項1に記載の鋼材の強化方法。
2. The method for strengthening a steel material according to claim 1, wherein the aspect ratio of the molten portion by laser irradiation is 0.5 or more.
JP05205541A 1993-07-29 1993-07-29 How to strengthen steel Expired - Fee Related JP3073629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05205541A JP3073629B2 (en) 1993-07-29 1993-07-29 How to strengthen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05205541A JP3073629B2 (en) 1993-07-29 1993-07-29 How to strengthen steel

Publications (2)

Publication Number Publication Date
JPH0741842A true JPH0741842A (en) 1995-02-10
JP3073629B2 JP3073629B2 (en) 2000-08-07

Family

ID=16508605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05205541A Expired - Fee Related JP3073629B2 (en) 1993-07-29 1993-07-29 How to strengthen steel

Country Status (1)

Country Link
JP (1) JP3073629B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2736672B1 (en) 2011-07-26 2015-09-30 Arcelormittal Investigación y Desarrollo SL Hot-formed welded part having high resistance and process to produce such a part
JPWO2017018515A1 (en) * 2015-07-29 2017-12-28 新日鐵住金株式会社 Titanium material for hot rolling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2736672B1 (en) 2011-07-26 2015-09-30 Arcelormittal Investigación y Desarrollo SL Hot-formed welded part having high resistance and process to produce such a part
US10828729B2 (en) 2011-07-26 2020-11-10 Arcelormittal Hot-formed previously welded steel part with very high mechanical resistance and production method
US10919117B2 (en) 2011-07-26 2021-02-16 ArcelorMittal Investigación y Desarrollo, S.L. Hot-formed previously welded steel part with very high mechanical resistance and production method
US11426820B2 (en) 2011-07-26 2022-08-30 Arcelormittal Hot-formed previously welded steel part with very high mechanical resistance and production method
JPWO2017018515A1 (en) * 2015-07-29 2017-12-28 新日鐵住金株式会社 Titanium material for hot rolling

Also Published As

Publication number Publication date
JP3073629B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
Leunda et al. Laser cladding of vanadium-carbide tool steels for die repair
US3952180A (en) Cladding
AU2014362928B2 (en) Multi-track laser surface hardening of low carbon cold rolled closely annealed (CRCA) grades of steels
JPWO2019245025A1 (en) Steel plate, tailored blank, hot press molded product, steel pipe, hollow quenching molded product, and method for manufacturing steel plate
CN111107960A (en) Method for joining two blanks, and blank and product obtained
JP3091059B2 (en) How to strengthen steel
Pelletier et al. Hadfield steel coatings on low carbon steel by laser cladding
JP4427110B2 (en) Press forming method of thin steel sheet for processing
JP3073629B2 (en) How to strengthen steel
JPS591678A (en) Production of composite tool steel for hot working
JP3091060B2 (en) How to strengthen steel
US5180204A (en) High strength steel pipe for reinforcing door of car
JPS55125231A (en) Production of weldable low alloy heat treated hard top rail
JP3091058B2 (en) How to strengthen carbon steel
JP7099330B2 (en) Steel Sheet, Tailored Blank, Hot Press Formed Product, Steel Tubular Tailored Blank, Hollow Hot Press Formed Product, and Steel Sheet Manufacturing Method
JP2979030B2 (en) Steel sheet excellent in curability and formability by high energy density beam irradiation and method for producing the same
JP3073630B2 (en) How to strengthen ultra low carbon steel
DE10306063A1 (en) Production of workpieces made from amour steel for special vehicles comprises softening each workpiece at a temperature above the Curie point, cooling, processing the workpiece, bringing to a temperature above the Curie point and quenching
KR102705050B1 (en) Method for welding coated steel plates
JP3367561B2 (en) Method of strengthening steel sheet by laser irradiation
US20240011138A1 (en) Method for manufacturing tailor welded blank using steel sheet for hot pressing having al-fe-based intermetallic alloy layer
Yang et al. The effects of overlapping runs in the laser-transformation hardening of tool-steel specimens
JP2022154099A (en) molding method
JP2002275527A (en) Method for strengthening steel sheet and plate by laser irradiation
Dombrovskii Effect of plasma heat treatment of the surface on the strength of steel structures

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees