JPH0741782B2 - Vehicle height control device - Google Patents

Vehicle height control device

Info

Publication number
JPH0741782B2
JPH0741782B2 JP61027665A JP2766586A JPH0741782B2 JP H0741782 B2 JPH0741782 B2 JP H0741782B2 JP 61027665 A JP61027665 A JP 61027665A JP 2766586 A JP2766586 A JP 2766586A JP H0741782 B2 JPH0741782 B2 JP H0741782B2
Authority
JP
Japan
Prior art keywords
vehicle height
nth
difference
vehicle
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61027665A
Other languages
Japanese (ja)
Other versions
JPS62184910A (en
Inventor
和幸 夏目
栄宏 捧
朋夫 野村
進 大橋
Original Assignee
日本電装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電装株式会社 filed Critical 日本電装株式会社
Priority to JP61027665A priority Critical patent/JPH0741782B2/en
Publication of JPS62184910A publication Critical patent/JPS62184910A/en
Publication of JPH0741782B2 publication Critical patent/JPH0741782B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は車高制御装置に関する。The present invention relates to a vehicle height control device.

〔従来技術〕[Prior art]

従来、この種の車高制御装置においては、目標車高と現
実の車高との差に応じて車両の各車輪側の車高制御速度
のバランスを保ちつつ車高制御を行うようにしたものが
ある。
Conventionally, in this type of vehicle height control device, the vehicle height control is performed while maintaining the balance of the vehicle height control speed on each wheel side of the vehicle according to the difference between the target vehicle height and the actual vehicle height. There is.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、このような構成においては、車体がロー
リング等により傾斜した場合にも、車体の傾斜制御を直
接行うことなく、上述のような車高制御の結果として車
体の傾斜を修正することとなるため、かかる修正に時間
を要し、その結果、車両の乗心地及び操案性の確保が不
十分になるという問題がある。
However, in such a configuration, even when the vehicle body leans due to rolling or the like, the leaning of the vehicle body is corrected as a result of the vehicle height control described above without directly performing the leaning control of the vehicle body. However, there is a problem that such correction takes time, and as a result, it becomes insufficient to secure the riding comfort and the maneuverability of the vehicle.

そこで、本発明は、このような問題に対処すべく、車体
が傾斜したときこの傾斜自体を積極的に修正制御するよ
うにした車高制御装置を提供しようとするものである。
Therefore, the present invention intends to provide a vehicle height control device that positively corrects and controls the inclination itself when the vehicle body leans in order to cope with such a problem.

〔問題点を解決するための手段〕[Means for solving problems]

かかる問題の解決にあたり、本発明の構成上の特徴は、
第1図にて例示するごとく、第1,第2,・・・,第nの車
輪を有する車両において、前記第1,第2,・・・,第nの
車輪の各近傍の現実の車高をそれぞれ検出し第1,第2,・
・・,第nの車高検出信号として発生する第1,第2,・・
・,第nの車高検出手段第1a,1b,・・・,1nと、前記第
1車輪の近傍の目標車高2Aと前記第1車高検出信号の値
との差、前記第2車輪の近傍の目標車高2Bと前記第2車
高検出信号の値との差、・・・、前記第n車輪の近傍の
目標車高2Nと前記第n車高検出信号の値との差を第1,第
2,・・・,第nの主車高差2a,2b,・・・,2nとしてそれ
ぞれ演算する主車高差演算手段2と、前記第1,第2,・・
・,第nの車高検出信号の各値を平均化してこれを平均
車高と決定する平均車高決定手段3と、前記平均車高と
前記第1車高検出信号の値との差、前記平均車高と前記
第2車高検出信号の値との差、・・・、前記平均車高と
前記第n車高検出信号の値との差を第1,第2,・・・,第
nの補助車高差4a,4b,・・・,4nとしてそれぞれ演算す
る補助車高差演算手段4と、第1,第2,・・・,第nの演
算主車高差2a,2b,・・・,2nを第1,第2,・・・,第nの
演算補助車高差4a,4b,・・・,4nに応じ車体の傾きを減
少させるに必要な第1,第2,・・・,第nの修正主車高差
5a,5b,・・・,5nとしてそれぞれ修正する修正手段5
と、第1,第2,・・・,第nの修正主車高差5a,5b,・・
・,5nに応じた調整速度にて、前記第1,第2,・・・,第
nの車輪の各近傍の現実の車高をそれぞれ調整する第1,
第2,・・・,第nの調整手段6a,6b,・・・6nとを設ける
ようにしたことにある。
In solving such problems, the structural features of the present invention are as follows.
As illustrated in FIG. 1, in a vehicle having first, second, ..., Nth wheels, an actual vehicle near each of the first, second, ..., Nth wheels. The first, second, ...
.., 1st, 2nd, ... Generated as nth vehicle height detection signal
.., 1n, vehicle height detection means 1a, 1b, ..., 1n, a target vehicle height 2A near the first wheel, and a value of the first vehicle height detection signal, the second wheel , The difference between the target vehicle height 2B near the second vehicle height detection signal and the target vehicle height 2N near the nth wheel and the value of the nth vehicle height detection signal. 1st, 1st
2, ..., Main vehicle height difference calculating means 2 for calculating the nth main vehicle height differences 2a, 2b, ..., 2n respectively, and the first, second, ...
.. Average vehicle height determining means 3 for averaging the respective values of the n-th vehicle height detection signal to determine the average vehicle height, and the difference between the average vehicle height and the value of the first vehicle height detection signal, The difference between the average vehicle height and the value of the second vehicle height detection signal, ..., The difference between the average vehicle height and the value of the nth vehicle height detection signal, the first, second, ... Auxiliary vehicle height difference calculating means 4 for calculating the nth auxiliary vehicle height differences 4a, 4b, ..., 4n respectively, and the first, second, ..., Nth calculated main vehicle height differences 2a, 2b. , ..., 2n is the first, second, ..., The first, second required to reduce the inclination of the vehicle body in accordance with the nth calculation auxiliary vehicle height difference 4a, 4b ,. ..., nth corrected main vehicle height difference
Correction means 5 for correcting 5a, 5b, ..., 5n respectively
And the 1st, 2nd, ..., The nth corrected main vehicle height difference 5a, 5b, ...
.., 1st, 2nd, ... Adjusting the actual vehicle height in the vicinity of each of the 1st, 2nd, ...
The second, ..., Nth adjusting means 6a, 6b ,.

〔作用効果〕[Action effect]

しかして、このように本発明を構成したことにより、車
高制御状態におかれた車両の車体が傾斜したとき、第1,
第2,・・・,第nの車高検出手段1a,1b,・・・,1nが第
1,第2,・・・,第nの車高検出信号をそれぞれ発生し、
主車高差演算手段2が、目標車高2Aと前記第1車高検出
信号の値との差、目標車高2Bと前記第2車高検出信号の
値との差、・・・、目標車高2Nと前記第n車高検出信号
の値との差を第1,第2,・・・,第nの主車高差2a,2b,・
・・,2nとしてそれぞれ演算し、平均車高決定手段3が
前記第1,第2,・・・,第nの車高検出信号に基き平均車
高を決定する。
Thus, by configuring the present invention in this way, when the vehicle body of the vehicle in the vehicle height control state tilts,
The second, ..., The n-th vehicle height detecting means 1a, 1b ,.
The first, second, ..., Nth vehicle height detection signals are generated,
The main vehicle height difference calculating means 2 uses the difference between the target vehicle height 2A and the value of the first vehicle height detection signal, the difference between the target vehicle height 2B and the value of the second vehicle height detection signal, ... The difference between the vehicle height 2N and the value of the n-th vehicle height detection signal is the first, second, ..., Nth main vehicle height difference 2a, 2b ,.
.., 2n, and the average vehicle height determining means 3 determines the average vehicle height based on the first, second, ..., Nth vehicle height detection signals.

ついで、補助車高差演算手段4が、前記平均車高と前記
第1車高検出信号の値との差、前記平均車高と前記第2
車高検出信号の値との差、・・・、前記平均車高と前記
第n車高検出信号の値との差を第1,第2,・・・,第nの
補助車高差4a,4b,・・・,4nとしてそれぞれ演算し、修
正手段5が第1,第2,・・・第n演算主車高差2a,2b,・・
・,2nを第1,第2,・・・,第nの演算補助車高差4a,4b,
・・・,4nに応じた第1,第2,・・・,第nの修正主車高
差5a,5b,・・・,5nとしてそれぞれ修正し、かつ第1,第
2,・・・,第nの調整手段6a,6b・・・,6nが第1,第2,・
・・,第nの修正主車高差に応じた調整速度にて前記第
1,第2,・・・,第nの車輪の各近傍の現実の車高をそれ
ぞれ調整する。
Then, the auxiliary vehicle height difference calculating means 4 calculates the difference between the average vehicle height and the value of the first vehicle height detection signal, the average vehicle height and the second vehicle height.
The difference between the value of the vehicle height detection signal, ..., The difference between the average vehicle height and the value of the nth vehicle height detection signal is defined as the first, second, ..., Nth auxiliary vehicle height difference 4a. , 4b, ..., 4n, respectively, and the correction means 5 performs the first, second, ... Nth operation main vehicle height difference 2a, 2b, ...
., 2n is the first, second, ..., The nth calculation-assisted vehicle height difference 4a, 4b,
..., 4n depending on the 1st, 2nd, ..., nth corrected main vehicle height difference 5a, 5b, ..., 5n, respectively, and
2, ..., The n-th adjusting means 6a, 6b ..., 6n are the first, second, ...
.., at the adjustment speed according to the nth corrected main vehicle height difference
The actual vehicle height near each of the first, second, ..., Nth wheels is adjusted.

換言すれば、第1調整手段6aによる前記第1車輪の近傍
の車高調整が第1主車高差2aに第1補助車高差4aを加味
することによりなされ、第2調整手段6bによる前記第2
車輪に近傍の車高調整が第2主車高差2bに第2補助車高
差4bを加味することによりなされ、・・・、第n調整手
段6nによる前記第n車輪の近傍の車高調整が第n主車高
差2nに第n補助車高差4nを加味することによりなされる
ので、車体の傾きが生じてもこの傾きの是正制御が車高
制御と共に積極的に速やかに行なわれることとなり、そ
の結果、車両の乗心地及び操案性を常に十分に確保し得
る。
In other words, the vehicle height adjustment in the vicinity of the first wheel is performed by the first adjusting means 6a by adding the first auxiliary vehicle height difference 4a to the first main vehicle height difference 2a, and the second adjusting means 6b is used. Second
The vehicle height adjustment near the wheels is performed by adding the second auxiliary vehicle height difference 4b to the second main vehicle height difference 2b, ..., The vehicle height adjustment near the nth wheel by the nth adjusting means 6n. Is performed by adding the nth auxiliary vehicle height difference 4n to the nth main vehicle height difference 2n, so that even if the vehicle body tilts, this inclination correction control is positively and promptly performed together with the vehicle height control. As a result, the ride comfort and maneuverability of the vehicle can always be sufficiently ensured.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面により説明すると、第2
図及び第3図は、本発明に係る車高制御装置が車両に適
用された例を示す全体構成図である。車高制御装置は、
複数のショックアブソーバ10a,10b,10c,10dを有してお
り、これら各ショックアブソーバ10a,10b,10c,10dは、
当該車両の左右各前輪及び左右各後輪側にそれぞれ位置
して同車両のサスペンション機構のバネ上部材とバネ下
部材との間に介装されている。しかして、これら各ショ
ックアブソーバ10a〜10dはその各シリンダ上室に付与さ
れる圧油に応じて前輪バネ上部材とバネ下部材との間隔
(即ち、車高)を制御する。
An embodiment of the present invention will be described below with reference to the drawings.
FIG. 3 and FIG. 3 are overall configuration diagrams showing an example in which the vehicle height control device according to the present invention is applied to a vehicle. The vehicle height control device is
It has a plurality of shock absorbers 10a, 10b, 10c, 10d, and each of these shock absorbers 10a, 10b, 10c, 10d,
The vehicle is located on the left and right front wheels and on the left and right rear wheels, respectively, and is interposed between the sprung member and the unsprung member of the suspension mechanism of the vehicle. Then, the shock absorbers 10a to 10d control the distance between the front sprung member and the unsprung member (that is, the vehicle height) according to the pressure oil applied to the cylinder upper chamber.

また、車高制御装置は、油圧ポンプPを有しており、こ
の油圧ポンプPは直流電動機(図示せず)により駆動さ
れてリバーザRから油路11を通し作動油を汲上げて油路
12内に圧油を吐出する。アキュムレータAccは油圧ポン
プPから油路12を通し圧油を受けて蓄圧する。流量制御
機構30a,30b,40a,40b,50a,50b,60a,60bは、共に、リニ
アアクチュエータと、流量制御弁とにより構成されてお
り、流量制御機構30aの流量制御弁は、油路12とショッ
クアクソーバ10aのシリンダ上室から延出する油路14aと
の間に接続した油路13a中に介装されている。しかし
て、流量制御機構30aは、そのリニアアクチュエータへ
の励磁電流に比例する同リニアアクチュエータの作動量
に比例して、その流量制御弁を通る油路13aの上流部ら
下流部への圧油の流量を制御する。一方、流量制御機構
30bは、その流量制御弁にて、油路14aとリザーバRから
延出する油路15との間に接続した油路13b中に介装され
ており、この流量制御機構30bは、そのリニアアクチュ
エータへの励磁電流に比例する同リニアアクチュエータ
の作動量に比例して、その流量制御弁を通る油路13bの
上流部から下流部への圧油の流量を制御する。
Further, the vehicle height control device has a hydraulic pump P, which is driven by a DC motor (not shown) to pump hydraulic oil from the reverser R through the oil passage 11 to the oil passage.
Discharge pressure oil into 12. The accumulator Acc receives pressure oil from the hydraulic pump P through the oil passage 12 and accumulates pressure. The flow rate control mechanisms 30a, 30b, 40a, 40b, 50a, 50b, 60a, 60b are both configured by a linear actuator and a flow rate control valve, and the flow rate control valve of the flow rate control mechanism 30a is connected to the oil passage 12. The shock absorber 10a is interposed in an oil passage 13a connected to an oil passage 14a extending from the cylinder upper chamber. Then, the flow rate control mechanism 30a is proportional to the operation amount of the linear actuator, which is proportional to the exciting current to the linear actuator, in proportion to the pressure oil from the upstream portion to the downstream portion of the oil passage 13a passing through the flow control valve. Control the flow rate. On the other hand, flow control mechanism
30b is interposed in the oil passage 13b connected between the oil passage 14a and the oil passage 15 extending from the reservoir R by the flow control valve thereof, and the flow control mechanism 30b includes the linear actuator. The flow rate of the pressure oil from the upstream portion to the downstream portion of the oil passage 13b passing through the flow rate control valve is controlled in proportion to the operation amount of the linear actuator that is proportional to the exciting current to the.

流量制御機構40aは、その流量制御弁にて、油路12とシ
ョックアブソーバ10bのシリンダ上室から延出する油路1
4bとの間に接続した油路16a中に介装されており、この
流量制御機構40aは、そのリニアアクチュエータへの励
磁電流に比例する同リニアアクチュエータの作動量に比
例して、その流量制御弁を通る油路16aの上流部から下
流部への圧油の流量を制御する。一方、流量制御機構40
bは、その流量制御弁にて、両油路14b,15間に接続した
油路16b中に介装されており、この流量制御機構40bは、
そのリニアアクチュエータへの励磁電流に比例する同リ
ニアアクチュエータの作動量に比例して、その流量制御
弁を通る油路16bの上流部から下流部への圧油の流量を
制御する。
The flow control mechanism 40a uses the flow control valve to control the oil passage 1 and the oil passage 1 extending from the cylinder upper chamber of the shock absorber 10b.
The flow control mechanism 40a is interposed in an oil passage 16a connected to the flow control valve 4b, and the flow control mechanism 40a is proportional to the operation amount of the linear actuator proportional to the exciting current to the linear actuator. The flow rate of the pressure oil from the upstream portion to the downstream portion of the oil passage 16a passing through is controlled. On the other hand, the flow control mechanism 40
b is the flow control valve, and is interposed in the oil passage 16b connected between both oil passages 14b and 15, and the flow control mechanism 40b is
The flow rate of the pressure oil from the upstream portion to the downstream portion of the oil passage 16b passing through the flow rate control valve is controlled in proportion to the operation amount of the linear actuator which is proportional to the exciting current to the linear actuator.

流量制御機構50aは、その流量制御弁にて、油路12とシ
ョックアブソーバ10cのシリンダ上室から延出する油路1
7aとの間に接続した油路18a中に介装されており、この
流量制御機構50aは、そのリニアアクチュエータへの励
磁電流に比例する同リニアアクチュエータの作動量に比
例して、その流量制御弁を通る油路18aの上流部から下
流部への圧油の流量を制御する。一方、流量制御機構50
bは、その流量制御弁にて、両油路17a,15間に接続した
油路18b中に介装されており、この流量制御機構50bは、
そのリニアアクチュエータへの励磁電流に比例する同リ
ニアアクチュエータの作動量に比例して、その流量制御
弁を通る油路18bの上流部から下流部への圧油の流量を
制御する。
The flow control mechanism 50a uses the flow control valve to control the oil passage 12 and the oil passage 1 extending from the cylinder upper chamber of the shock absorber 10c.
This flow rate control mechanism 50a is installed in an oil passage 18a connected to the flow rate control valve 50a, and is proportional to the operation amount of the linear actuator, which is proportional to the exciting current to the linear actuator. The flow rate of the pressure oil from the upstream portion to the downstream portion of the oil passage 18a passing through is controlled. On the other hand, the flow control mechanism 50
b is the flow control valve, and is interposed in the oil passage 18b connected between both oil passages 17a and 15, and the flow control mechanism 50b is
The flow rate of the pressure oil from the upstream portion to the downstream portion of the oil passage 18b passing through the flow rate control valve is controlled in proportion to the operation amount of the linear actuator which is proportional to the exciting current to the linear actuator.

また、流量制御機構60aは、その流量制御弁にて、油路1
2とショックアブソーバ10dのシリンダ上室から延出する
油路17bと間に接続した油路19a中に介装されており、こ
の流量制御機構60aは、そのリニアアクチュエータへの
励磁電流に比例する同リニアアクチュエータの作動量に
比例して、その流量制御弁を通る油路19aへの上流部か
ら下流部への圧油の流量を制御する。一方、流量制御機
構60bは、その流量制御弁にて、両油路17b,15間に接続
した油路19b中に介装されており、この流量制御機構60b
は、そのリニアアクチュエータへの励磁電流に比例する
同リニアアクチュエータの作動量に比例して、その流量
制御弁を通る油路19bの上流部から下流部への圧油の流
量を制御する。
The flow control mechanism 60a uses the flow control valve to control the oil passage 1
2 and an oil passage 19a connected between the oil passage 17b extending from the cylinder upper chamber of the shock absorber 10d.The flow rate control mechanism 60a is proportional to the exciting current to the linear actuator. The flow rate of the pressure oil from the upstream portion to the downstream portion to the oil passage 19a passing through the flow control valve is controlled in proportion to the operation amount of the linear actuator. On the other hand, the flow rate control mechanism 60b is interposed by the flow rate control valve in the oil passage 19b connected between the oil passages 17b and 15, and the flow rate control mechanism 60b
Controls the flow rate of the pressure oil from the upstream portion to the downstream portion of the oil passage 19b passing through the flow control valve in proportion to the operation amount of the linear actuator which is proportional to the exciting current to the linear actuator.

次に、車高制御装置の電気回路構成について説明する
と、各車高センサ70a,70b,70c及び70bは、第2図に示す
ごとく、それぞれ各ショックアブソーバ10a,10b,10c及
び10dに設けられているもので、これら各車高センサ70a
〜70dは、それぞれ、各ショックアブソーバ10a〜10d近
傍の各現実の車高を検出し車高検出信号として発生す
る。A−D変換器80は、第3図に示すごとく、各車高セ
ンサ70a〜70dに接続されて、これら各車高センサ70a〜7
0dからの車高検出信号をディジタル変換し第1〜第4の
ディジタル車高信号としてそれぞれ発生する。車速セン
サ90は当該車両の車速を検出しこれに比例する周波数に
て一連のパルス信号を発生する。波形整形器100は車速
センサ90からの各パルス信号を順次波形整形し矩形波信
号として発生する。
Next, the electric circuit configuration of the vehicle height control device will be described. The vehicle height sensors 70a, 70b, 70c and 70b are provided in the shock absorbers 10a, 10b, 10c and 10d, respectively, as shown in FIG. Each of these vehicle height sensors 70a
.About.70d detect the actual vehicle heights in the vicinity of the shock absorbers 10a-10d, respectively, and generate them as vehicle height detection signals. As shown in FIG. 3, the A / D converter 80 is connected to each of the vehicle height sensors 70a to 70d so as to be connected to each of the vehicle height sensors 70a to 70d.
The vehicle height detection signals from 0d are digitally converted and generated as first to fourth digital vehicle height signals. The vehicle speed sensor 90 detects the vehicle speed of the vehicle and generates a series of pulse signals at a frequency proportional to this. The waveform shaper 100 sequentially shapes each pulse signal from the vehicle speed sensor 90 to generate a rectangular wave signal.

マイクロコンピュータ110は、そのROMに予め記憶したコ
ンピュータプログラムを、第4図に示すフローチャート
に従い、A−D変換器80,波形整形器100との協働により
実行し、かかる実行中において、各流量制御機構30a〜6
0bのリニアアクチュエータにそれぞれ接続した各駆動回
路120a〜150bの制御に必要な演算処理を行う。各駆動回
路120a〜150bは、マイクロコンピュータ110の制御のも
とに、流量制御機構30a〜60bの各リニアアクチュエータ
に付与すべき励磁電流を表わす第1〜第8の駆動信号を
それぞれ発生する。
The microcomputer 110 executes a computer program stored in its ROM in advance in cooperation with the AD converter 80 and the waveform shaper 100 according to the flowchart shown in FIG. 4, and controls each flow rate during the execution. Mechanism 30a-6
The arithmetic processing required to control the drive circuits 120a to 150b connected to the linear actuator 0b is performed. Under the control of the microcomputer 110, the drive circuits 120a to 150b respectively generate first to eighth drive signals representing an exciting current to be applied to the linear actuators of the flow rate control mechanisms 30a to 60b.

以上のように構成した本実施例において、当該車両の走
行状態にて本発明装置が作動しているとき、例えば、当
該車両が曲率半径の大きい走行路面に沿い大旋回しつつ
加速走行する場合に、同車両の車体がローリングにより
左右方向に傾斜したものとする。かかる段階にて、第4
図のフローチャートに従いマイクロコンピュータ110に
より実行されているコンピュータプログラムがステップ
200に戻ると、マイクロコンピュータ110が、次のステッ
プ210にて、波形整形器100から車速センサ90との協働に
より順次生じる矩形波信号に応じ当該車両の車速(以下
車速Vsという)を演算する。然る後、同ステップ210に
おいて、マイクロコンピュータ110のROMに予め記憶した
当該車両の左側前輪、右側前輪、左側後輪及び右側後輪
の各近傍の目標車高A1,A2,A3及びA4と車速Vsとの関係を
表わす所定のデータから上述の演算車速Vsに応じ各目標
車高A1〜A4が決定される。かかる場合、前記所定のデー
タにおいては、各目標車高A1〜A4が、車速Vsの低速側領
域にてそれぞれ所定値をとり、車速Vsの高速側領域にて
それぞれ前記各所定値より小さな一定値をとるようにし
てある。
In the present embodiment configured as described above, when the device of the present invention is operating in the traveling state of the vehicle, for example, when the vehicle accelerates while making a large turn along a road surface having a large radius of curvature. , It is assumed that the body of the vehicle is tilted in the left-right direction by rolling. At this stage,
The computer program executed by the microcomputer 110 follows the steps shown in the flowchart in the figure.
Returning to 200, in the next step 210, the microcomputer 110 calculates the vehicle speed (hereinafter referred to as vehicle speed Vs) of the vehicle according to the rectangular wave signals sequentially generated by the waveform shaper 100 in cooperation with the vehicle speed sensor 90. . Then, in step 210, target vehicle heights A1, A2, A3 and A4 and vehicle speeds near the left front wheel, the right front wheel, the left rear wheel and the right rear wheel of the vehicle, which are stored in advance in the ROM of the microcomputer 110, are stored. The target vehicle heights A1 to A4 are determined according to the above-described calculated vehicle speed Vs from predetermined data representing the relationship with Vs. In such a case, in the predetermined data, each target vehicle height A1 to A4 has a predetermined value in the low speed region of the vehicle speed Vs, and a constant value smaller than the predetermined value in the high speed region of the vehicle speed Vs. It is designed to take

ついで、マイクロコンピュータ110が、ステップ220に
て、A−D変換器80から各車高センサ70a〜70dとの協働
により生じる第1〜第4のディジタル車高信号の各値を
各現在車高h1〜h4として一時的に記憶し、ステップ230
にて、同各現在車高h1〜h4を平均化しこの平均化結果を
平均車高Hとセットし、ステップ240にて、次の関係式
(1)に基きステップ210における各目標車高A1〜A4及
びステップ220における各現在車高h1〜h4に応じ各車高
差D1〜D4を演算する。
Then, in step 220, the microcomputer 110 sets the respective values of the first to fourth digital vehicle height signals generated by the cooperation of the vehicle height sensors 70a to 70d from the AD converter 80 to the respective current vehicle heights. Temporarily memorize as h1 ~ h4, step 230
In step 240, the current vehicle heights h1 to h4 are averaged and the averaged result is set as the average vehicle height H. In step 240, the target vehicle heights A1 to A1 in step 210 are calculated based on the following relational expression (1). The vehicle height differences D1 to D4 are calculated according to the current vehicle heights h1 to h4 in A4 and step 220.

Di=Ai−hi(但し、i=1,2,3,4) ・・・(1) かかる場合、関係式(1)はマイクロコンピュータ110
のROMに予め記憶してある。しかして、ステップ240にお
ける演算後、マイクロコンピュータ110が、ステップ240
aにて、次の関係式(2)に基きステップ240における各
車高差D1〜D4に応じ各主車高差P1〜P4をそれぞれ演算す
る。
Di = Ai-hi (where i = 1,2,3,4) (1) In this case, the relational expression (1) is the microcomputer 110.
It is stored in advance in the ROM. Then, after the calculation in step 240, the microcomputer 110
At a, main vehicle height differences P1 to P4 are calculated in accordance with vehicle height differences D1 to D4 in step 240 based on the following relational expression (2).

Pi=GiDi(但し、i=1,2,3,4) ・・・(2) かかる場合、符号Giはゲインを表わす。また、関係式
(2)はマイクロコンピュータ110のROMに予め記憶して
ある。
Pi = GiDi (however, i = 1,2,3,4) (2) In such a case, the symbol Gi represents the gain. The relational expression (2) is stored in advance in the ROM of the microcomputer 110.

コンピュータプログラムがステップ250に進むと、マイ
クロコンピュータ110が次の関係式(3)に基きステッ
プ230における平均車高H及びステップ220における各現
在車高h1〜h4に応じ各車高差d1〜d4を演算する。
When the computer program proceeds to step 250, the microcomputer 110 calculates the vehicle height differences d1 to d4 according to the average vehicle height H at step 230 and the current vehicle heights h1 to h4 at step 220 based on the following relational expression (3). Calculate

di=H−hi(但し、i=1,2,3,4) ・・・(3) かかる場合、関係式(3)はマイクロコンピュータ110
のROMに予め記憶してある。然る後、マイクロコンピュ
ータ110が、ステップ250aにて、次の関係式(4)に基
きステップ250における各車高差d1〜d4に応じ各補助車
高差Q1〜Q4を演算する。
di = H-hi (however, i = 1,2,3,4) (3) In such a case, the relational expression (3) is the microcomputer 110.
It is stored in advance in the ROM. Then, in step 250a, the microcomputer 110 calculates each auxiliary vehicle height difference Q1 to Q4 according to each vehicle height difference d1 to d4 in step 250 based on the following relational expression (4).

Qi=gidi(但し、i=1,2,3,4) ・・・(4) かかる場合、符号giはゲインを表わす。また、関係式
(4)はマイクロコンピュータ110のROMに予め記憶して
ある。ついで、コンピュータプログラムがステップ260
に進むと、マイクロコンピュータ110が次の関係式
(5)に基きステップ240aにおける各主車高差P1〜P4及
びステップ250aにおける各補助車高差Q1〜Q4に応じ各修
正主車高差L1〜L4を演算する。
Qi = gidi (however, i = 1,2,3,4) (4) In this case, the code gi represents the gain. The relational expression (4) is stored in advance in the ROM of the microcomputer 110. Then the computer program proceeds to step 260.
Then, the microcomputer 110 uses the following relational expression (5) to determine the corrected main vehicle height differences L1 to L4 according to the main vehicle height differences P1 to P4 at step 240a and the auxiliary vehicle height differences Q1 to Q4 at step 250a. Calculate L4.

Li=Pi+Qi(但し、i=1,2,3,4) ・・・(5) かかる場合、関係式(5)はマイクロコンピュータ110
のROMに予め記憶してある。
Li = Pi + Qi (where i = 1,2,3,4) (5) In this case, the relational expression (5) is the microcomputer 110.
It is stored in advance in the ROM.

然るに、上述のごとく車体がローリングにより左右方向
に傾斜しているから、この車体の傾斜が左側から右側に
かけて低くなっておれば、ステップ220における両現在
車高h1,h3が共にステップ230における平均車高Hより高
く、一方、ステップ220における両現在車高h2,h4が共に
ステップ230における平均車高より低いと考えられる。
従って、ステップ250における両車高差d1,d3(即ち、ス
テップ250aにおける両補助車高差Q1,Q3)が共に負とな
り、一方、ステップ250における両車高差d2,d4(即ち、
ステップ250aにおける両補助車高差Q2,Q3)が共に正と
なる。さらに、このような条件下においては、ステップ
240における各車高差D1〜D4(即ち、ステップ240aにお
ける各主車高差P1〜P4)が共に正(又は負)となる状態
が生じる。
However, as described above, the vehicle body leans in the left-right direction due to rolling, so if the leaning of this vehicle body decreases from the left side to the right side, both current vehicle heights h1 and h3 in step 220 are the average vehicle in step 230. It is considered that the vehicle height is higher than the high H, while both the current vehicle heights h2 and h4 in step 220 are lower than the average vehicle height in step 230.
Therefore, both vehicle height differences d1 and d3 in step 250 (that is, both auxiliary vehicle height differences Q1 and Q3 in step 250a) are both negative, while both vehicle height differences d2 and d4 in step 250 (that is,
Both auxiliary vehicle height differences Q2 and Q3 in step 250a become positive. Furthermore, under such conditions, the step
A state occurs in which the vehicle height differences D1 to D4 in 240 (that is, the main vehicle height differences P1 to P4 in step 240a) are both positive (or negative).

以上のような条件下において、ステップ260における修
正主車高差L1がQ1<0,P1>0のときに正となり、修正主
車高差L2がQ2>0,P2>0のときに正となり、修正主車高
差L3がQ3<0,P3>0のときに正となり、かつ修正主車高
差L4がQ4>0,P4>0のときに正となる場合には、マイク
ロコンピュータ110が、ステップ270にて、L1>0に基き
「YES」と判別し、ステップ270aにて、修正主車高差L1
の絶対値を駆動回路120aに付与すべき第1出力信号とし
て発生し、ステップ270bにて、駆動回路120bに付与すべ
き第2出力信号を消滅状態に維持する。
Under the above conditions, the corrected main vehicle height difference L1 in step 260 is positive when Q1 <0, P1> 0, and the corrected main vehicle height difference L2 is positive when Q2> 0, P2> 0. If the corrected main vehicle height difference L3 is positive when Q3 <0, P3> 0 and the corrected main vehicle height difference L4 is positive when Q4> 0, P4> 0, the microcomputer 110 In step 270, it is determined to be “YES” based on L1> 0, and in step 270a, the corrected main vehicle height difference L1
Is generated as the first output signal to be given to the drive circuit 120a, and the second output signal to be given to the drive circuit 120b is maintained in the extinguished state in step 270b.

ついで、マイクロコンピュータ110が、ステップ280に
て、L2>0に基き「YES」と判別し、ステップ280aに
て、修正主車高差L2の絶対値を駆動回路130aに付与すべ
き第3出力信号として発生し、ステップ280bにて、駆動
回路130bに付与すべき第4出力信号を消滅状態に維持
し、ステップ290にて、L3>0に基き「YES」と判別し、
ステップ290aにて、修正主車高差L3の絶対値を駆動回路
140aに付与すべき第5出力信号として発生し、ステップ
290bにて、駆動回路140bに付与すべき第6出力信号を消
滅状態に維持し、かつステップ300にて、L4>0に基き
「YES」と判別し、ステップ300aにて、修正主車高差L4
の絶対値を駆動回路150aに付与すべき第7出力信号とし
て発生し、ステップ300bにて、駆動回路150bに付与すべ
き第8出力信号を消滅状態に維持する。
Then, in step 280, the microcomputer 110 determines “YES” based on L2> 0, and in step 280a, outputs the absolute value of the corrected main vehicle height difference L2 to the drive circuit 130a. Then, in step 280b, the fourth output signal to be given to the drive circuit 130b is maintained in the extinguished state, and in step 290, it is determined to be “YES” based on L3> 0,
At step 290a, the absolute value of the corrected main vehicle height difference L3 is set to the drive circuit.
Generated as a fifth output signal to be applied to 140a,
At 290b, the sixth output signal to be given to the drive circuit 140b is maintained in the extinguished state, and at step 300, it is determined to be "YES" based on L4> 0, and at step 300a, the corrected main vehicle height difference is determined. L4
Is generated as the seventh output signal to be given to the drive circuit 150a, and in step 300b, the eighth output signal to be given to the drive circuit 150b is maintained in the extinguished state.

以上のようにマイクロコンピュータ110が第2,第4,第6
及び第8の出力信号と消滅状態にて第1,第3,第5及び第
7の出力信号を発生すると、各駆動回路120a,130a,140a
及び150aが同第1,第3,第5,及び第7の出力信号の各値に
対応する各励磁電流を第1,第3,第5及び第7の駆動信号
としてそれぞれ各駆動回路120b,130b,140b及び150bから
の第2,第4,第6及び第8の駆動信号の各消滅のもとに発
生する。すると、流量制御機構30aの流量制御弁が、流
量制御機構30bの流量制御弁の全閉状態にて、駆動回路1
20aからの第1駆動信号の値に比例する流量制御機構30a
のリニアアクチュエータの作動量に対応した流量でもっ
て、油圧ポンプP及びアキュムレータAccから各油路12,
13aを通し付与される圧油を油路14aを通しショックアブ
ソーバ10aの上室に付与する。これにより、このショッ
クアブソーバ10aがその上室への圧油量に応じた調整速
度にて現在車高h1を目標車高A1に向けて上昇させる。
As described above, the microcomputer 110 has the second, fourth, sixth
When the first, third, fifth and seventh output signals are generated in the extinguished state with the eighth and eighth output signals, the respective drive circuits 120a, 130a, 140a are generated.
And 150a denote the respective exciting currents corresponding to the respective values of the first, third, fifth, and seventh output signals as the first, third, fifth, and seventh drive signals, and the respective drive circuits 120b, Occurs under each extinction of the second, fourth, sixth and eighth drive signals from 130b, 140b and 150b. Then, when the flow rate control valve of the flow rate control mechanism 30a is in the fully closed state of the flow rate control valve of the flow rate control mechanism 30b, the drive circuit 1
Flow control mechanism 30a proportional to the value of the first drive signal from 20a
Of the hydraulic pump P and accumulator Acc with a flow rate corresponding to the operation amount of the linear actuator of
The pressure oil applied through 13a is applied to the upper chamber of the shock absorber 10a through the oil passage 14a. As a result, the shock absorber 10a raises the current vehicle height h1 toward the target vehicle height A1 at an adjusting speed according to the amount of pressure oil to the upper chamber.

また、流量制御機構40aの流量制御弁が、流量制御機構4
0bの流量制御弁の全閉状態にて、駆動回路130aからの第
3駆動信号の値に比例する流量制御機構40aのリニアア
クチュエータの作動量に対応した流量でもって、油圧ポ
ンプP及びアキュムレータAccから各油路12,16aを通し
付与される圧油を油路14bを通しショックアブソーバ10b
の上室に付与する。これにより、このショックアブソー
バ10bがその上室への圧油量に応じた調整速度にて現在
車高h2を目標車高A2に向けて上昇させる。
Further, the flow rate control valve of the flow rate control mechanism 40a is
From the hydraulic pump P and the accumulator Acc with the flow rate corresponding to the operation amount of the linear actuator of the flow rate control mechanism 40a that is proportional to the value of the third drive signal from the drive circuit 130a when the flow rate control valve of 0b is fully closed. The pressure oil applied through the oil passages 12 and 16a is passed through the oil passage 14b to the shock absorber 10b.
To the upper chamber. As a result, the shock absorber 10b raises the current vehicle height h2 toward the target vehicle height A2 at an adjustment speed according to the amount of pressure oil to the upper chamber.

また、流量制御機構50aの流量制御弁が、流量制御機構5
0bの流量制御弁の全閉状態にて、駆動回路140aからの第
5駆動信号の値に比例する流量制御機構50aのリニアア
クチュエータの作動量に対応した流量でもって、油圧ポ
ンプP及びアキュムレータAccから各油路12,18aを通し
付与される圧油を油路17aを通しショックアブソーバ10c
の上室に付与する。これにより、このショックアブソー
バ10cがその上室への圧油量に応じた調整速度にて現在
車高h3を目標車高A3に向けて上昇させる。
Further, the flow control valve of the flow control mechanism 50a is
From the hydraulic pump P and the accumulator Acc with the flow rate corresponding to the operation amount of the linear actuator of the flow rate control mechanism 50a which is proportional to the value of the fifth drive signal from the drive circuit 140a when the flow rate control valve of 0b is fully closed. The pressure oil applied through the oil passages 12 and 18a is passed through the oil passage 17a to the shock absorber 10c.
To the upper chamber. As a result, the shock absorber 10c raises the current vehicle height h3 toward the target vehicle height A3 at an adjusting speed according to the amount of pressure oil to the upper chamber.

さらに、流量制御機構60aの流量制御弁が、流量制御機
構60bの流量制御弁の全閉状態にて、駆動回路150aから
の第7駆動信号の値に比例する流量制御機構60aのリニ
アアクチュエータの作動量に対応した流量でもって、油
圧ポンプP及びアキュムレータAccから各油路12,19aを
通し付与される圧油を油路17bを通しショックアブソー
バ10dの上室に付与する。これにより、このショックア
ブソーバ10dがその上室への圧油量に応じた調整速度に
て現在車高h4を目標車高A4に向けて上昇させる。
Further, when the flow control valve of the flow control mechanism 60a is in the fully closed state of the flow control valve of the flow control mechanism 60b, the operation of the linear actuator of the flow control mechanism 60a which is proportional to the value of the seventh drive signal from the drive circuit 150a. Pressure oil applied from the hydraulic pump P and the accumulator Acc through the oil passages 12 and 19a is applied to the upper chamber of the shock absorber 10d through the oil passage 17b with a flow rate corresponding to the amount. As a result, the shock absorber 10d raises the current vehicle height h4 toward the target vehicle height A4 at an adjusting speed according to the amount of pressure oil to the upper chamber.

以上説明したことから理解されるように、車体が左側か
ら右側にかけて低くなるように傾斜した場合において、
各主車高差P1〜P4及び各修正主車高差L1〜L4が共に正で
あるときには、各修正車高差L1,L3(即ち、両流量制御
機構30a,50aの各リニアアクチュエータへの励磁電流)
が、各補助車高差Q1,Q3の絶対値だけ、各主車高差P1,P3
よりもそれぞれ小さく決定されるとともに各修正主車高
差L2,L4(即ち、両流量制御機構40a,60aの各リニアアク
チュエータへの励磁電流)が、各補助車高差Q1,Q4の絶
対値だけ、各主車高差P2,P4よりもそれぞれ大きく決定
されるので、Q2>0,Q4>0との各関連における各ショッ
クアブソーバ10b,10dの車高制御度合が、Q1<0,Q3<0
との各関連における各ショックアブソーバ10a,10cの車
高制御度合よりも大きくなる。このことは、車高制御
が、車体の左側から右側への低下する傾斜を減少させつ
つなされることを意味する。換言すれば、上述のような
車体の傾斜に対する是正制御が車高制御と共に速やかに
行なわれ、その結果、当該車両の乗心地及び操案性を常
に十分に確保し得る。
As can be understood from the above description, when the vehicle body is inclined so as to decrease from the left side to the right side,
When the main vehicle height differences P1 to P4 and the corrected main vehicle height differences L1 to L4 are both positive, the corrected vehicle height differences L1 and L3 (that is, the excitation of the linear actuators of both flow rate control mechanisms 30a and 50a to the linear actuators) are performed. Current)
However, only the absolute value of each auxiliary vehicle height difference Q1, Q3, each main vehicle height difference P1, P3
Each of the corrected main vehicle height differences L2, L4 (that is, the exciting currents to the linear actuators of both flow rate control mechanisms 40a, 60a) is determined to be smaller than the absolute value of each auxiliary vehicle height difference Q1, Q4. , The main vehicle height difference P2, P4 is determined to be respectively larger, the vehicle height control degree of each shock absorber 10b, 10d in each relation with Q2> 0, Q4> 0 is Q1 <0, Q3 <0.
It becomes larger than the vehicle height control degree of each shock absorber 10a, 10c in each relation with. This means that the vehicle height control is performed while reducing the downward inclination of the vehicle body from the left side to the right side. In other words, the correction control for the inclination of the vehicle body as described above is promptly performed together with the vehicle height control, and as a result, the riding comfort and the maneuverability of the vehicle can always be sufficiently ensured.

また、上述のような条件下において、ステップ260にお
ける修正主車高差L1がQ1<0,P1<0のときに負となり、
修正主車高差L2がQ2>0,P2<0のときに負となり、修正
主車高差13がQ3<0,P3<0のときに負となり、かつ修正
主車高差L4がQ4>0,P4<0のときに負となる場合には、
マイクロコンピュータ110が、ステップ270にて、L1<0
に基き「NO」と判別し、ステップ270cにて、修正主車高
差L1の絶対値を第2出力信号として発生し、ステップ27
0dにて、第1出力信号を消滅状態に維持する。
Further, under the conditions as described above, when the corrected main vehicle height difference L1 in step 260 is Q1 <0, P1 <0, it becomes negative,
The corrected main vehicle height difference L2 becomes negative when Q2> 0, P2 <0, the corrected main vehicle height difference 13 becomes negative when Q3 <0, P3 <0, and the corrected main vehicle height difference L4 is Q4> When 0, P4 <0, when it becomes negative,
In step 270, the microcomputer 110 sets L1 <0.
It is determined to be "NO" based on the above, and in step 270c, the absolute value of the corrected main vehicle height difference L1 is generated as the second output signal, and in step 27
At 0d, the first output signal is maintained in the extinguished state.

ついで、マイクロコンピュータ110が、ステップ280に
て、L2<0に基き「NO」と判別し、ステップ280cにて、
修正主車高差L2の絶対値を第4出力信号として発生し、
ステップ280dにて、第3出力信号を消滅状態に維持し、
ステップ290にて、L3<0に基き「NO」と判別し、ステ
ップ290cにて、修正主車高差L3の絶対値を第6出力信号
として発生し、ステップ290dにて、第5出力信号を消滅
状態に維持し、かつステップ300にて、L4<0に基き「N
O」と判別し、ステップ300cにて、修正主車高差L4の絶
対値を第8出力信号として発生し、ステップ300dにて、
第7出力信号を消滅状態に維持する。
Then, in step 280, the microcomputer 110 determines “NO” based on L2 <0, and in step 280c,
Generate the absolute value of the modified main vehicle height difference L2 as the fourth output signal,
In step 280d, maintain the third output signal in the extinguished state,
In step 290, it is determined to be "NO" based on L3 <0, in step 290c the absolute value of the corrected main vehicle height difference L3 is generated as the sixth output signal, and in step 290d the fifth output signal is output. In the extinction state, and in step 300, based on L4 <0, "N
"O", the absolute value of the corrected main vehicle height difference L4 is generated as the eighth output signal in step 300c, and in step 300d,
The seventh output signal is maintained in the extinguished state.

以上のようにマイクロコンピュータ110が第1,第3,第5
及び第7の出力信号の消滅状態にて第2,第4,第6及び第
8の出力信号を発生すると、各駆動回路120b,130b,140b
及び150bが同第2,第4,第6及び第8の出力信号の各値に
対応する各励磁電流を第2,第4,第6及び第8の駆動信号
としてそれぞれ各駆動回路120a,130a,140a及び150aから
の第1,第3,第5及び第7の駆動信号の各消滅のもとに発
生する。すると、流量制御機構30bの流量制御弁が、流
量制御機構30aの流量制御弁の全閉状態にて、駆動回路1
20bからの第2駆動信号の値に比例する流量制御機構30b
のリニアアクチュエータの作動量に対応した流量でもっ
て、ショックアブソーバ10aの上室からの圧油を各油路1
4a,13b及び15を通しリザーバR内に排出する。これによ
り、ショックアブソーバ10aがその上室からの圧油排出
量に応じた調節速度にて現在車高h1を目標車高A1に向け
て低下させる。
As described above, the microcomputer 110 has the first, third, fifth
When the second, fourth, sixth and eighth output signals are generated in the extinguished state of the seventh and seventh output signals, the drive circuits 120b, 130b, 140b are generated.
And 150b are drive circuits 120a and 130a, respectively, which use the respective exciting currents corresponding to the respective values of the second, fourth, sixth and eighth output signals as the second, fourth, sixth and eighth drive signals. , 140a and 150a from the first, third, fifth and seventh drive signals, respectively. Then, when the flow control valve of the flow control mechanism 30b is in the fully closed state of the flow control valve of the flow control mechanism 30a, the drive circuit 1
Flow control mechanism 30b proportional to the value of the second drive signal from 20b
Pressure oil from the upper chamber of the shock absorber 10a with a flow rate corresponding to the operation amount of the linear actuator of
It is discharged into the reservoir R through 4a, 13b and 15. As a result, the shock absorber 10a reduces the current vehicle height h1 toward the target vehicle height A1 at an adjusting speed according to the amount of pressure oil discharged from the upper chamber.

また、流量制御機構40bの流量制御弁が、流量制御機構4
0aの流量制御弁の全閉状態にて、駆動回路130bからの第
4駆動信号の値に比例する流量制御機構40bのリニアア
クチュエータの作動量に対応した流量でもって、ショッ
クアブソーバ10bの上室からの圧油を各油路14b,16b及び
15を通しリザーバR内に排出する。これにより、ショッ
クアブソーバ10bがその上室からの圧油排出量に応じた
調整速度にて現在車高h2を目標車高A2に向けて低下させ
る。
In addition, the flow rate control valve of the flow rate control mechanism 40b is
From the upper chamber of the shock absorber 10b, with the flow rate corresponding to the operation amount of the linear actuator of the flow rate control mechanism 40b proportional to the value of the fourth drive signal from the drive circuit 130b when the flow rate control valve of 0a is fully closed. Pressure oil of each oil passage 14b, 16b and
It is passed through 15 and discharged into the reservoir R. As a result, the shock absorber 10b reduces the current vehicle height h2 toward the target vehicle height A2 at the adjustment speed according to the amount of pressure oil discharged from the upper chamber.

また、流量制御機構50bの流量制御弁が、流量制御機構5
0aの流量制御弁の全閉状態にて、駆動回路140bからの第
6駆動信号の値に比例する流量制御機構50bのリニアア
クチュエータの作動量に対応した流量でもって、ショッ
クアブソーバ10cの上室からの圧油を各油路17a,18b及び
15を通しリザーバR内に排出する。これにより、ショッ
クアブソーバ10cがその上室からの圧油排出量に応じた
調整速度にて現在車高h3を目標車高A3に向けて低下させ
る。
In addition, the flow control valve of the flow control mechanism 50b is
With the flow control valve of 0a fully closed, the flow rate corresponding to the operation amount of the linear actuator of the flow rate control mechanism 50b, which is proportional to the value of the sixth drive signal from the drive circuit 140b, is applied from the upper chamber of the shock absorber 10c. Pressure oil of each oil passage 17a, 18b and
It is passed through 15 and discharged into the reservoir R. As a result, the shock absorber 10c reduces the current vehicle height h3 toward the target vehicle height A3 at an adjusting speed according to the amount of pressure oil discharged from the upper chamber.

さらに、流量制御機構60bの流量制御弁が、流量制御機
構60aの流量制御弁の全閉状態にて、駆動回路150bから
の第8駆動信号の値に比例する流量制御機構30bのリニ
アアクチュエータの作動量に対応した流量でもって、シ
ョックアブソーバ10dの上室からの圧油を各油路17b,19b
及び15を通しリザーバR内に排出する。これにより、シ
ョックアブソーバ10dがその上室からの圧油排出量に応
じた調整速度にて現在車高h4を目標車高A4に向けて低下
させる。
Further, the flow control valve of the flow control mechanism 60b operates the linear actuator of the flow control mechanism 30b which is proportional to the value of the eighth drive signal from the drive circuit 150b when the flow control valve of the flow control mechanism 60a is fully closed. The pressure oil from the upper chamber of the shock absorber 10d is supplied to each of the oil passages 17b and 19b at a flow rate corresponding to the amount.
And 15, and discharge into the reservoir R. As a result, the shock absorber 10d lowers the current vehicle height h4 toward the target vehicle height A4 at an adjustment speed according to the amount of pressure oil discharged from the upper chamber.

以上説明したことから理解されるように、車体が左側か
ら右側にかけて低くなるように傾斜した場合において各
主車高差P1〜P4及び各修正主車高差L1〜L4が共に負であ
るときには、各修正主車高差L1,L3(即ち、両流量制御
機構30b,50bの各リニアアクチュエータへの励磁電流)
が、各補助車高差Q1,Q3の絶対値だけ、各主車高差P1,P3
の絶対値よりもそれぞれ大きく決定されるとともに各修
正主車高差L2,L4(即ち、両流量制御機構40b,60bの各リ
ニアアクチュエータへの励磁電流)が、各補助車高差Q
2,Q4の絶対値だけ、各主車高差P2,P4の絶対値よりもそ
れぞれ小さく決定されるので、Q1<0,Q3<0との各関連
における各ショックアブソーバ10a,10cの車高制御度合
が、Q2>0,Q4>0との各関連における各ショックアブソ
ーバ10b,10dの車高制御度合よりも大きくなる。このこ
とは、車高制御が、車体の左側から右側への低下する傾
斜を減少させつつなされることを意味する。換言すれ
ば、上述のような車体の傾斜に対する是正制御が車高制
御と共に速やかに行なわれ、その結果、当該車両の乗心
地及び操案性を常に十分に確保し得る。
As can be understood from the above description, when the main vehicle height difference P1 to P4 and the corrected main vehicle height differences L1 to L4 are both negative in the case where the vehicle body is inclined so as to decrease from the left side to the right side, Each modified main vehicle height difference L1, L3 (that is, exciting current to each linear actuator of both flow rate control mechanisms 30b, 50b)
However, only the absolute value of each auxiliary vehicle height difference Q1, Q3, each main vehicle height difference P1, P3
The corrected main vehicle height difference L2, L4 (that is, the exciting current to the linear actuators of both flow rate control mechanisms 40b, 60b) is determined to be larger than the absolute value of each auxiliary vehicle height difference Q.
Only the absolute value of 2, Q4 is determined to be smaller than the absolute value of each main vehicle height difference P2, P4, so the vehicle height control of each shock absorber 10a, 10c in each relation with Q1 <0, Q3 <0 The degree is greater than the vehicle height control degree of each shock absorber 10b, 10d in each relation of Q2> 0, Q4> 0. This means that the vehicle height control is performed while reducing the downward inclination of the vehicle body from the left side to the right side. In other words, the correction control for the inclination of the vehicle body as described above is promptly performed together with the vehicle height control, and as a result, the riding comfort and the maneuverability of the vehicle can always be sufficiently ensured.

なお、上述の作用においては、車体がローリングにより
左側から右側にかけて低下するように傾斜した場合につ
いて説明したが、これに限らず、車体がローリングによ
り右側から左側にかけて低下するように傾斜した場合、
或いは車体がピッチングにより前後方向に傾斜した場合
にも、上述と実質的に同様の作用効果を達成し得る。ま
た、ステップ260にて得られる各修正主車高差L1〜L4が
共に零になると、マイクロコンピュータ110が各ステッ
プ270,270a,270b,280,280a,280b,290,290a,290b,300,30
0a及び300bを通る演算を上述と同様に行う。かかる場
合、各ステップ270a,280a,290a及び300aにて発生される
第1,第3,第5及び第7の出力信号の各値は、L1=0,L2=
0,L3=0及びL4=0によりそれぞれ特定されるので、各
流量制御機構30a,40a,50a及び60aの流量制御弁が各流量
制御機構30b,40b,50b及び60bの流量制御弁と共に全閉と
なり、車体の現在車高を目標車高に維持する。
In the above operation, the case where the vehicle body is inclined so as to decrease from the left side to the right side due to rolling has been described, but the present invention is not limited to this, and when the vehicle body is inclined so as to decrease from the right side to the left side due to rolling,
Alternatively, even when the vehicle body is tilted in the front-rear direction due to pitching, it is possible to achieve substantially the same effect as the above. Further, when the respective corrected main vehicle height differences L1 to L4 obtained in step 260 become zero, the microcomputer 110 causes each step 270,270a, 270b, 280,280a, 280b, 290,290a, 290b, 300,30.
The calculation passing through 0a and 300b is performed in the same manner as described above. In such a case, the respective values of the first, third, fifth and seventh output signals generated in the respective steps 270a, 280a, 290a and 300a are L1 = 0, L2 =
The flow control valves of the flow control mechanisms 30a, 40a, 50a and 60a are fully closed together with the flow control valves of the flow control mechanisms 30b, 40b, 50b and 60b because they are specified by 0, L3 = 0 and L4 = 0 respectively. Then, the current vehicle height of the vehicle body is maintained at the target vehicle height.

【図面の簡単な説明】[Brief description of drawings]

第1図は特許請求の範囲に記載の発明の構成に対する対
応図、第2図及び第3図は本発明の一実施例を示す全体
構成図,並びに第4図は第3図におけるマイクロコンピ
ュータの作用を示すフローチャートである。 符号の説明 P……油圧ポンプ、10a〜10d……ショックアブソーバ、
30a〜60b……流量制御機構、70a〜70d……車高センサ、
110……マイクロコンピュータ、120a〜150b……駆動回
路。
FIG. 1 is a diagram corresponding to the configuration of the invention described in the claims, FIGS. 2 and 3 are overall configuration diagrams showing an embodiment of the present invention, and FIG. 4 is a diagram of the microcomputer in FIG. It is a flow chart which shows an operation. Explanation of symbols P …… hydraulic pump, 10a-10d …… shock absorber,
30a-60b ... Flow rate control mechanism, 70a-70d ... Vehicle height sensor,
110 ... Microcomputer, 120a-150b ... Drive circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 進 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (56)参考文献 特開 昭60−92915(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Susumu Ohashi 1-1, Showa-cho, Kariya city, Aichi Nihon Denso Co., Ltd. (56) References JP-A-60-92915 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1、第2、・・・、第nの車輪を有する
車両において、 前記第1、第2、・・・、第nの車輪の各近傍の現実の
車高をそれぞれ検出し第1、第2、・・・、第nの車高
検出信号として発生する第1、第2、・・・、第nの車
高検出手段と、 前記第1の車輪の近傍の目標車高と前記第1の車高検出
信号の値との差、前記第2の車輪の近傍の目標車高と前
記第2の車高検出信号の値との差、・・・、前記第nの
車輪の近傍の目標車高と前記第nの車高検出信号の値と
の差を第1、第2、・・・、第nの車高差としてそれぞ
れ演算する主車高差演算手段と、 前記第1、第2、・・・、第nの検出信号の各値を平均
化してこれを平均車高と決定する平均車高決定手段と、 前記平均車高と前記第1車高検出信号の値との差、前記
平均車高と前記第2車高検出信号の値との差、・・・、
前記平均車高と前記第n車高検出信号の値との差を第
1、第2、・・・、第nの補助車高差としてそれぞれ演
算する補助車高差演算手段と、 前記第1、第2、・・・、第nの演算主車高差を前記第
1、第2、・・・、第nの演算補助車高差に応じ車体の
傾きを減少させるに必要な第1、第2、・・・、第nの
修正主車高差としてそれぞれ修正する修正手段と、 前記第1、第2、・・・、第nの修正主車高差に応じた
調整速度にて、前記第1、第2、・・・、第nの車輪の
各近傍の現実の車高をそれぞれ調整する第1、第2、・
・・、第nの調整手段と、 を設けるようにしたことを特徴とする車高制御装置。
1. In a vehicle having first, second, ..., Nth wheels, actual vehicle heights near the first, second, ..., Nth wheels are detected respectively. , Nth vehicle height detection means generated as first, second, ..., Nth vehicle height detection signals, and a target vehicle in the vicinity of the first wheel. The difference between the height and the value of the first vehicle height detection signal, the difference between the target vehicle height near the second wheel and the value of the second vehicle height detection signal, ..., The nth Main vehicle height difference calculating means for calculating the difference between the target vehicle height near the wheels and the value of the n-th vehicle height detection signal as the first, second, ..., Nth vehicle height differences, respectively. Average vehicle height determining means for averaging the respective values of the first, second, ..., Nth detection signals to determine the average vehicle height, the average vehicle height and the first vehicle height detection signal Difference from the value of the average car The difference between the height and the value of the second vehicle height detection signal, ...
Auxiliary vehicle height difference calculating means for calculating a difference between the average vehicle height and a value of the n-th vehicle height detection signal as a first, second, ..., Nth auxiliary vehicle height difference, respectively. , 2nd, ..., The nth calculation main vehicle height difference is the 1st, 2nd, ..., 1st necessary to reduce the inclination of the vehicle body in accordance with the nth calculation auxiliary vehicle height difference, Correction means for respectively correcting the second, n-th corrected main vehicle height difference, and adjusting speeds corresponding to the first, second, ..., nth corrected main vehicle height differences, The first, second, ... Adjusting the actual vehicle heights near the first, second, ..., Nth wheels, respectively.
.., A vehicle height control device characterized in that the nth adjusting means is provided.
JP61027665A 1986-02-10 1986-02-10 Vehicle height control device Expired - Lifetime JPH0741782B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61027665A JPH0741782B2 (en) 1986-02-10 1986-02-10 Vehicle height control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61027665A JPH0741782B2 (en) 1986-02-10 1986-02-10 Vehicle height control device

Publications (2)

Publication Number Publication Date
JPS62184910A JPS62184910A (en) 1987-08-13
JPH0741782B2 true JPH0741782B2 (en) 1995-05-10

Family

ID=12227236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61027665A Expired - Lifetime JPH0741782B2 (en) 1986-02-10 1986-02-10 Vehicle height control device

Country Status (1)

Country Link
JP (1) JPH0741782B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764174B2 (en) * 1989-03-04 1995-07-12 トヨタ自動車株式会社 Fluid pressure active suspension
JP4745105B2 (en) * 2006-03-31 2011-08-10 本田技研工業株式会社 Vehicle suspension control device, vehicle body attitude control method, and vehicle height adjustment method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092915A (en) * 1983-10-27 1985-05-24 Nippon Denso Co Ltd Car height control device

Also Published As

Publication number Publication date
JPS62184910A (en) 1987-08-13

Similar Documents

Publication Publication Date Title
US7788011B2 (en) Braking and drive force control apparatus for a vehicle
US5515274A (en) Method and system for controlling active suspensions of a vehicle
US4807128A (en) System for vehicle body roll control detecting and compensating for rapid rate of change of steering angle as during emergency steering
US8108106B2 (en) Motion control system for vehicle
KR20190099487A (en) Vehicle behavior control device
JPH05229328A (en) Suspension controller
US5828970A (en) Suspension control system for automotive vehicle
US20090198405A1 (en) Height control device for vehicle
US20040038599A1 (en) Method for controlling anti-roll/anti-yaw of vehicles
JPH0741782B2 (en) Vehicle height control device
US11203243B2 (en) Control system for variable damping force damper
US11712939B2 (en) Vehicle and method of controlling vehicle suspension
JP2003104024A (en) Suspension control device
US11987091B2 (en) Control device and suspension system
JP2008247357A (en) Suspension control device
JPH0986131A (en) Suspension control device
KR0184679B1 (en) Suspension control device
JP2900445B2 (en) Wheel camber angle control device
KR102614161B1 (en) System for calculating damper speed of vehicle
KR20240027078A (en) Vehicle control devices and vehicle control systems
JP2831393B2 (en) Active suspension
JPH11263112A (en) Control device of suspension mechanism
JP3167836B2 (en) Vehicle suspension device
EP4313705A1 (en) A method for determining a slip limit value for a wheel of a vehicle
JPH06270637A (en) Suspension control device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term