JPH0741360A - Production of beta"-alumina powder and beta"-alumina - Google Patents

Production of beta"-alumina powder and beta"-alumina

Info

Publication number
JPH0741360A
JPH0741360A JP5158899A JP15889993A JPH0741360A JP H0741360 A JPH0741360 A JP H0741360A JP 5158899 A JP5158899 A JP 5158899A JP 15889993 A JP15889993 A JP 15889993A JP H0741360 A JPH0741360 A JP H0741360A
Authority
JP
Japan
Prior art keywords
powder
alumina
phase
heat
peak intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5158899A
Other languages
Japanese (ja)
Inventor
Tetsuo Koyama
哲雄 小山
Yasuo Tate
靖雄 舘
Tadahiko Mitsuyoshi
忠彦 三吉
Sadao Mizuno
貞男 水野
Toshimi Shioda
俊巳 塩田
Tetsuo Nakazawa
哲夫 中澤
Yasujirou Okajima
安二郎 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5158899A priority Critical patent/JPH0741360A/en
Publication of JPH0741360A publication Critical patent/JPH0741360A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To easily enhance the reliability and improve heat conductivity by pulverizing heat-treated products each having a specific X-ray diffraction pattern. CONSTITUTION:A powdery starting material mixture is prepd. by blending Na2CO3 powder with Li2CO3 powder and Al2O3 powder in a desired ratio and this mixture is heat-treated at 1,300-1,600 deg.C to obtain a heat-treated product whose X-ray diffraction pattern has 0-0.3 ratio of the peak intensity of the (01,17) face of beta-Al2O3 phase having 2.04Angstrom (d) to that of the (20,10) face of beta''-Al2O3 phase having 1.97Angstrom (d), and whose X-ray diffraction pattern has 0-0.03 ratio of the peak intensity of the (121) face of Nalo2 phase having 2.94Angstrom (d) to that of the (20,10) face of beta''-Al2O3 phase having 1.97Angstrom (d) and having other desired pattern. The products are then pulverized to <=3mum particle diameter and the objective beta-alumina powder is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高性能、長寿命のナト
リウム−硫黄電池の構成要素である固体電解質を製造す
る原料粉として好適なβ″−アルミナ粉末の製造方法及
びβ″−アルミナ粉末に関する。
TECHNICAL FIELD The present invention relates to a method for producing β ″ -alumina powder and a β ″ -alumina powder suitable as a raw material powder for producing a solid electrolyte which is a constituent element of a sodium-sulfur battery having high performance and long life. Regarding

【0002】[0002]

【従来の技術】β−アルミナ類は、工業的によく知られ
た物質であって、電気化学的に作動する装置において陽
イオンの伝導体として広く使用され、特に金属ナトリウ
ムと硫黄を反応剤として使用するナトリウム−硫黄電池
の隔膜材兼固体電解質、ナトリウムセンサあるいは表示
素子等の広範な用途が期待されている。特に近年、エネ
ルギー問題が関心を持たれ、電力貯蔵用ナトリウム−硫
黄電池への用途が注目されている。ナトリウム−硫黄電
池の固体電解質には、主にβ−アルミナ類が用いられて
いるが、このβ−アルミナ類では、Na2O・Al23
系に存在する化合物のうち理想式組成をもつNa2O・
11Al23はβ−アルミナと、またNa2O・5Al2
3はβ″−アルミナと呼ばれている。
BACKGROUND OF THE INVENTION β-Aluminas are well known substances in industry and are widely used as a conductor of cations in electrochemically operated devices. In particular, metallic sodium and sulfur are used as reactants. It is expected to have a wide range of applications such as sodium-sulfur battery diaphragm materials and solid electrolytes, sodium sensors or display elements. Particularly in recent years, the energy problem has become a concern, and the application to sodium-sulfur batteries for electric power storage is drawing attention. Β-alumina is mainly used for the solid electrolyte of the sodium-sulfur battery. With this β-alumina, Na 2 O.Al 2 O 3 is used.
Of the compounds present in the system, Na 2 O
11Al 2 O 3 is β-alumina and Na 2 O · 5Al 2
O 3 is called β ″ -alumina.

【0003】これらβ−アルミナ類の結晶構造は、O
(2−)が最密に充填され、このO(2−1)が最密パ
ッキングによって生じる八面体と四面体の間隙にAl
(3+)がスピネルブロック(Al116)と呼ばれる
構造を作る。なお、ここでイオンを表す記号として、対
応する中性粒子の後に( )を付してその( )の中に
イオン価(但し単価の場合は省略)と電荷の符号(+又
は−)を示したものを用いるものとする。
The crystal structure of these β-aluminas is O.
(2-) is most closely packed, and this O (2-1) is Al in the gap between the octahedron and the tetrahedron generated by the closest packing.
(3+) forms a structure called spinel block (Al 11 O 6 ). In addition, as a symbol representing an ion, () is added after the corresponding neutral particle, and the sign (+ or −) of the charge (+ or −) is shown in () in the parentheses. We will use the ones that

【0004】Na(+)イオンは、このスピネルブロッ
クにはさまれたO(2−)の密度がやや低い〔NaO〕
層内に伝導する。β−アルミナは、スピネルブロックの
2段で格子単位となり〔NaO〕層がミラー面となる。
また、β″−アルミナは、スピネルブロックの3段で格
子単位となり、Na(+)イオンは、この〔NaO〕層
内に沿って移動する。また、ナトリウム−硫黄電池の固
体電解質として使用されるβ−アルミナ類は、一般に多
結晶体であってLi2Oを添加すると、β−Al23
に富んだ焼結体を安定に製造することができ、Na
(+)イオン伝導率が高いβ″−アルミナが得られる。
このようにβ″−アルミナはβ−アルミナに較べてイオ
ン伝導率が高いために、エネルギー効率が優れたナトリ
ウム−硫黄電池を得ることができる。したがって、Li
2O等を構造安定化剤として使用したβ″−アルミナ系
固体電解質が求められている。
The Na (+) ion has a slightly low density of O (2-) sandwiched between the spinel blocks [NaO].
Conduct in layers. β-alumina serves as a lattice unit in two stages of spinel blocks, and the [NaO] layer serves as a mirror surface.
Further, β ″ -alumina serves as a lattice unit in three stages of the spinel block, and Na (+) ions move along in this [NaO] layer. Also, it is used as a solid electrolyte of a sodium-sulfur battery. β-alumina is generally a polycrystalline substance, and when Li 2 O is added, a sintered body rich in β-Al 2 O 3 phase can be stably produced.
A β ″ -alumina having a high (+) ionic conductivity is obtained.
As described above, β ″ -alumina has a higher ionic conductivity than β-alumina, so that a sodium-sulfur battery having excellent energy efficiency can be obtained.
There is a demand for a β ″ -alumina-based solid electrolyte that uses 2 O or the like as a structure stabilizer.

【0005】また、上記したようにβ″−アルミナは、
固体電解質兼隔膜として使用するため、望ましい特性
は、Na(+)イオン伝導性が良好である特性以外に次
の点が要求される。すなわち、(1)高密度で通気性が
ないこと、(2)機械的強度が高いこと、(3)結晶粒
が微細で均質なこと、(4)電気化学的に安定なことで
ある。
Further, as described above, β ″ -alumina is
Since it is used as a solid electrolyte / diaphragm, the following desirable characteristics are required in addition to the characteristics of good Na (+) ion conductivity. That is, (1) high density and no air permeability, (2) high mechanical strength, (3) fine and uniform crystal grains, and (4) electrochemical stability.

【0006】また、ナトリウム−硫黄電池に用いる固体
電解質は、一般には円筒形で、一端が閉じた管状のもの
を使用し、その開口部には電気絶縁と電池の完全密封の
ために用いるα−アルミナ(Al23)の絶縁リングが
ガラスによって接着されている。ナトリウムはβ″−ア
ルミナ管の内側に、硫黄は管の外側に配置される場合が
多い。また、陽極金属容器と負極金属端子はα−アルミ
ナ絶縁リングを介して接合されている。
The solid electrolyte used in the sodium-sulfur battery is generally cylindrical and has a tubular shape with one end closed, and the opening thereof is α-used for electrical insulation and complete sealing of the battery. An insulating ring of alumina (Al 2 O 3 ) is adhered by glass. In many cases, sodium is placed inside the β ″ -alumina tube and sulfur is placed outside the tube. The anode metal container and the anode metal terminal are joined via an α-alumina insulating ring.

【0007】特公昭57−15063号公報において
は、構造安定化剤であるLi成分を均一に混合する方法
として、Li成分をLi2O・nAl23(nは少なく
とも5)の形にして添加するβ″−アルミナ原料粉の調
整法が提案されている。ここで、その提案を詳しく述べ
ると、Na;8.6〜9.0重量パーセント、Li2O;
0.7〜0.8重量パーセント、残部Al23から成る成
分のβ″−アルミナ系固体電解質の製造法として、最初
にスピネルと類似の構造をもつLi2O・nAl2
3(nは少なくとも5)を調整する。このLi2O・Al
23の調整では、LiNO3あるいはLi2CO3および
α−Al23を乾式あるいはアセトン溶液を用いた湿式
混合を行う。次にこの混合物を好ましくは1100〜1
250℃の温度で仮焼する方法である。さらにこの調整
されたLi2O・Al23の適当量を使用し、β″−ア
ルミナの生成に必要な成分を有するナトリウムの化合物
であるNa2CO3などとα−Al23との混合物を上記
Li2O・Al23化合物と同様に混合、仮焼する方法
で調整される。また、焼結はこれら調整された混合物の
成形体を白金容器中に入れ、1500〜1600℃の温
度で10分以下保持される。また、Na(+)イオン伝
導性に対する抵抗率をさらに低下させるためには焼結後
に焼鈍処理が行われる。
In Japanese Patent Publication No. 57-15063, a method for uniformly mixing a Li component which is a structure stabilizer is to make the Li component into a form of Li 2 O.nAl 2 O 3 (n is at least 5). A method of adjusting the β ″ -alumina raw material powder to be added has been proposed. Here, the proposal is described in detail. Na; 8.6 to 9.0 weight percent, Li 2 O;
As a method for producing a β ″ -alumina solid electrolyte having a composition of 0.7 to 0.8 weight percent and the balance Al 2 O 3, Li 2 O · nAl 2 O having a structure similar to spinel is first prepared.
Adjust 3 (n is at least 5). This Li 2 O ・ Al
For adjustment of 2 O 3 , LiNO 3 or Li 2 CO 3 and α-Al 2 O 3 are dry-type or wet-mixed using an acetone solution. This mixture is then preferably 1100-1
This is a method of calcining at a temperature of 250 ° C. Further, by using an appropriate amount of this adjusted Li 2 O.Al 2 O 3 , Na 2 CO 3 which is a sodium compound having components necessary for producing β ″ -alumina and α-Al 2 O 3 are added. The mixture is prepared in the same manner as the above Li 2 O.Al 2 O 3 compound and calcined. The temperature is maintained for 10 minutes or less at a temperature of 0 ° C. Further, an annealing treatment is performed after the sintering in order to further reduce the resistivity for Na (+) ion conductivity.

【0008】[0008]

【発明が解決しようとする課題】ナトリウム−硫黄電池
はエネルギー密度が高く電力貯蔵用電池として期待され
ている。しかし電池の充放電中にβ″−アルミナ系固体
電解質が劣化破損することがあり、十分な電池寿命を確
保するには未だ課題が多い。十分な電池寿命を確保する
ためには、固体電解質として用いられる条件を満たさな
ければならない。すなわち、上記した(1)高密度であ
ること、(2)機械的強度が高いこと、(3)Na
(+)イオン伝導性が良好であること、(4)結晶粒が
微細で均質なこと、(5)電気化学的に安定なことなど
である。
The sodium-sulfur battery has a high energy density and is expected as a battery for storing electric power. However, the β ″ -alumina-based solid electrolyte may deteriorate and be damaged during charge / discharge of the battery, and there are still many problems to ensure a sufficient battery life. It must meet the conditions used: (1) high density, (2) high mechanical strength, (3) Na.
(+) Good ion conductivity, (4) Fine and uniform crystal grains, (5) Electrochemically stable, etc.

【0009】従来技術によれば、β″−アルミナ原料粉
末の調整は、Li2O・nAl23の合成粉工程と、そ
の工程で合成したLi2O・nAl23とNa源とα−
Al23とを混合してβ″−アルミナ原料粉を合成する
工程との二つの工程が必要であり、その工程が煩雑であ
る。またLi2O・nAl23化合物およびLi2O・n
Al23化合物にNa2CO3とα−Al23を加え機械
的に混合し、この混合物を単に仮焼する方法のために均
一反応に難点がある。また、ナトリウム−硫黄電池の実
用化に際しては、多量の固体電解質が必要となる。その
ため、固体電解質の生産には例えば連続炉のような量産
可能な焼結設備への適用が必須となる。これに対して従
来技術では、発明者等の検討によると、昇温速度、焼結
温度、焼結時間等の条件の適正範囲が小さいためにこれ
らのコントロールが困難であり、この点においても改良
が必要であることが明らかになった。コントロールを誤
ると焼結体に粗大粒成長が発生する難点がある。
According to the prior art, the preparation of the β ″ -alumina raw material powder is performed by a Li 2 O.nAl 2 O 3 synthesis powder step and a Li 2 O.nAl 2 O 3 and Na source synthesized in the step. α-
Two steps are required, a step of synthesizing β ″ -alumina raw material powder by mixing with Al 2 O 3 and the steps are complicated. In addition, a Li 2 O.nAl 2 O 3 compound and Li 2 O are required.・ N
Na 2 CO 3 and α-Al 2 O 3 are added to an Al 2 O 3 compound and mechanically mixed, and this mixture is simply calcined, so that a uniform reaction is difficult. In addition, a large amount of solid electrolyte is required for practical use of the sodium-sulfur battery. Therefore, in order to produce a solid electrolyte, it is essential to apply it to a mass production sintering facility such as a continuous furnace. On the other hand, according to the prior art, according to the study by the inventors, it is difficult to control these conditions because the proper range of conditions such as temperature rising rate, sintering temperature, and sintering time is small. Became necessary. If the control is wrong, there is a problem that coarse grains grow in the sintered body.

【0010】ここで、β″−アルミナ焼結体の結晶粒の
粗大化による難点について述べる。即ち、粗大粒に成長
したβ″−アルミナ焼結体をナトリウム−硫黄電池の固
体電解質として使用すると、特定粒子への過大電流の集
中による破壊が起こるという問題がある。また機械的な
強度低下の原因にもなり、電池の信頼性確保を困難とす
る。以上、述べたような課題が従来技術には残されてい
る。
Here, the difficulty due to the coarsening of the crystal grains of the β ″ -alumina sintered body will be described. That is, when the β ″ -alumina sintered body grown into coarse particles is used as a solid electrolyte of a sodium-sulfur battery, There is a problem that destruction occurs due to the concentration of excessive current on specific particles. In addition, it also causes mechanical strength reduction, making it difficult to secure the reliability of the battery. As described above, the above-mentioned problems remain in the conventional technology.

【0011】本発明の目的は、上記従来技術の課題を解
決をして、ナトリウム−硫黄電池の構成要素である固体
電解質として信頼性が高いβ″−アルミナ粉末の製造方
法およびβ″−アルミナ粉末を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a highly reliable β ″ -alumina powder manufacturing method and β ″ -alumina powder as a solid electrolyte which is a component of a sodium-sulfur battery. To provide.

【0012】また本発明の他の目的は、上記固体電解質
用として伝導性良好なβ″−アルミナ粉末を焼結した
β″−アルミナ系焼結体を提供することにある。
Another object of the present invention is to provide a β ″ -alumina-based sintered body obtained by sintering β ″ -alumina powder having good conductivity for the above solid electrolyte.

【0013】更に本発明の他の目的は、上記β″−アル
ミナ系焼結体でなる固体電解質を備えたナトリウム−硫
黄電池を提供することにある。
Still another object of the present invention is to provide a sodium-sulfur battery provided with a solid electrolyte made of the above β ″ -alumina sintered body.

【0014】[0014]

【課題を解決するための手段】上記目的は、粉末混合物
を熱処理して得た熱処理物のX線回折パターンがβ−A
23相のd=2.04Å(01,17)面のピーク強
度Iβとβ″−Al23相のd=1.97Å(20,1
0)面のピーク強度Iβ″との比であるIβ/Iβ″が
0〜0.3の範囲内で、上記熱処理物のX線回折パター
ンがNaAIO2相のd=2.94Å(121)面のピー
ク強度INaAlO2と、β″−Al23相のd=1.9
7Å(20,10)の面ピーク強度Iβ″の比であるI
NaAlO2/Iβ″が0〜0.03の範囲内で、上記熱
処理物のX線回折パターンがα−Al23相のd=2.
085Å(113)面のピーク強度Iαと、β″−Al
23相のd=1.97Å(20,10)面の強度Iβ″
との比であるIα/Iβ″が0となる特性を示す熱処理
物を粉砕し、該粉砕した粉末粒子の大きさが3μm以下
となるように製造することにより達成される。
The above object is to obtain a heat-treated product obtained by heat-treating a powder mixture, which has an X-ray diffraction pattern of β-A.
The peak intensity Iβ of the d = 2.04Å (01,17) plane of the l 2 O 3 phase and d = 1.97Å (20,1) of the β ″ -Al 2 O 3 phase
0) plane peak intensity Iβ ″, which is the ratio of the peak intensity Iβ ″, is in the range of 0 to 0.3, and the X-ray diffraction pattern of the heat-treated product is d = 2.94Å (121) plane of NaAIO 2 phase. Peak intensity INaAlO 2 and β = -Al 2 O 3 phase d = 1.9
I, which is the ratio of the surface peak intensity Iβ ″ of 7Å (20,10)
When the NaAlO 2 / Iβ ″ is in the range of 0 to 0.03, the X-ray diffraction pattern of the heat-treated product has an α-Al 2 O 3 phase d = 2.
The peak intensity Iα of the 085Å (113) plane and β ″ -Al
2 O 3 phase d = 1.97Å (20,10) plane strength Iβ ″
It is achieved by crushing a heat-treated product having a characteristic that Iα / Iβ ″, which is the ratio of the crushed powder, and 0, and pulverizing the pulverized powder particles to a size of 3 μm or less.

【0015】上記原料粉末混合物は、Na源としてNa
2CO3粉末をNa2O換算で7〜12重量パーセント、
Li源としてLi2CO3粉末をLi2O換算で0.1〜1
重量パーセント及び残部がAl23粉末からなることが
望ましい。
The above-mentioned raw material powder mixture contains Na as a Na source.
2 to 12% by weight of 2 CO 3 powder in terms of Na 2 O,
Li 2 CO 3 powder as a Li source is calculated to be 0.1 to 1 in terms of Li 2 O.
It is desirable for the weight percent and the balance to consist of Al 2 O 3 powder.

【0016】上記原料粉末混合物のカサ密度を1.0g
/cm3以上に圧縮して仮焼することが望ましい。
The bulk density of the above raw material powder mixture is 1.0 g
It is desirable to compress it to / cm 3 or more and calcine it.

【0017】上記原料粉末混合物の熱処理温度を130
0〜1600℃とすることが望ましい。
The heat treatment temperature of the raw material powder mixture is set to 130.
It is desirable that the temperature be 0 to 1600 ° C.

【0018】上記原料粉末混合物の熱処理時間を0.1
〜5時間とすることが望ましい。
The heat treatment time of the raw material powder mixture is set to 0.1.
It is desirable that the time is 5 hours.

【0019】上記目的は、α−Al23粉末とNa2
3粉末とLi2CO3粉末の三成分を一括混合する混合
工程と、該混合粉末に機械的な圧力を加える圧粉工程
と、該加圧された混合粉末を仮焼する仮焼工程と、該仮
焼された塊状のβ″−アルミナを粉砕する粉砕工程とを
有することにより達成される。
The above-mentioned object is to use α-Al 2 O 3 powder and Na 2 C.
A mixing step of collectively mixing the three components of O 3 powder and Li 2 CO 3 powder, a pressing step of applying mechanical pressure to the mixed powder, and a calcination step of calcining the pressed mixed powder. And a crushing step of crushing the calcinated bulk β ″ -alumina.

【0020】上記目的は、粉末混合物を熱処理して得た
熱処理物のX線回折パターンがβ−Al23相のd=
2.04Å(01,17)面のピーク強度Iβとβ″−
Al23相のd=1.97Å(20,10)面のピーク
強度Iβ″との比であるIβ/Iβ″が0〜0.3の範
囲内であり、上記熱処理物のX線回折パターンがNaA
IO2相のd=2.94Å(121)面のピーク強度IN
aAlO2と、β″−Al23相のd=1.97Å(2
0,10)の面ピーク強度Iβ″の比であるINaAl
2/Iβ″が0〜0.03の範囲内であり、上記熱処理
物のX線回折パターンがα−Al23相のd=2.08
5Å(113)面のピーク強度Iαと、β″−Al23
相のd=1.97Å(20,10)面の強度Iβ″との
比であるIα/Iβ″が0となる上記それぞれの特性を
示す熱処理物を粉砕した粉末粒子の大きさが3μm以下
であることにより達成される。
For the above-mentioned purpose, the X-ray diffraction pattern of the heat-treated product obtained by heat-treating the powder mixture is d = of the β-Al 2 O 3 phase.
Peak intensities Iβ and β ″-of the 2.04Å (01,17) plane
Iβ / Iβ ″, which is the ratio of the peak intensity Iβ ″ of the d = 1.97Å (20,10) plane of the Al 2 O 3 phase, is in the range of 0 to 0.3, and the X-ray diffraction of the heat-treated product is shown. The pattern is NaA
IO 2 phase d = 2.94Å (121) plane peak intensity IN
aAlO 2 and β ″ -Al 2 O 3 phase d = 1.97Å (2
INaAl, which is the ratio of the surface peak intensity Iβ ″ of 0, 10)
O 2 / Iβ ″ is in the range of 0 to 0.03, and the X-ray diffraction pattern of the heat-treated product is d = 2.08 of α-Al 2 O 3 phase.
The peak intensity Iα of the 5Å (113) plane and β ″ -Al 2 O 3
The d = 1.97Å (20,10) plane strength Iβ ″, which is the ratio to the strength Iβ ″, is 0. It is achieved by being.

【0021】上記粉末粒子の長径をl、短径をdとした
場合l/dで定義されるアスペクト比が2〜8の板状で
あることが望ましい。
When the major axis of the powder particles is l and the minor axis is d, it is desirable that the powder particles have a plate shape with an aspect ratio defined by 1 / d of 2 to 8.

【0022】β″−アルミナ系焼結体は、結晶粒の大き
さが平均で5μm以下、かつ最大の結晶粒の大きさが5
0μm以下であることが望ましい。
The β ″ -alumina-based sintered body has an average crystal grain size of 5 μm or less and a maximum crystal grain size of 5 μm.
It is preferably 0 μm or less.

【0023】上記β″−アルミナ系焼結体は1500〜
1670℃の温度で、0.1〜1時間焼結したものが望
ましい。
The β ″ -alumina-based sintered body is 1500 to
What was sintered at a temperature of 1670 ° C. for 0.1 to 1 hour is desirable.

【0024】上記β″−アルミナ系焼結体は1300〜
1500℃の温度で焼鈍したものが望ましい。
The β ″ -alumina-based sintered body is 1300 to
What was annealed at a temperature of 1500 ° C. is desirable.

【0025】動作温度で液体の陽極活物質および集電材
から構成される陽極と、該陽極を収容する陽極容器と、
動作温度で液体の陰極活物質からなる陰極と、該陰極活
物質を収容する陰極容器と、前記陽極と前記陰極との間
の隔膜兼固体電解質を備えたナトリウム−硫黄電池の前
記固体電解質に上記β″−アルミナ系焼結体を用いるこ
とが望ましい。
An anode composed of an anode active material which is liquid at an operating temperature and a current collector, and an anode container for containing the anode,
A cathode made of a cathode active material that is liquid at an operating temperature, a cathode container containing the cathode active material, and a solid electrolyte of a sodium-sulfur battery having a diaphragm and a solid electrolyte between the anode and the cathode as described above. It is desirable to use a β ″ -alumina-based sintered body.

【0026】[0026]

【作用】本発明では加熱によってβ″−アルミナとなる
物質すなわち例えばNa2CO3、Li2CO3及びα−A
23粉末の混合物をカサ密度が1.0g/cm3以上と
なるように圧縮する。この圧縮により混合成分間の粒子
距離が短縮され反応が均一に進行する。また、後の仮焼
工程においてNa2O成分の蒸発を防止できる。
In the present invention, substances that become β ″ -alumina by heating, such as Na 2 CO 3 , Li 2 CO 3 and α-A.
The mixture of l 2 O 3 powder is compressed to a bulk density of 1.0 g / cm 3 or more. By this compression, the particle distance between the mixed components is shortened and the reaction proceeds uniformly. Further, it is possible to prevent evaporation of the Na 2 O component in the subsequent calcination step.

【0027】次いで、1300℃以上の温度で仮焼し、
機械的に粉砕する調整によってβ″−アルミナ原料粉の
組成の均一化、微細化あるいは化学的に活性なものとな
る。即ち、仮焼によりLi2CO3,Na2CO3,α−A
23粉末等から成る混合物はβ″−Al23相に相転
移が起こり、β″−Al23の結晶は強度的に脆弱な
a,b軸方向に優先して成長する。このため結晶のa,
b面は強度的に脆弱なへき開破壊性となり、へき開破壊
性を利用して機械的粉砕で簡単に微細化される。この機
械的粉砕によってβ″−Al23粉末は化学的に活性化
し、組成が均一化する。
Then, calcination is performed at a temperature of 1300 ° C. or higher,
By adjusting the mechanical pulverization, the composition of the β ″ -alumina raw material powder becomes uniform, finely divided, or chemically active. That is, Li 2 CO 3 , Na 2 CO 3 , α-A is obtained by calcination.
A mixture of 1 2 O 3 powder or the like undergoes a phase transition in the β ″ -Al 2 O 3 phase, and β ″ -Al 2 O 3 crystals grow preferentially in the a and b axis directions, which are weak in strength. . Therefore, the crystal a,
The b-side has a weakly fragile cleavage rupture property, and is easily miniaturized by mechanical pulverization by utilizing the cleavage rupture property. By this mechanical pulverization, the β ″ -Al 2 O 3 powder is chemically activated and the composition becomes uniform.

【0028】本発明のβ″−アルミナ原料粉は、上記の
ように組成が均一で活性な微細な粉末であり、このこと
は、この原料粉を用いて成形された成形体を焼結する過
程では、粒子のみの拡散によってβ″−アルミナ焼結体
の緻密化が進行する。
The β ″ -alumina raw material powder of the present invention is a fine powder which has a uniform composition and is active as described above. This means that a green compact formed by using this raw material powder is sintered. Then, the densification of the β ″ -alumina sintered body proceeds due to the diffusion of only the particles.

【0029】一般にβ″−アルミナ焼結体の特性は、そ
の原料粉によって左右されるが本発明の原料粉は、従来
技術におけるβ″−アルミナ原料粉のようにβ−Al2
3相やNaAlO2相の混在量が少なくβ″−Al23
相への相転換がかなり進行した粉末で、β″−アルミナ
焼結体の緻密化は、粉末粒子間の拡散現象によって達成
される。さらにこのβ″−アルミナ系焼結体を1300
〜1500℃の温度で0.1〜5時間焼鈍することによ
り伝導性の改善が図れる。
Generally, the characteristics of the β ″ -alumina sintered body depend on its raw material powder, but the raw material powder of the present invention is β-Al 2 like the β ″ -alumina raw material powder in the prior art.
The amount of O 3 phase and NaAlO 2 phase mixed is small and β ″ -Al 2 O 3
With a powder that has undergone a considerable phase conversion into a phase, the densification of the β ″ -alumina sintered body is achieved by the diffusion phenomenon between the powder particles.
The conductivity can be improved by annealing at a temperature of ~ 1500 ° C for 0.1 to 5 hours.

【0030】従って、従来技術のように焼結時における
Na2O・Al23−Al23系の共融点により出現し
た液相の介入やβ″−Al23粒子が周辺のβ−Al2
3粒子を吸収して起こる結晶粒の粗大化がなく焼結温
度の調整の自由度が拡大され、微細な結晶粒を有した高
密度で、Na(+)イオン伝導性の良好なβ″−アルミ
ナ系焼結体が得られ、該β″−アルミナ系焼結体は、ナ
トリウム−硫黄電池用固体電解質として充分適用できる
ものである。
[0030] Therefore, conventionally Na 2 O · Al 2 O 3 -Al 2 O 3 system emerged intervention liquid phase and the β "-Al 2 O 3 particles by co-melting during sintering as technology around β-Al 2
There is no coarsening of crystal grains caused by absorption of O 3 particles, the degree of freedom in adjusting the sintering temperature is expanded, β ″ having high density with fine crystal grains and good Na (+) ion conductivity. An alumina-based sintered body is obtained, and the β ″ -alumina-based sintered body is sufficiently applicable as a solid electrolyte for sodium-sulfur batteries.

【0031】[0031]

【実施例】以下、本発明の実施例を図により詳細に説明
する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0032】先ず、本発明の基本的な製造工程を説明す
る。
First, the basic manufacturing process of the present invention will be described.

【0033】図1は本発明の基本的な製造工程を示すフ
ローチャートである。
FIG. 1 is a flow chart showing the basic manufacturing process of the present invention.

【0034】本図に示すように始めにβ″−アルミナの
原料となるNa2CO3、Li2CO3、α−Al23の三
成分をそれぞれ秤量してアセトンを加える。アセトンを
加える理由は水を用いると原料中のアルカリ成分(N
a、Li)が溶解して偏析を起こすのを防止するためで
ある。アセトン等の有機容剤を用いない乾式法も可能で
ある。
As shown in the figure, first, three components of Na 2 CO 3 , Li 2 CO 3 and α-Al 2 O 3 which are raw materials of β ″ -alumina are weighed and added with acetone. The reason is that if water is used, the alkaline component (N
This is for preventing a, Li) from being dissolved and causing segregation. A dry method without using an organic solvent such as acetone is also possible.

【0035】次に三成分の粉末にアセトンを加えたもの
を混合して三成分一括混合粉末とする。
Next, a mixture of three-component powder and acetone is mixed to form a three-component batch mixed powder.

【0036】そしてこの三成分一括混合粉末中のアセト
ンを蒸発させて乾燥する。
Then, acetone in the three-component batch mixed powder is evaporated and dried.

【0037】次に乾燥させた三成分一括混合粉末の分子
間距離を短縮するために機械的な圧力を加えて圧縮す
る。圧縮はプレス成形機を用いる方法の他に混合粉末を
ゴム袋に入れ静水圧をかける方法も可能である。
Next, in order to shorten the intermolecular distance of the dried ternary batch-mixed powder, it is compressed by applying mechanical pressure. In addition to the method of using a press molding machine, the method of putting the mixed powder in a rubber bag and applying hydrostatic pressure is also possible for compression.

【0038】さらに圧縮した三成分一括混合粉末を仮焼
する。仮焼によりβ″−アルミナの仮焼体が得られる。
Further, the compressed three-component batch mixed powder is calcined. By calcination, a calcined body of β ″ -alumina is obtained.

【0039】最後にこのβ″−アルミナの仮焼体を粉砕
してβ″−アルミナ粉末を得る。
Finally, the calcined body of β ″ -alumina is pulverized to obtain β ″ -alumina powder.

【0040】実施例1 Na2O換算で8.5重量パーセント、Li2O換算で0.
8重量パーセント、残部がα−Al23組成になるよう
にNa2CO3、Li2CO3、α−Al23粉末にアセト
ンを加え、回転式ボールミルで2時間湿式混合した。こ
の混合物中のアセトンを蒸発乾燥させ、乾燥させた混合
物を冷間静水圧プレスで圧縮した該圧縮体を、MgO容
器に入れてアルカリ成分の蒸発を防止しながら仮焼し
た。仮焼の条件は温度範囲で1100〜1600℃、
0.1〜5時間であった。次にこの仮焼体をアルミナ質
ロールクラッシャで破砕した後、振動ボールミルで2時
間粉砕してβ″−アルミナ粉末を製造した。製造された
β″−アルミナ粉末は、平均粒径が0.8〜3μmであ
った。またこのβ″−アルミナ粉末の粒子のアスペクト
比は2〜8であった。
Example 1 8.5% by weight in terms of Na 2 O and 0.1 in terms of Li 2 O.
8% by weight, so the balance of the alpha-Al 2 O 3 composition Na 2 CO 3, Li 2 CO 3, α-Al 2 O 3 powder in acetone was added, and 2 hours wet mixed in a rotary ball mill. Acetone in this mixture was evaporated to dryness, and the compressed mixture obtained by compressing the dried mixture with a cold isostatic press was placed in a MgO container and calcined while preventing evaporation of alkaline components. The conditions of calcination are 1100 to 1600 ° C in the temperature range,
It was 0.1 to 5 hours. Next, this calcined body was crushed with an alumina roll crusher and then pulverized with a vibrating ball mill for 2 hours to produce β ″ -alumina powder. The produced β ″ -alumina powder had an average particle size of 0.8. Was ˜3 μm. The aspect ratio of the particles of this β ″ -alumina powder was 2-8.

【0041】このβ″−アルミナ粉末に有機結合剤なる
ポリビニールブチラール2重量パーセントをアセトン溶
媒とともに加え、湿式混合を行って、スラリ化し、この
スラリをスプレードライヤによって噴霧乾燥して造粒粉
を得た。この造粒粉を原料粉末として用い、冷間静水圧
プレスで2500Kg/cm2の圧力で成形した。これ
ら成形体を加熱して結合剤を除去した後、マグネシア容
器に入れ、アルカリ雰囲気を保ちながら、焼結を行い、
外径15mm、肉厚1.0mm、長さ130mmの管状及び、
外径16mm、厚さ1mmのペレット形状のβ″−アルミナ
焼結体を製造した。
To the β ″ -alumina powder, 2% by weight of polyvinyl butyral, which is an organic binder, was added together with an acetone solvent, wet-mixed to form a slurry, and the slurry was spray-dried by a spray dryer to obtain granulated powder. This granulated powder was used as a raw material powder and was molded by a cold isostatic press at a pressure of 2500 Kg / cm 2. After heating the molded body to remove the binder, the molded body was put into a magnesia container and exposed to an alkaline atmosphere. While maintaining, sintering
Outer diameter 15 mm, wall thickness 1.0 mm, length 130 mm tubular,
A pellet-shaped β ″ -alumina sintered body having an outer diameter of 16 mm and a thickness of 1 mm was manufactured.

【0042】表1は、上記Na2CO3、Li2CO3、α
−Al23粉末の混合物の各種仮焼条件、その仮焼で得
られた仮焼体のIβ/Iβ″、INaAlO2/Iβ″
およびIα/Iβ″との関係を示す。
Table 1 shows the above Na 2 CO 3 , Li 2 CO 3 and α.
-Al 2 O 3 various calcination conditions of the powder mixture, I beta / I beta calcined body obtained in the calcining ", INaAlO 2 / Iβ"
And Iα / Iβ ″ are shown.

【0043】[0043]

【表1】 [Table 1]

【0044】表1から明らかなように、β″−アルミナ
の原料粉となるNa2CO3、Li2CO3、α−Al23
成分の粉末混合物を仮焼して得た仮焼体は、本実施例に
係る試料No.3〜No.15に示すように、その仮焼温度お
よび時間を1300〜1600℃、0.1〜5時間とし
た場合、仮焼温度が1100〜1200℃の比較例のN
o.1及びNo.2の試料に比較して、Iβ/Iβ″が0〜
0.30の範囲、INaAlO2/Iβ″が0〜0.03
の範囲およびIα/Iβ″が0と比較的小さい値であっ
た。
As is apparent from Table 1, Na 2 CO 3 , Li 2 CO 3 and α-Al 2 O 3 which are raw material powders for β ″ -alumina.
The calcined body obtained by calcining the powder mixture of the components has the calcination temperature and time of 1300 to 1600 ° C. and 0.1 to 1, as shown in samples No. 3 to No. 15 according to the present example. When it is set to 5 hours, the calcination temperature is 1100 to 1200 ° C.
Compared with o.1 and No.2 samples, Iβ / Iβ ″ is 0
Range of 0.30, INaAlO 2 / Iβ ″ is 0 to 0.03
And the range of Iα / Iβ ″ were 0, which were relatively small values.

【0045】表2は、カサ密度の異なる圧粉体の仮焼温
度と得られた仮焼体のIβ/Iβ″、INaAlO2
Iβ″およびIα/Iβ″との関係を示す。
Table 2 shows the calcination temperatures of green compacts having different bulk densities and Iβ / Iβ ″, INaAlO 2 / of the obtained calcinated bodies.
The relationship between Iβ ″ and Iα / Iβ ″ is shown.

【0046】[0046]

【表2】 [Table 2]

【0047】表2から明らかなように、混合物をカサ密
度がそれぞれ1.0、1.5、2.0g/cm3となるように
圧粉し、これを1500、1550、1600℃で0.
5時間仮焼して得られた仮焼体のIβ/Iβ″が0〜
0.15の範囲、INaAlO2/Iβ″が0〜0.01
の範囲、Iα/Iβ″が0であり、これらの比は仮焼前
に圧粉をしなかった表1の混合物を同様条件で仮焼した
仮焼体と較べてさらに小さい値であった。
As is clear from Table 2, the mixture was pressed to a bulk density of 1.0, 1.5 and 2.0 g / cm 3 , respectively, and this was pressed at 1500, 1550 and 1600 ° C.
Iβ / Iβ ″ of the calcined body obtained by calcining for 5 hours is 0
Range of 0.15, INaAlO 2 / Iβ ″ is 0 to 0.01
, Iα / Iβ ″ was 0, and these ratios were smaller than those of the calcined body obtained by calcining the mixture of Table 1 which was not compacted before calcination under the same conditions.

【0048】表3は、β″−アルミナ焼結体の特性を示
す表で、表1に示した比較例の試料No.2、本発明のNo.
3及びNo.14の仮焼体の粉砕粉を原料として用いて焼
結したβ″−アルミナ焼結体の特性を示す。
Table 3 is a table showing the characteristics of the β ″ -alumina sintered body. Sample No. 2 of the comparative example shown in Table 1 and No. of the present invention.
The characteristics of the β ″ -alumina sintered body obtained by sintering using the pulverized powders of the calcined bodies of No. 3 and No. 14 as raw materials are shown.

【0049】[0049]

【表3】 [Table 3]

【0050】表3から明らかなようにβ″−アルミナ焼
結体の特性は、その原料粉末のIβ/Iβ″、INaA
lO2/Iβ″およびIα/Iβ″によって影響され、
比較例として原料粉末のIβ/Iβ″=0.50、IN
aAlO2/Iβ″=0.05およびIα/Iβ″=0.
20と大きい値をもつ試料No.2(表1参照)の粉末を
用いて焼結したβ″−アルミナ焼結体は、密度:2.8
5g/cm3、相対密度;87.4%と低く、また焼結体の
Iβ/Iβ″=0.30およびINaAlO2/Iβ″=
0.05と大きな値で、抵抗率は12Ω・cmと高い。ま
た焼結体の結晶粒はアスペクト比(長径の短径の比)は
6.4で50μm以上の粗大な結晶粒が90%を占める
粗大粒が多く発生しており、圧環強度が65MPaと低
く、これら焼結体はナトリウム−硫黄電池用固体電解質
として使用できないことが判明した。
As is apparent from Table 3, the characteristics of the β ″ -alumina sintered body are as follows: Iβ / Iβ ″, INaA of the raw material powder
be affected by lO 2 / Iβ "and Iα / Iβ",
As a comparative example, Iβ / Iβ ″ of the raw material powder = 0.50, IN
aAlO 2 /Iβ″=0.05 and Iα / Iβ ″ = 0.
The density of the β ″ -alumina sintered body obtained by sintering using the powder of sample No. 2 (see Table 1) having a large value of 20 was 2.8.
5 g / cm 3 , relative density; low as 87.4%, and Iβ / Iβ ″ = 0.30 of sintered body and INaAlO 2 / Iβ ″ =
It has a large value of 0.05 and a high resistivity of 12 Ω · cm. In addition, the crystal grains of the sintered body have an aspect ratio (ratio of major axis to minor axis) of 6.4, and many coarse particles occupying 90% of coarse crystal grains of 50 μm or more are generated, and the radial crushing strength is as low as 65 MPa. , It was found that these sintered bodies cannot be used as a solid electrolyte for sodium-sulfur batteries.

【0051】一方、本発明は原料粉末の特性としてIβ
/Iβ″=0.30、INaAlO2/Iβ″=0.03
およびIα/Iβ″=0と小さい値をもつ試料No.3
(表1参照)、あるいはIβ/Iβ″=0、INaAl
2/Iβ″=0およびIα/Iβ″=0と各値が全て
0である試料No.14(表1参照)を用いて得られた
β″−アルミナ焼結体は、その焼結条件が焼結温度;1
500〜1670℃、焼結保持時間;0.2時間、昇温
速度;60〜300℃/hにおいて、密度;3.20〜
3.24g/cm3、相対密度;98.2〜99.4%、結
晶粒のアスペクト比(長径と短径の比);1.7〜3.3
で50μm以上の粗大粒が全くない微細粒で、圧環強
度;200〜270MPa、焼結体のIβ/Iβ″およ
びINaAlO2/Iβ″値;0〜0.02および0〜
0.01、抵抗率; 2.7〜4.0Ω・cmの値が得られ
た。また、これら焼結体を1300〜1500℃で焼鈍
を施した試料についても検討したが、特性は焼結のまま
のものに較べ強度低下なしに抵抗率がさらに良好となる
結果を得た。
On the other hand, according to the present invention, the characteristic of the raw material powder is Iβ
/Iβ″=0.30, INaAlO 2 /Iβ″=0.03
And sample No. 3 having a small value of Iα / Iβ ″ = 0
(See Table 1), or Iβ / Iβ ″ = 0, INaAl
O 2 / Iβ ″ = 0 and Iα / Iβ ″ = 0 and Sample No. 14 (see Table 1) in which each value is all 0, the β ″ -alumina sintered body was obtained under the sintering conditions. Is the sintering temperature; 1
500 to 1670 ° C, sintering holding time; 0.2 hour, temperature rising rate; at 60 to 300 ° C / h, density; 3.20 to
3.24 g / cm 3 , relative density; 98.2 to 99.4%, crystal grain aspect ratio (ratio of major axis and minor axis); 1.7 to 3.3
Fine particles having no coarse particles of 50 μm or more, radial crushing strength; 200-270 MPa, Iβ / Iβ ″ and INaAlO 2 / Iβ ″ values of the sintered body; 0-0.02 and 0
A value of 0.01, resistivity; 2.7 to 4.0 Ω · cm was obtained. Further, the samples obtained by annealing these sintered bodies at 1300 to 1500 ° C. were also examined. As a result, it was found that the resistivity was better than the as-sintered ones without lowering the strength.

【0052】以上のように、本実施例によれば微細で均
一な結晶粒が構成された高密度、高強度で、かつNa
(+)イオン伝導性の良好なβ″−アルミナ系焼結体が
得られ、十分ナトリウム−硫黄電池用固体電解質として
適用できる。
As described above, according to this embodiment, fine and uniform crystal grains are formed, and high density, high strength and Na
A β ″ -alumina-based sintered body having a good (+) ion conductivity can be obtained and can be sufficiently applied as a solid electrolyte for sodium-sulfur batteries.

【0053】実施例2 表2中、良好な特性を示した試料No.14(焼結条件
が、昇温速度:300℃/h、焼結温度;1620℃)
の直径;16mm、厚さ;1mm形状β″−アルミナ焼結体
を固体電解質として用い、Na/Naセルに組み込み直
流抵抗を測定した。 図2は一般的なNa/Naセルの
縦断面図である。
Example 2 In Table 2, sample No. 14 showing good characteristics (sintering conditions: temperature rising rate: 300 ° C./h, sintering temperature: 1620 ° C.)
Diameter: 16 mm, thickness: 1 mm Shape β ″ -alumina sintered body was used as a solid electrolyte, and the direct current resistance was measured by incorporating it into a Na / Na cell. FIG. 2 is a vertical sectional view of a general Na / Na cell. is there.

【0054】図3は本実施例のβ″−アルミナの通電量
と抵抗率の関係を示す図表である。
FIG. 3 is a chart showing the relationship between the amount of electricity and the resistivity of β ″ -alumina of this example.

【0055】セル1、セル2は、ステンレス鋼で製作さ
れ、両者はβ″−アルミナ3によって隔てられている。
またセル1とセル2はα−アルミナ台座4によって絶縁
され、α−アルミナ台座4とβ″−アルミナ固体電解質
3はガラス半田によって接合されている。これらのNa
/Naセルを用いて温度;330℃、通電電流密度;
0.5A/cm2で双方向に30min通電を繰り返す方法で
500Ah/cm2の通電試験を行った。その結果、図3
に示すようにいずれのβ″−アルミナ焼結体も抵抗率の
変化がなく4〜5Ω・cmの範囲内にあり、Naイオン伝
導性が良好であって、本実施例のβ″−アルミナ焼結体
は十分ナトリウム−硫黄電池用固体電解質として適用で
きることが確認された。
The cells 1 and 2 are made of stainless steel, and are separated by β ″ -alumina 3.
The cells 1 and 2 are insulated by the α-alumina pedestal 4, and the α-alumina pedestal 4 and the β ″ -alumina solid electrolyte 3 are joined by glass solder.
/ Na cell, temperature; 330 ° C, current density;
An energization test of 500 Ah / cm 2 was conducted by a method of repeating energization at 0.5 A / cm 2 in both directions for 30 minutes. As a result,
As shown in Fig. 3, any β ″ -alumina sintered body had no change in resistivity and was in the range of 4 to 5 Ω · cm, and had good Na ion conductivity. It was confirmed that the bound body was sufficiently applicable as a solid electrolyte for sodium-sulfur batteries.

【0056】以上述べたように本実施例によれば、微細
な結晶粒が構成された高密度、高強度でかつNa(+)
イオン伝導性の良好な特性を備えたβ″−アルミナ系焼
結体を得るために従来より高い温度で原料の粉末混合物
を1回仮焼するだけでよく従来の2回仮焼より工程が簡
単にでき、かつX線回折分析で熱処理物の特性を確認し
た後に粉砕するので、良質のβ″−アルミナ粉末が得ら
れる。
As described above, according to this embodiment, high density, high strength Na (+) composed of fine crystal grains is formed.
To obtain a β ″ -alumina-based sintered body with good ionic conductivity, it is only necessary to calcinate the raw material powder mixture once at a higher temperature than before, and the process is simpler than the conventional two-time calcination. In addition, since the heat-treated product is confirmed to have characteristics by X-ray diffraction analysis and then pulverized, a good quality β ″ -alumina powder can be obtained.

【0057】さらにβ″−アルミナ焼結時の焼結温度や
昇温速度を広範囲に設定した条件下で、異常粒成長の発
生のない良好なβ″−アルミナ系焼結体を得ることがで
きる。このためβ″−アルミナ系焼結体の量産が可能
で、ナトリウム−硫黄電池用固体電解質に充分適用可能
なものである。
Further, under the condition that the sintering temperature and the temperature rising rate at the time of β ″ -alumina sintering are set in a wide range, it is possible to obtain a good β ″ -alumina-based sintered body without abnormal grain growth. . Therefore, the β ″ -alumina-based sintered body can be mass-produced and is sufficiently applicable to the solid electrolyte for sodium-sulfur batteries.

【0058】[0058]

【発明の効果】本発明によれば、β″−アルミナの原料
となる三成分粉末を混合、圧縮、仮焼、粉砕することに
より、ナトリウム−硫黄電池の構成要素である固体電解
質材として信頼性が高いβ″−アルミナ粉末を単純な工
程で製造することが出来る。
According to the present invention, by mixing, compressing, calcining and pulverizing a three-component powder as a raw material of β ″ -alumina, it is possible to obtain reliability as a solid electrolyte material which is a constituent element of a sodium-sulfur battery. It is possible to manufacture β ″ -alumina powder having a high value in a simple process.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的な製造工程を示すフローチャー
トである。
FIG. 1 is a flowchart showing a basic manufacturing process of the present invention.

【図2】一般的なNa/Naセルの縦断面図である。FIG. 2 is a vertical sectional view of a general Na / Na cell.

【図3】本発明の実施例のβ″−アルミナの通電量と抵
抗率の関係を示す図表である。
FIG. 3 is a table showing the relationship between the amount of electricity and the resistivity of β ″ -alumina according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1 セル 2 セル 3 β″−アルミナ固体電解質 4 α−アルミナ台座 5 絶縁材 6 ガスケット 1 cell 2 cell 3 β ″ -alumina solid electrolyte 4 α-alumina pedestal 5 insulating material 6 gasket

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月30日[Submission date] June 30, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0049[Correction target item name] 0049

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【表3】 [Table 3]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 水野 貞男 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 塩田 俊巳 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 中澤 哲夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 岡島 安二郎 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Sadao Mizuno 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory (72) Inventor Toshimi Shioda 3-chome, Saiwai-cho, Hitachi, Ibaraki No. 1 Hitachi Ltd., Hitachi Factory (72) Inventor Tetsuo Nakazawa 7-1, 1-1 Omika-cho, Hitachi City, Hitachi, Ibaraki Hitachi Ltd. Hitachi Research Laboratory (72) Inventor, Yasujiro Okajima Hitachi, Ibaraki Prefecture 3-1-1 Sachimachi, Hitachi Ltd., Hitachi Works

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 粉末混合物を熱処理して得た熱処理物の
X線回折パターンがβ−Al23相のd=2.04Å
(01,17)面のピーク強度Iβとβ″−Al23
のd=1.97Å(20,10)面のピーク強度Iβ″
との比であるIβ/Iβ″が0〜0.3の範囲内で、 上記熱処理物のX線回折パターンがNaAIO2相のd
=2.94Å(121)面のピーク強度INaAlO
2と、β″−Al23相のd=1.97Å(20,10)
の面ピーク強度Iβ″の比であるINaAlO2/I
β″が0〜0.03の範囲内で、 上記熱処理物のX線回折パターンがα−Al23相のd
=2.085Å(113)面のピーク強度Iαと、β″
−Al23相のd=1.97Å(20,10)面の強度
Iβ″との比であるIα/Iβ″が0となる特性を示す
熱処理物を粉砕し、該粉砕した粉末粒子の大きさが3μ
m以下となるように製造することを特徴とするβ″−ア
ルミナ粉末の製造方法。
1. An X-ray diffraction pattern of a heat-treated product obtained by heat-treating a powder mixture has a β-Al 2 O 3 phase of d = 2.04Å
(01,17) plane peak intensity Iβ and β ″ -Al 2 O 3 phase d = 1.97Å (20,10) plane peak intensity Iβ ″
The ratio of the I beta / I beta "is within the range of 0 to 0.3, X-ray diffraction pattern of the heat-treated product is NaAIO 2 phases d
= 2.94Å (121) plane peak intensity INaAlO
2 and β ″ -Al 2 O 3 phase d = 1.97Å (20,10)
Of the surface peak intensity Iβ ″ of INaAlO 2 / I
When β ″ is in the range of 0 to 0.03, the X-ray diffraction pattern of the heat-treated product is α-Al 2 O 3 phase d
= 2.085Å (113) plane peak intensity Iα and β ″
-Al 2 O 3 phase d = 1.97Å (20,10) plane strength Iβ ", which is the ratio of Iα / Iβ", which is the ratio to 0, is crushed, and the crushed powder particles are Size is 3μ
A method for producing β ″ -alumina powder, which is characterized in that it is produced so as to be m or less.
【請求項2】 上記原料粉末混合物は、Na源としてN
2CO3粉末をNa2O換算で7〜12重量パーセン
ト、Li源としてLi2CO3粉末をLi2O換算で0.1
〜1.0重量パーセント及び残部がAl23粉末からな
ることを特徴とする請求項1に記載のβ″−アルミナ粉
末の製造方法。
2. The raw material powder mixture contains N as a Na source.
a 2 CO 3 powder 7-12% by weight in the terms of Na 2 O, the Li 2 CO 3 powder as a Li source in Li 2 O in terms of 0.1
The method for producing β ″ -alumina powder according to claim 1, wherein the weight ratio is ˜1.0 weight percent and the balance is Al 2 O 3 powder.
【請求項3】 上記原料粉末混合物のカサ密度を1.0
g/cm3以上に圧縮して仮焼することを特徴とする請
求項1または請求項2に記載のβ″−アルミナ粉末の製
造方法。
3. The bulk density of the raw material powder mixture is 1.0
The method for producing β ″ -alumina powder according to claim 1 or 2, which comprises calcination after compressing to g / cm 3 or more.
【請求項4】 上記原料粉末混合物の熱処理温度を13
00〜1600℃とすることを特徴とする請求項2また
は請求項3に記載のβ″−アルミナ粉末の製造方法。
4. The heat treatment temperature of the raw material powder mixture is set to 13
The method for producing β ″ -alumina powder according to claim 2 or 3, wherein the temperature is set to 00 to 1600 ° C.
【請求項5】 上記原料粉末混合物の熱処理時間を0.
1〜5時間とすることを特徴とする請求項4に記載の
β″−アルミナ粉末の製造方法。
5. The heat treatment time of the raw material powder mixture is set to 0.
The method for producing β ″ -alumina powder according to claim 4, wherein the time is 1 to 5 hours.
【請求項6】 α−Al23粉末とNa2CO3粉末とL
2CO3粉末の三成分を一括混合する混合工程と、該混
合粉末に機械的な圧力を加える圧粉工程と、該加圧され
た混合粉末を仮焼する仮焼工程と、該仮焼された塊状の
β″−アルミナを粉砕する粉砕工程とを有することを特
徴とするβ″−アルミナ粉末の製造方法。
6. An α-Al 2 O 3 powder, Na 2 CO 3 powder and L
a mixing step of collectively mixing the three components of i 2 CO 3 powder, a pressing step of applying mechanical pressure to the mixed powder, a calcination step of calcining the pressurized mixed powder, and a calcination step And a pulverizing step of pulverizing the lumped β ″ -alumina thus obtained.
【請求項7】 粉末混合物を熱処理して得た熱処理物の
X線回折パターンがβ−Al23相のd=2.04Å
(01,17)面のピーク強度Iβとβ″−Al23
のd=1.97Å(20,10)面のピーク強度Iβ″
との比であるIβ/Iβ″が0〜0.3の範囲内であ
り、 上記熱処理物のX線回折パターンがNaAIO2相のd
=2.94Å(121)面のピーク強度INaAlO
2と、β″−Al23相のd=1.97Å(20,10)
の面ピーク強度Iβ″の比であるINaAlO2/I
β″が0〜0.03の範囲内であり、 上記熱処理物のX線回折パターンがα−Al23相のd
=2.085Å(113)面のピーク強度Iαと、β″
−Al23相のd=1.97Å(20,10)面の強度
Iβ″との比であるIα/Iβ″が0となる上記それぞ
れの特性を示す熱処理物を粉砕した粉末粒子の大きさが
3μm以下であることを特徴とするβ″−アルミナ粉
末。
7. The X-ray diffraction pattern of the heat-treated product obtained by heat-treating the powder mixture has a β-Al 2 O 3 phase of d = 2.04Å
(01,17) plane peak intensity Iβ and β ″ -Al 2 O 3 phase d = 1.97Å (20,10) plane peak intensity Iβ ″
The ratio of the I beta / I beta "is in the range of 0 to 0.3, X-ray diffraction pattern of the heat-treated product is NaAIO 2 phases d
= 2.94Å (121) plane peak intensity INaAlO
2 and β ″ -Al 2 O 3 phase d = 1.97Å (20,10)
Of the surface peak intensity Iβ ″ of INaAlO 2 / I
β ″ is in the range of 0 to 0.03, and the X-ray diffraction pattern of the heat treated product is d of the α-Al 2 O 3 phase.
= 2.085Å (113) plane peak intensity Iα and β ″
-Size of powder particles obtained by pulverizing a heat-treated product exhibiting the above-mentioned respective characteristics such that the ratio Iα / Iβ ″ of the Al 2 O 3 phase d = 1.97Å (20, 10) plane strength Iβ ″ is 0. Β-alumina powder having a size of 3 μm or less.
【請求項8】 上記粉末粒子の長径をl、短径をdとし
た場合l/dで定義されるアスペクト比が2〜8の板状
であることを特徴とする請求項7に記載のβ″−アルミ
ナ粉末。
8. The β according to claim 7, wherein the powder particles have a plate-like shape with an aspect ratio defined by 1 / d of 2 to 8 where the major axis is 1 and the minor axis is d. ″ -Alumina powder.
【請求項9】 請求項7または請求項8に記載のβ″−
アルミナ粉末で成形した成形物を焼結して得たβ″−ア
ルミナ系焼結体であって、結晶粒の大きさが平均で5μ
m以下、かつ最大の結晶粒の大きさが50μm以下であ
ることを特徴とするβ″−アルミナ系焼結体。
9. The β ″-according to claim 7 or 8.
A β ″ -alumina-based sintered body obtained by sintering a molded article formed of alumina powder, and having a crystal grain size of 5 μm on average.
A β ″ -alumina-based sintered body characterized in that the maximum grain size is 50 μm or less.
【請求項10】 上記成形物を1500〜1670℃の
温度で、0.1〜1時間焼結したことを特徴とする請求
項9に記載のβ″−アルミナ系焼結体。
10. The β ″ -alumina-based sintered body according to claim 9, wherein the molded product is sintered at a temperature of 1500 to 1670 ° C. for 0.1 to 1 hour.
【請求項11】 請求項10記載のβ″−アルミナ系焼
結体を1300〜1500℃の温度で焼鈍したことを特
徴とするβ″−アルミナ系焼結体。
11. A β ″ -alumina-based sintered body obtained by annealing the β ″ -alumina-based sintered body according to claim 10 at a temperature of 1300 to 1500 ° C.
【請求項12】 動作温度で液体の陽極活物質および集
電材から構成される陽極と、該陽極を収容する陽極容器
と、動作温度で液体の陰極活物質からなる陰極と、該陰
極活物質を収容する陰極容器とを備え、前記陽極と前記
陰極との間の隔膜兼固体電解質を請求項9から請求項1
1のうちいずれかの請求項に記載のβ″−アルミナ系焼
結体により構成したことを特徴とするナトリウム−硫黄
電池。
12. An anode composed of an anode active material that is liquid at an operating temperature and a current collector, an anode container that houses the anode, a cathode made of a cathode active material that is liquid at an operating temperature, and the cathode active material. A cathode container for accommodating the solid electrolyte, which is a diaphragm between the anode and the cathode.
1. A sodium-sulfur battery comprising the β ″ -alumina-based sintered body according to claim 1.
JP5158899A 1993-06-29 1993-06-29 Production of beta"-alumina powder and beta"-alumina Pending JPH0741360A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5158899A JPH0741360A (en) 1993-06-29 1993-06-29 Production of beta"-alumina powder and beta"-alumina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5158899A JPH0741360A (en) 1993-06-29 1993-06-29 Production of beta"-alumina powder and beta"-alumina

Publications (1)

Publication Number Publication Date
JPH0741360A true JPH0741360A (en) 1995-02-10

Family

ID=15681804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5158899A Pending JPH0741360A (en) 1993-06-29 1993-06-29 Production of beta"-alumina powder and beta"-alumina

Country Status (1)

Country Link
JP (1) JPH0741360A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243095A (en) * 2021-11-15 2022-03-25 清华大学深圳国际研究生院 K-beta' -Al2O3Solid electrolyte, preparation method thereof and potassium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114243095A (en) * 2021-11-15 2022-03-25 清华大学深圳国际研究生院 K-beta' -Al2O3Solid electrolyte, preparation method thereof and potassium battery

Similar Documents

Publication Publication Date Title
KR101592752B1 (en) Garnet powder, manufacturing method thereof, solid electrolyte sheet using hot-press and manufacturing method thereof
US3895963A (en) Process for the formation of beta alumina-type ceramics
CN112467198B (en) Oxide solid electrolyte for lithium ion battery and preparation method thereof
CN111978082B (en) Strontium magnesium niobate doped modified sodium bismuth titanate based energy storage ceramic material and preparation method thereof
US11139504B2 (en) Lithium ion conductive crystal body and all-solid state lithium ion secondary battery
US3468719A (en) Solid state ionic conductor and method of making
EP3751585A1 (en) Solid electrolyte
US5612154A (en) Beta-alumina solid electrolyte
US4020134A (en) Method for preparing shaped, green ceramic compacts
EP1213781A2 (en) Method for producing beta-alumina solid electrolyte
CA1099497A (en) METHOD OF PREPARING DENSE, HIGH STRENGTH, AND ELECTRICALLY CONDUCTIVE CERAMICS CONTAINING .beta.- ALUMINA
US7125622B2 (en) Method of producing oxide ion conductor
JPH0741360A (en) Production of beta&#34;-alumina powder and beta&#34;-alumina
JPH07192754A (en) Solid electrolyte for sodium- sulfur battery and its preparation
May et al. Recent progress in the development of beta-alumina for the sodium-sulphur battery
Jak et al. Dynamically compacted rechargeable ceramic lithium batteries
JP2984208B2 (en) Molded body for ceramic sintered body, method for producing the same, ceramic sintered body using the molded body, and method for producing the same
JPH1112028A (en) Beta&#34;-alumina-sintered solid electrolyte and its production
CN115417667B (en) Nd 2 O 3 Doped Na-beta (beta&#39;) -Al 2 O 3 Solid electrolyte ceramic material and preparation method thereof
CN115417660B (en) Eu (Eu) 2 O 3 Doped Na-beta (beta&#39;) -Al 2 O 3 Solid electrolyte ceramic material and preparation method thereof
JPH11154414A (en) Beta-alumina electrolyte and manufacture thereof
JP3377261B2 (en) Method for producing β-alumina powder
JP3586556B2 (en) Method for producing beta alumina electrolyte
Gordon et al. Processing and characterization of polycrystalline β ″-alumina ceramic electrolytes
JPS6110057A (en) Manufacture of lithium aluminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Effective date: 20070911

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20071109

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20080325

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Effective date: 20080404

Free format text: JAPANESE INTERMEDIATE CODE: A711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080404

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110516

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110516

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130516

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250