JPH0741036B2 - Ultrasonic device - Google Patents

Ultrasonic device

Info

Publication number
JPH0741036B2
JPH0741036B2 JP60165908A JP16590885A JPH0741036B2 JP H0741036 B2 JPH0741036 B2 JP H0741036B2 JP 60165908 A JP60165908 A JP 60165908A JP 16590885 A JP16590885 A JP 16590885A JP H0741036 B2 JPH0741036 B2 JP H0741036B2
Authority
JP
Japan
Prior art keywords
points
pulse wave
wave
ultrasonic
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60165908A
Other languages
Japanese (ja)
Other versions
JPS6226050A (en
Inventor
景義 片倉
▲吉▼雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60165908A priority Critical patent/JPH0741036B2/en
Publication of JPS6226050A publication Critical patent/JPS6226050A/en
Publication of JPH0741036B2 publication Critical patent/JPH0741036B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、管内の流体に生じる脈波の速度を測定する装
置に関する。この種の装置は、例えば、血圧脈波の速度
の測定に用いることができ、血圧脈波は、脈動硬化の診
断に利用される。
Description: FIELD OF THE INVENTION The present invention relates to an apparatus for measuring the velocity of a pulse wave generated in a fluid in a tube. This type of device can be used, for example, to measure the velocity of a blood pressure pulse wave, and the blood pressure pulse wave is used to diagnose pulsatility.

〔発明の背景〕[Background of the Invention]

血管中を伝播する血圧脈波の速度は、それぞれの部位に
おける血管の硬化度に関係しており、4m/secから10m/se
c程度まで、硬化度に従つて増加することが知られてい
る。従来における血圧脈波速度は、電子通信学会技術研
究報告MBE83−37(1983年)に記載されたように、圧力
センサにより脈波の波形を導出するものであつた。この
方法では、頚動脈のような浅部の血管の場合はよいが、
腹部大動脈のような深部の血管の場合には、測定するこ
とが不可能である。また、対象血管の周辺にある他の血
管の圧力がノイズとして混入するのを防ぐことが困難で
あり、そのため、誤差を生じやすい。
The velocity of the blood pressure pulse wave propagating in the blood vessel is related to the degree of hardening of the blood vessel at each site, and is 4 m / sec to 10 m / se.
It is known to increase with the degree of curing up to about c. The blood pressure pulse wave velocity in the past has been one in which the pulse wave waveform is derived by a pressure sensor as described in Technical Report of the Institute of Electronics and Communication Engineers MBE83-37 (1983). This method is good for superficial blood vessels such as the carotid artery,
In the case of deep blood vessels such as the abdominal aorta, it is impossible to measure. In addition, it is difficult to prevent the pressure of other blood vessels around the target blood vessel from mixing in as noise, and therefore an error is likely to occur.

〔発明の目的〕[Object of the Invention]

本発明の目的は、距離をへだてた位置からでも正確に脈
波速度を測定できる装置を提供することにある。
An object of the present invention is to provide an apparatus capable of accurately measuring a pulse wave velocity even from a position at a long distance.

〔発明の概要〕[Outline of Invention]

超音波断層撮像装置による動脈の断層像を注意深く観察
した結果、伝播する血圧脈波に対応する血管径の変化が
認められた。この知見に着目して、本発明は、導管に沿
つた2点において、超音波の反射を利用して脈波(例え
ば管径の時間的変化)を表わす情報を発生し、この情報
から、脈波の対応する点がこの2点で現われる時間差を
求め、この時間差と2点間の距離とに基づいて脈波の伝
播速度を算出するように構成され、前記の脈波を表わす
情報を発生するために、ドツプラー検出手段を用いる。
この機構と断層撮像装置を組合わせれば便利である。
As a result of carefully observing the tomographic image of the artery with the ultrasonic tomography apparatus, a change in the blood vessel diameter corresponding to the propagating blood pressure pulse wave was recognized. Focusing on this knowledge, the present invention generates information indicating a pulse wave (for example, a temporal change in the pipe diameter) by utilizing the reflection of ultrasonic waves at two points along the conduit. It is configured to obtain the time difference at which the corresponding points of the wave appear at these two points, and calculate the propagation velocity of the pulse wave based on this time difference and the distance between the two points to generate the information representing the pulse wave. For this purpose, Doppler detection means is used.
It is convenient to combine this mechanism with a tomographic imaging device.

〔発明の実施例〕Example of Invention

第1図は、本発明の一実施例として、血圧脈波速度計を
示す。2個の超音波送受波器1−1と1−2は、血管3
に沿つて、距離Lだけ離れて、体表面上に置かれ、それ
ぞれ駆動回路2−1と2−2により駆動されて、超音波
パルスを一定周期で反覆発生するとともに、それらの反
射波を受信して、反射波信号S1とS2を発生する。第2図
は、ほぼ1個の超音波パルス期間における波形図であ
る。血液からの反射は他の生体組織からの反射に比して
非常に小さい。第2図の波形S1とS2において、期間〔a
−b〕と〔c−d〕には反射波がほとんどなく、したが
つて、これらの期間は血管に対応し、点a,b,c,dは、第
1図における血管壁上の点A,B,C,Dにそれぞれ対応す
る。
FIG. 1 shows a blood pressure pulse wave velocity meter as an embodiment of the present invention. The two ultrasonic transducers 1-1 and 1-2 are connected to the blood vessel 3
Are placed on the surface of the body at a distance of L, and are driven by drive circuits 2-1 and 2-2, respectively, to repeatedly generate ultrasonic pulses and receive their reflected waves. Then, the reflected wave signals S 1 and S 2 are generated. FIG. 2 is a waveform diagram in a period of almost one ultrasonic pulse. The reflection from blood is much smaller than that from other living tissues. In the waveforms S 1 and S 2 in FIG. 2 , the period [a
-B] and [cd] have almost no reflected waves, and therefore these periods correspond to blood vessels, and points a, b, c, d are points A on the blood vessel wall in FIG. , B, C, D respectively.

第1図に戻り、波形処理部4は、信号S1とS2をそれぞれ
検波して、整形し、反射波の存在しない部分、すなわ
ち、第2図における期間〔a−b〕と〔c−d〕に等し
い持続時間T1とT2を持つ矩形波信号g1とg2を発生する。
管径計測部5は、例えば、適当な一定周波数のクロツク
パルスを信号g1とg2でそれぞれゲートして計数すること
により、持続時間T1とT2に対応するデイジタル情報h1
h2を発生する。血管壁上の点A,B間の距離をd1とし、同
C,D間の距離をd2とし、超音波の生体内における速度を
Vとすれば、 d1=VT1/2 d2=VT2/2 である。したがつて、T1とT2に対応するh1とh2は、それ
ぞれの時点におけるd1とd2(すなわち、それぞれの位置
における血管径)を表わすとみなすことができる。
Returning to FIG. 1, the waveform processing unit 4 detects and shapes the signals S 1 and S 2 , respectively, and a portion where no reflected wave exists, that is, the periods [ab] and [c-] in FIG. generate square wave signals g 1 and g 2 with durations T 1 and T 2 equal to d].
The pipe diameter measuring unit 5 gates and counts, for example, a clock pulse having an appropriate constant frequency with the signals g 1 and g 2 , respectively, to obtain the digital information h 1 corresponding to the durations T 1 and T 2.
generate h 2 . Let d 1 be the distance between points A and B on the blood vessel wall.
C, and the distance between D and d 2, if the velocity of ultrasound in the body is V, it is d 1 = VT 1/2 d 2 = VT 2/2. Therefore, h 1 and h 2 corresponding to T 1 and T 2 can be regarded as representing d 1 and d 2 at each time point (that is, blood vessel diameter at each position).

血管径d1とd2(したがつてh1とh2)は、第3図に示すよ
うに、それぞれ血圧脈波に対応して変化し、そして、血
圧脈波が第1図において左から右に進むとすれば、d2
変化は、それに対応するd1の変化よりも時間τだけ遅
れ、この遅れ時間τは、血圧脈波が距離Lを伝播するに
要する時間に等しい。時間差係測部6は、相関器を備
え、到来時間差を異にするh1とh2の種々の組合せについ
て相関計数を計算し、その極大値を与える到来時間差に
基づいて前記の遅れ時間τを決定する。速度決定部7
は、距離計測部8から送受波器1−1と1−2間の距離
Lを受取り、このLを時間差計測部6からのτで割るこ
とにより、L/τ、すなわち血圧脈波速度を決定する。距
離Lの値は、操作者が測定して、手動により速度決定部
7に与えてもよい。時間差計測部6と速度決定部7は、
然るべくプログラムされた単一のデータ処理ユニットで
置換することができる。
The blood vessel diameters d 1 and d 2 (hence h 1 and h 2 ) change corresponding to the blood pressure pulse wave, respectively, as shown in FIG. 3, and the blood pressure pulse wave changes from the left in FIG. Proceeding to the right, the change in d 2 lags the corresponding change in d 1 by a time τ, which is equal to the time it takes for the blood pressure pulse wave to travel the distance L. The time difference measuring unit 6 includes a correlator, calculates correlation counts for various combinations of h 1 and h 2 having different arrival time differences, and calculates the delay time τ based on the arrival time difference that gives the maximum value. decide. Speed determination unit 7
Receives the distance L between the transducers 1-1 and 1-2 from the distance measuring unit 8 and divides this L by τ from the time difference measuring unit 6 to determine L / τ, that is, the blood pressure pulse wave velocity. To do. The value of the distance L may be measured by the operator and manually given to the speed determination unit 7. The time difference measuring unit 6 and the speed determining unit 7 are
It can be replaced by a single data processing unit programmed accordingly.

第1図における2個の送受波器1−1と1−2の代り
に、第4図に示すような、単一のリニヤ型電子走査式超
音波探触子10を使用してもよい。この探触子10は、一列
に並んだ一群の送受波素子11と、それらを走査する電子
的スイツチ部12を有し、その出力により、断層撮像装置
20のCRT21上に、生体の断層像が表示される。送受波素
子群11中の適当な2個の反射波受信出力が選択されて、
第1図における信号S1及びS2として用いられる。断層像
を監視することにより、探触子を所望の血管の上に正し
く配置することが容易になる。リニア型に限らず、セク
タ、コンベクス、ラジアル等任意の型のものを使用する
ことができる。
Instead of the two transducers 1-1 and 1-2 in FIG. 1, a single linear electronic scanning ultrasonic probe 10 as shown in FIG. 4 may be used. This probe 10 has a group of transmitting / receiving elements 11 arranged in a line and an electronic switch section 12 for scanning them, and the output thereof provides a tomographic imaging apparatus.
A tomographic image of the living body is displayed on the 20 CRTs 21. By selecting two appropriate reflected wave reception outputs in the transmitting / receiving element group 11,
Used as signals S 1 and S 2 in FIG. Monitoring the tomogram facilitates proper placement of the probe on the desired vessel. Not only the linear type, but also any type such as sector, convex, radial type can be used.

波形処理部4にドツプラー検出手段を設けて、移動対象
(血液)と静止対象(筋肉)を弁別させれば、血管部分
をより精密に識別・計測することができる。また、ドツ
プラー検出により血管壁の点A〜Dの動きを検出すれ
ば、第3図に示したような血管径の変化が直接得られる
から、この情報をh1及びh2の代りに使用しても、同じ結
果を得ることができる。ドツプラー検出手段の採用によ
り正確さが増す。
By providing the Doppler detection means in the waveform processing unit 4 to discriminate the moving object (blood) and the stationary object (muscle), the blood vessel portion can be more accurately identified and measured. Also, if the movements of points A to D of the blood vessel wall are detected by Doppler detection, the change in blood vessel diameter as shown in FIG. 3 can be directly obtained. Therefore, this information is used instead of h 1 and h 2. However, the same result can be obtained. Accuracy is increased by the use of Doppler detection means.

本発明は、血圧脈波に限らず、一般に、柔軟なパイプを
通じてポンプ等による間欠的な駆動により流体を輸送す
る機構に適用することができる。
INDUSTRIAL APPLICABILITY The present invention is not limited to blood pressure pulse waves, and can be generally applied to a mechanism for transporting fluid by intermittent driving by a pump or the like through a flexible pipe.

〔発明の効果〕〔The invention's effect〕

本発明によれば、複数の管が隣接している場合でも、か
なりの距離を隔てて、脈波速度を正確に測定することが
できる。血圧脈波の場合、10cm程度の深部に存在する大
動脈の脈波速度を測定することができる。
According to the present invention, even when a plurality of tubes are adjacent to each other, the pulse wave velocity can be accurately measured at a considerable distance. In the case of the blood pressure pulse wave, the pulse wave velocity of the aorta existing at a depth of about 10 cm can be measured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すブロツクダイヤグラム
であり、第2図は第1図における各部の波形図であり、
第3図は管径の時間的変化のグラフであり、第4図は本
発明の他の実施例のブロツクダイヤグラムである。 1−1,1−2……超音波送受波器、S1,S2……反射波受信
信号、4……波形処理部、5……管径計測部、6……時
間差計測部、7……速度決定部。
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a waveform diagram of each part in FIG.
FIG. 3 is a graph of the change in pipe diameter with time, and FIG. 4 is a block diagram of another embodiment of the present invention. 1-1, 1-2 ...... ultrasonic transducer, S 1, S 2 ...... reflected wave reception signal, 4 ...... waveform processing unit, 5 ...... pipe diameter measuring unit 6 ...... time difference measuring unit, 7 ...... Speed determination unit.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】導管に沿つた2点において前記導管に向け
て超音波を発射してそれぞれの反射波を検出するための
手段と、前記検出された反射波を処理して前記2点のそ
れぞれにおける脈波を表わす情報を発生する手段と、前
記情報を処理して前記2点におけるそれぞれの前記脈波
の対応する点の間の時間差を決定してその時間差と前記
2点間の距離とに基づき前記脈波の伝播速度を決定する
手段とを備え、前記脈波を表わす情報を発生する手段
が、前記2点で検出された反射波に対するドツプラー検
出手段を有する超音波装置。
1. Means for emitting ultrasonic waves toward the conduit at two points along the conduit to detect respective reflected waves, and processing the detected reflected waves to process each of the two points. Means for generating information representative of the pulse wave at, and determining the time difference between the corresponding points of the pulse waves at the two points by processing the information to obtain the time difference and the distance between the two points. Means for determining the propagation velocity of the pulse wave based on the ultrasonic wave device, and the means for generating information representing the pulse wave has a Doppler detection means for the reflected waves detected at the two points.
【請求項2】特許請求の範囲1において、その脈波を表
わす情報を発生する手段は、相次ぐ時点において検出さ
れた反射波を処理してそれぞれの時点における管径に対
応する一連のデータを発生する手段を含む超音波装置。
2. The means for generating information representing the pulse wave according to claim 1, processing the reflected waves detected at successive time points to generate a series of data corresponding to the pipe diameter at each time point. Ultrasonic device including means for performing.
【請求項3】特許請求の範囲1において、その脈波を表
わす情報を発生する手段は、前記ドツプラー検出手段の
出力を用いて管径の時間的変化を検出する手段を有する
超音波装置。
3. The ultrasonic device according to claim 1, wherein the means for generating information representing the pulse wave has means for detecting a temporal change in the pipe diameter by using the output of the Doppler detecting means.
【請求項4】導管に沿つて配置されるべき超音波送受波
素子群と、前記送受波素子群からの受信反射波信号に応
答して断層像を表示する断層撮像手段と、前記送受波素
子群中の予め定められた2素子からの受信反射波信号を
処理してそれぞれの対応位置における管径の時間的変化
を表わす情報を発生する手段と、前記情報を処理して前
記対応位置間における管径の対応する時間的変化の時間
差を決定してその時間差と前記2素子間の距離とに基づ
き脈波の伝播速度を決定する手段とを備え、前記情報を
発生する手段が、前記2素子からの受信反射波信号に対
するドツプラー検出手段を有する超音波装置。
4. An ultrasonic wave transmitting / receiving element group to be arranged along a conduit, a tomographic imaging means for displaying a tomographic image in response to a received reflected wave signal from the wave transmitting / receiving element group, and the wave transmitting / receiving element. A means for processing received reflected wave signals from two predetermined elements in the group to generate information representative of a temporal change of the pipe diameter at each corresponding position; and a means for processing the information and between the corresponding positions. Means for determining the time difference of the corresponding temporal changes in the tube diameter and determining the propagation velocity of the pulse wave based on the time difference and the distance between the two elements, the means for generating the information being the two elements. An ultrasonic device having a Doppler detection means for a reflected wave signal received from the device.
JP60165908A 1985-07-29 1985-07-29 Ultrasonic device Expired - Lifetime JPH0741036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60165908A JPH0741036B2 (en) 1985-07-29 1985-07-29 Ultrasonic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165908A JPH0741036B2 (en) 1985-07-29 1985-07-29 Ultrasonic device

Publications (2)

Publication Number Publication Date
JPS6226050A JPS6226050A (en) 1987-02-04
JPH0741036B2 true JPH0741036B2 (en) 1995-05-10

Family

ID=15821289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165908A Expired - Lifetime JPH0741036B2 (en) 1985-07-29 1985-07-29 Ultrasonic device

Country Status (1)

Country Link
JP (1) JPH0741036B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213443A (en) * 1988-06-30 1990-01-17 Aloka Co Ltd Ultrasonic wave pulse wave speedmeter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8401789D0 (en) * 1984-04-02 1984-04-02 Morten Benthin DEVICE FOR Saturation of Movable Structures with the help of Ultrasonic Sound

Also Published As

Publication number Publication date
JPS6226050A (en) 1987-02-04

Similar Documents

Publication Publication Date Title
JP2849159B2 (en) Ultrasound diagnostic equipment
US5088498A (en) Ultrasonic plethysmograph
US5289820A (en) Ultrasonic plethysmograph
CA2391123A1 (en) Ultrasonic diagnostic apparatus
CN107049361B (en) Sound velocity imaging using shear waves
CN110301939A (en) Imaging of tissue and parameter detecting system
EP1079242B1 (en) Ultrasound diagnostic apparatus
JP3182419B2 (en) Blood flow measurement and display device
JP2001309918A (en) Ultrasonic diagnostic device
JPS6253182B2 (en)
EP1653860A2 (en) Apparatus and method for locating a bifurcation in an artery
CN1119974C (en) Dual-ultrasonic doppler method for measuring blood flow speed
JPH0741036B2 (en) Ultrasonic device
JP2002224063A (en) Pulse wave propagation speed measuring device and ultrasonograph
JPH0368694B2 (en)
KR20190132264A (en) Shear wave imaging based on ultrasound with increased pulse repetition interval
RU2195635C1 (en) Method of measurement of level of liquid and loose media
JPH069563B2 (en) Ultrasonic diagnostic equipment
KR840002100B1 (en) Ultrasonic diagnosing apparatus
JPS6024829A (en) Ultrasonic diagnostic apparatus
KR20230169902A (en) Methods for measuring shear wave parameters and ultrasonic apparatus
JPS6266843A (en) Ultrasonic diagnostic apparatus
JP2005211590A (en) Ultrasonic distance measuring method, ultrasonic distance measuring device and ultrasonograph
JPH043221B2 (en)
JPH04138146A (en) Correlation type ultrasonic flow velocity measurement device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term