JPH0740475B2 - X-ray generator - Google Patents

X-ray generator

Info

Publication number
JPH0740475B2
JPH0740475B2 JP61037437A JP3743786A JPH0740475B2 JP H0740475 B2 JPH0740475 B2 JP H0740475B2 JP 61037437 A JP61037437 A JP 61037437A JP 3743786 A JP3743786 A JP 3743786A JP H0740475 B2 JPH0740475 B2 JP H0740475B2
Authority
JP
Japan
Prior art keywords
anode
electrode
tip
cathode
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61037437A
Other languages
Japanese (ja)
Other versions
JPS62195836A (en
Inventor
光二 鈴木
▲浩▼ 有田
幸夫 黒沢
邦夫 平沢
良男 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61037437A priority Critical patent/JPH0740475B2/en
Publication of JPS62195836A publication Critical patent/JPS62195836A/en
Publication of JPH0740475B2 publication Critical patent/JPH0740475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はX線発生装置に関り、特にX線リソグラフイに
好適なX線発生装置に関する。
TECHNICAL FIELD The present invention relates to an X-ray generator, and more particularly to an X-ray generator suitable for X-ray lithography.

〔従来の技術〕[Conventional technology]

大規模集積回路製造用として近年軟X線を使用するリソ
グラフイ装置が検討されている。この軟X線源として
は、対陰極形X線管、シンクロトロン放射光、高温プラ
ズマのピンチ効果によるX線発生管などがある。対陰極
形は輝度が小さいと言う欠点があり、シンクロトロン放
射光は、設備費用が高価になる。このため、リソグラフ
イ用としては安価で高輝度が得られるプラズマX線源が
有望視されている。プラズマX線源として例えば特開昭
58−188040号公報にて提案されている真空スパーク式の
ものがある。この方式は第3図に示すように真空容器1
内に一対の電極2,3が対向して設けられている。両電極
間には真空容器1外に設けられた充電装置4により充電
されるコンデンサ5が接続されている。電極2,3間で放
電させるには、まず第3電極6に適宜な手段で電圧を印
加し電極2,6間、あるいは電極3,6間で放電させると、こ
れをトリガに電極2,3間が放電する。この放電により電
極2,3間にパルス状の大電流が流れ、両電極より金属蒸
気が大量に発生すると共に大電流通電による磁界により
電極周辺のプラズマがしぼり込まれZピンチが発生す
る。このZピンチ現象により発生する特性X線を図示矢
印の方向に設けられた露光装置内に引込んでシリコンウ
エハ等を露光するものである。ところで、真空スパーク
式の場合、放電による金属蒸気の発生を容易にするた
め、両電極共先端針状にする等の構造が好適である。し
かし、この場合、両電極共先端部の消耗がはげしく両電
極を供給する必要があり、装置が複雑になる。真空スパ
ーク式の場合、一般に陽極側電極をX線発生物質とする
ことが望ましいとされている。これは、電極間課電によ
り陰極側より陽極側に電子が飛び出し、陽極側に衝突す
ることで陽極表面が加熱され金属蒸気が発生し易いと考
えられていた。このため陽極側電極を針状にする構造が
好んで採用されている(例えば、安藤他:低インダクタ
ンス真空スパークによる多価イオンの分光:応用物理,
第49巻,第1号(1980)) 〔発明が解決しようとする問題点〕 上記従来技術は電極消耗やそれに伴う放電電圧のばらつ
きなどの点について配慮されておらず、高頻度に耐え、
かつ安定な高輝度のX線が必要とされるリソグラフイ用
のX線源としての適用が困難であつた。
Recently, a lithographic apparatus using soft X-rays has been studied for manufacturing a large scale integrated circuit. Examples of the soft X-ray source include an anticathode X-ray tube, synchrotron radiation, and an X-ray generation tube by the pinch effect of high temperature plasma. The anticathode type has a drawback of low brightness, and the equipment cost of the synchrotron radiation is high. Therefore, a plasma X-ray source that is inexpensive and can obtain high brightness is considered promising for lithography. As a plasma X-ray source, for example, JP-A-SHO
There is a vacuum spark type proposed in Japanese Patent Laid-Open No. 58-188040. As shown in FIG. 3, this system is a vacuum container 1
A pair of electrodes 2 and 3 are provided inside to face each other. A capacitor 5 charged by a charging device 4 provided outside the vacuum container 1 is connected between both electrodes. To discharge between the electrodes 2 and 3, first, a voltage is applied to the third electrode 6 by an appropriate means to discharge between the electrodes 2 and 6, or between the electrodes 3 and 6, and this is used as a trigger for the electrodes 2 and 3. The space is discharged. Due to this discharge, a large pulsed current flows between the electrodes 2 and 3, a large amount of metal vapor is generated from both electrodes, and the magnetic field due to the large current conduction squeezes the plasma around the electrodes to generate a Z pinch. A characteristic X-ray generated by the Z pinch phenomenon is drawn into an exposure device provided in the direction of an arrow shown in the drawing to expose a silicon wafer or the like. By the way, in the case of the vacuum spark type, in order to facilitate generation of metal vapor due to electric discharge, a structure in which both electrodes have needle-like tips is preferable. However, in this case, the tips of both electrodes are worn out so much that both electrodes must be supplied, which complicates the apparatus. In the case of the vacuum spark type, it is generally said that it is desirable to use the anode side electrode as the X-ray generating substance. It has been considered that this is because electrons are ejected from the cathode side to the anode side due to the electric charge applied between the electrodes and collide with the anode side, whereby the anode surface is heated and metal vapor is easily generated. For this reason, a structure in which the anode-side electrode is needle-shaped is preferred (for example, Ando et al .: Spectroscopy of multiply charged ions by low-inductance vacuum spark: Applied Physics,
(Vol. 49, No. 1 (1980)) [Problems to be Solved by the Invention] The above-mentioned prior art does not consider electrode consumption and variations in discharge voltage accompanying it, and can withstand high frequency,
Moreover, it has been difficult to apply as an X-ray source for lithography, which requires stable and high-intensity X-rays.

本発明の目的は、上記した従来技術の欠点を除去し、電
極消耗が小さく放電電圧のバラツキの小さい安定な高輝
度のX線発生装置を提供するにある。
An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a stable and high-intensity X-ray generator with less electrode consumption and less variation in discharge voltage.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明では陽極側電極の先
端を球状に、かつ、陰極側電極を円錐状にそれぞれ形成
し、該陰極側電極先端の曲率半径、又は太さを前記陽極
側電極の先端の曲率半径より小さく構成したことを特徴
とする。
In order to achieve the above object, in the present invention, the tip of the anode electrode is formed into a spherical shape, and the cathode electrode is formed into a conical shape, and the radius of curvature or thickness of the cathode side electrode tip is the anode side electrode. It is characterized in that it is configured to be smaller than the radius of curvature of the tip of the.

〔作用〕[Action]

従来は、陰極並びに陽極とも針状電極に形成されてきた
が、この方式では電極の先端部に電流が集中し、両電極
が溶損する。本発明では陽極の曲率半径が大きくなつて
いるため、電子の入射する実効的面積が増大し、電流密
度が下り陽極の消耗が先ず小さくなる。陽極部の電子補
集面積の増大に伴い、陰極側も陰極点が陰極全面に分布
するようになり、陰極は表面が均一に消耗するようにな
る。その結果、陰極や陽極の先端部だけが局部的に溶損
することが無くなり、消耗が小さく安定した放電電圧の
X線発生装置を提供できる。
Conventionally, both the cathode and the anode have been formed as needle-shaped electrodes, but in this method, current concentrates at the tip of the electrodes and both electrodes are melted and damaged. In the present invention, since the radius of curvature of the anode is large, the effective area of incidence of electrons is increased, the current density is decreased, and the consumption of the anode is reduced first. As the electron collecting area of the anode portion increases, cathode spots are distributed over the entire surface of the cathode, and the surface of the cathode is evenly worn. As a result, only the tips of the cathode and the anode are not locally melted, and it is possible to provide an X-ray generator having a stable discharge voltage with little wear.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。従来
技術で述べたものと同一機能を有するものは同一番号で
表わした。真空容器1内に対向する電極7,8を設け、従
来技術で述べた第3電極の替わりに外部スイツチ9を設
けてある。この場合、両電極に高融点のX線発生物質例
えばタングステンモリブデン等を用い、陽極側電極7の
先端を球状にして陰極側電極8に円錐状の電極を用いて
陽極側の曲率半径を陰極側の曲率半径より大きくしてい
る。充電装置4によりコンデンサ5を充電し、所望の電
圧でスイツチ9を投入し対向電極7,8間で放電させる。
この放電により、対向電極に用いる材質により、特有の
特性X線が発生できる。この特性X線を矢印の方向に設
けた露光装置に引込みX線レジストを塗布したシリコン
ウエハー等を露光する。ところで、従来の電極の消耗は
第4図(a)に示すように電極の先端部が大きく溶損す
るのに対し、本発明では第4図(b)に示すように陽極
並びに陰極表面とも広い範囲がわずかに消耗する形態と
なる。これは、電子を補集する陽極の実効面積が増えた
ために先ず陽極の電流密度が小さくなり消耗量が減り、
それに対応して陰極側も陰極点が陰極の表面部の広い範
囲に分布するようになり、陰極側も表面部位が均一に消
耗するようになるためである。このように、第1図の電
極構成によれば、陽極側電極7の位置を一定に保ち陰極
側電極8のみ、数十〜数百回の放電毎にわずかずつ可変
することで、安定な放電が得られると共に、Zピンチの
発生する位置もほとんど変動せず、高頻度の放電が可能
でかつ、高頻度のX線が安定に発生できる効果がある。
An embodiment of the present invention will be described below with reference to FIG. Those having the same functions as those described in the prior art are designated by the same reference numerals. Opposing electrodes 7 and 8 are provided in the vacuum container 1, and an external switch 9 is provided instead of the third electrode described in the prior art. In this case, a high melting point X-ray generating substance such as tungsten molybdenum is used for both electrodes, the tip of the anode side electrode 7 is made spherical, and a conical electrode is used for the cathode side electrode 8. Is larger than the radius of curvature of. The capacitor 5 is charged by the charging device 4, the switch 9 is turned on at a desired voltage, and the opposing electrodes 7 and 8 are discharged.
Due to this discharge, characteristic X-rays peculiar to the material used for the counter electrode can be generated. This characteristic X-ray is introduced into an exposure device provided in the direction of the arrow to expose a silicon wafer or the like coated with an X-ray resist. By the way, in the conventional electrode consumption, as shown in FIG. 4 (a), the tip of the electrode is largely melted, whereas in the present invention, as shown in FIG. 4 (b), both the anode and cathode surfaces have a wide range. Will be slightly consumed. This is because the effective area of the anode that collects electrons is increased, so that the current density of the anode is reduced first and the consumption amount is reduced.
Correspondingly, the cathode spots are distributed over a wide range on the surface of the cathode on the cathode side, and the surface portion on the cathode side is uniformly consumed. As described above, according to the electrode configuration of FIG. 1, the position of the anode-side electrode 7 is kept constant and only the cathode-side electrode 8 is slightly changed every several tens to several hundreds of discharges, so that stable discharge is achieved. In addition, the position where the Z pinch is generated hardly changes, high-frequency discharge is possible, and high-frequency X-rays can be stably generated.

本発明では、陰極側の先端部の曲率半径又は太さはでき
る限り小さい方が強いX線を発生でき、特にこの曲率半
径又は太さは5mm以下にすると効果的である。又、電極
の消耗の面からは、陽極側の先端部の曲率半径を、陰極
側の先端部の曲率半径又は太さの2倍以上にすると非常
に効果的である。
In the present invention, strong X-rays can be generated when the radius of curvature or thickness of the tip portion on the cathode side is as small as possible, and it is particularly effective if this radius of curvature or thickness is 5 mm or less. In terms of electrode consumption, it is very effective to make the radius of curvature of the tip end on the anode side twice or more the radius of curvature or thickness of the tip end on the cathode side.

第2図に他の実施例を示す。第1図の陽極側電極7の中
心部に穴9をあけ、電極の上部の真空容器内で連通して
いる。この電極の場合、陽極側電極7の先端部に設けた
穴9の周辺で放電することになり穴径の大きさでアーク
の広がりが規制できる。強力なZピンチを発生させるに
は、アークに広がりを持たせ、多量のプラズマを捕捉す
ることが有効であり、高輝度のX線が発生できる効果が
ある。又、この穴9は同一容器内で連通しているため、
真空漏れの心配がなく、かつ、この連通する穴を通して
放電による金属蒸気が煙突効果で吸い上げられるため、
金属蒸気が中心部に集まり易く、Zピンチの発生位置の
ばらつきが小さいという効果もある。さらにZピンチ発
生後の不要金属蒸気を穴9を通して速やかに排出できる
ので、電極間の絶縁回復が早く、連続的なくり返し放電
が可能になる効果がある。
FIG. 2 shows another embodiment. A hole 9 is formed in the center of the anode-side electrode 7 in FIG. 1 so as to communicate with each other in the vacuum container above the electrode. In the case of this electrode, the discharge is generated around the hole 9 provided at the tip of the anode electrode 7, and the spread of the arc can be regulated by the size of the hole diameter. In order to generate a strong Z-pinch, it is effective to make the arc wide and capture a large amount of plasma, and it is effective in generating high-intensity X-rays. Also, since the holes 9 communicate with each other in the same container,
There is no need to worry about vacuum leaks, and since the metal vapor generated by the discharge is sucked up by the chimney effect through this communicating hole,
There is also an effect that the metal vapor is easily collected in the central portion and the variation in the Z pinch occurrence position is small. Further, since the unnecessary metal vapor after the Z pinch is generated can be quickly discharged through the hole 9, the insulation recovery between the electrodes is quick, and continuous repeated discharge is possible.

〔発明の効果〕〔The invention's effect〕

以上説明した本発明のX線発生装置によれば、陽極側電
極の先端を球状に、かつ、陰極側電極を円錐状にそれぞ
れ形成し、該陰極側電極先端の曲率半径、又は太さを前
記陽極側電極の先端の曲率半径より小さく構成したもの
であるから、電子を補集する陽極の実行面積が増えたた
めに先ず陽極の電流密度が小さくなり消耗量が減り、そ
れに対応して陰極側も陰極点が陰極の表面部の広い範囲
に分布するようになり、陰極側も表面部位が均一に消耗
するようになるため、電極の消耗が少ない安定な放電が
得られ、高頻度に耐え、かつ、高輝度のX線が安定に発
生できると言う効果がある。
According to the X-ray generator of the present invention described above, the tip of the anode-side electrode is formed into a spherical shape, and the cathode-side electrode is formed into a conical shape, and the radius of curvature or thickness of the cathode-side electrode tip is set to the above-mentioned value. Since the radius of curvature of the tip of the anode is smaller than that of the tip of the anode, the current density of the anode is reduced first and the consumption is reduced due to the increase of the active area of the anode that collects electrons. The cathode spots will be distributed over a wide range on the surface of the cathode, and the surface of the cathode will be evenly consumed, so that stable discharge with less electrode wear can be obtained, and it can withstand high frequency, and The effect is that high-intensity X-rays can be generated stably.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による実施例を示す概略図、第2図は本
発明による他の実施例を示す概略図、第3図は従来技術
を示す概略図、第4図は本発明の詳細説明図である。 1……真空容器、7……陽極側電極、8……陰極側電
極、9……穴。
FIG. 1 is a schematic diagram showing an embodiment according to the present invention, FIG. 2 is a schematic diagram showing another embodiment according to the present invention, FIG. 3 is a schematic diagram showing a prior art, and FIG. 4 is a detailed explanation of the present invention. It is a figure. 1 ... Vacuum container, 7 ... Anode side electrode, 8 ... Cathode side electrode, 9 ... Hole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平沢 邦夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 渡辺 良男 東京都国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭58−188040(JP,A) 特開 昭59−198645(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kunio Hirasawa 4026 Kujicho, Hitachi City, Ibaraki Prefecture Hitachi Research Laboratory, Ltd. Central Research Laboratory (56) References JP-A-58-188040 (JP, A) JP-A-59-198645 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】真空容器と、該真空容器内に設けられた陽
極と陰極から成る一対の電極と、該電極に接続されたパ
ルス大電流源とを備えたX線発生装置において、 前記陽極側電極の先端を球状に、かつ、陰極側電極を円
錐状にそれぞれ形成し、該陰極側電極先端の曲率半径、
又は太さを前記陽極側電極の先端の曲率半径より小さく
構成したことを特徴とするX線発生装置。
1. An X-ray generator comprising a vacuum container, a pair of electrodes formed of an anode and a cathode provided in the vacuum container, and a pulsed large current source connected to the electrodes, wherein the anode side is provided. The tip of the electrode is formed in a spherical shape, and the cathode side electrode is formed in a conical shape, and the radius of curvature of the tip of the cathode side electrode,
Alternatively, an X-ray generator having a thickness smaller than a radius of curvature of the tip of the anode electrode.
【請求項2】前記陰極側電極先端部の曲率半径、又は太
さを5mm以下にしたことを特徴とする特許請求の範囲第
1項記載のX線発生装置。
2. The X-ray generator according to claim 1, wherein a radius of curvature or a thickness of the tip of the cathode side electrode is set to 5 mm or less.
【請求項3】前記陽極側電極先端部の曲率半径を、前記
陰極側電極先端部の曲率半径、又は太さの2倍以上にし
たことを特徴とする特許請求の範囲第1項記載のX線発
生装置。
3. The X according to claim 1, wherein the radius of curvature of the tip of the anode-side electrode is twice or more the radius of curvature of the tip of the cathode-side electrode or the thickness thereof. Line generator.
【請求項4】前記陽極側電極の軸中心部に開孔部を設
け、該開孔部は電極の上部で前記真空容器内と連通して
いることを特徴とする特許請求の範囲第1項記載のX線
発生装置。
4. An opening portion is provided in a central portion of an axis of the anode electrode, and the opening portion communicates with the inside of the vacuum container at an upper portion of the electrode. The described X-ray generator.
JP61037437A 1986-02-24 1986-02-24 X-ray generator Expired - Lifetime JPH0740475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61037437A JPH0740475B2 (en) 1986-02-24 1986-02-24 X-ray generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61037437A JPH0740475B2 (en) 1986-02-24 1986-02-24 X-ray generator

Publications (2)

Publication Number Publication Date
JPS62195836A JPS62195836A (en) 1987-08-28
JPH0740475B2 true JPH0740475B2 (en) 1995-05-01

Family

ID=12497490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61037437A Expired - Lifetime JPH0740475B2 (en) 1986-02-24 1986-02-24 X-ray generator

Country Status (1)

Country Link
JP (1) JPH0740475B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188040A (en) * 1982-04-28 1983-11-02 Toshiba Corp X-ray generator
JPS59198645A (en) * 1983-04-27 1984-11-10 Hitachi Ltd Soft x-ray generating apparatus

Also Published As

Publication number Publication date
JPS62195836A (en) 1987-08-28

Similar Documents

Publication Publication Date Title
Schoenbach et al. Microhollow cathode discharges
CA2011644A1 (en) Vacuum switch apparatus
JPH0740475B2 (en) X-ray generator
KR920004961B1 (en) X-ray generation system for an ultra fine lithography and a method therefor
JP2770249B2 (en) Vacuum gauge
Rabinowitz Electrical breakdown in vacuum: New experimental and theoretical observations
US6775354B1 (en) Method and apparatus for reducing high voltage breakdown events in X-ray tubes
JP4074704B2 (en) Vapor deposition source and vapor deposition apparatus
JPS5918840B2 (en) ion source
Lejeune et al. Electrostatic reflex plasma source as a plasma bridge neutralizer
US4596942A (en) Field emission type electron gun
JP3577785B2 (en) Ion beam generator
Aihara et al. Stabilization of an electrostatic lens for a focused ion beam system
JPH10223166A (en) Electron gun
JPS63168942A (en) Plasma x-ray source
JPH0665200B2 (en) High-speed atomic beam source device
JPS62216141A (en) X-ray generator
JPS61198598A (en) X-ray generating equipment
US1989462A (en) Ionic amplifier
JPH0750635B2 (en) Particle source
JP3333377B2 (en) How to restore the emission capability of a cathode ray tube
JP2533502B2 (en) Plasma x-ray source
JPS5815051B2 (en) Hot cathode ionization vacuum gauge
JPH0518646U (en) Electron beam irradiation device
RU2024104C1 (en) Method of heat removal from surface