JPH0740472B2 - Electron gun electrode assembly for cathode ray tube - Google Patents

Electron gun electrode assembly for cathode ray tube

Info

Publication number
JPH0740472B2
JPH0740472B2 JP23431087A JP23431087A JPH0740472B2 JP H0740472 B2 JPH0740472 B2 JP H0740472B2 JP 23431087 A JP23431087 A JP 23431087A JP 23431087 A JP23431087 A JP 23431087A JP H0740472 B2 JPH0740472 B2 JP H0740472B2
Authority
JP
Japan
Prior art keywords
electrode
electron gun
ray tube
cathode ray
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23431087A
Other languages
Japanese (ja)
Other versions
JPS6476647A (en
Inventor
一晃 内記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP23431087A priority Critical patent/JPH0740472B2/en
Publication of JPS6476647A publication Critical patent/JPS6476647A/en
Publication of JPH0740472B2 publication Critical patent/JPH0740472B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、陰極線管に用いられる電子銃電極構体の改善
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to improvement of an electron gun electrode assembly used in a cathode ray tube.

<従来の技術> 通常のカラー陰極線管では三本の電子ビームを個別に発
生する陰極構体と、電気的,構造的に共通で各電子ビー
ム通路には実質的に個別、或いは共通の電子レンズを形
成する一体化電極を備えたインライン型電子銃が広く用
いられている。
<Prior Art> In a normal color cathode ray tube, a cathode structure that individually generates three electron beams and an electron lens that is electrically and structurally common and is substantially individual or common in each electron beam passage are provided. An in-line type electron gun having an integrated electrode to be formed is widely used.

第2図,第3図はこのような構成の電子銃電極構体の一
例であって、三電子ビームを同一平面内に発生するイン
ライン型電子銃で主電子レンズがバイ・ポテンシャル・
フォーカス方式を得るインライン型電子銃電極構体1の
正面図および側面図であり、第4図は第2図のA−A′
断面図である。電子銃電極構体1は、互に絶縁されて同
一平面内で等間隔距離Sを保って一列に整列した三つの
陰極構体10A,10B,10Cと、これに対向して電子ビーム進
行方向に順次配置される電気的に共通で三つの電子ビー
ム透過開孔がインライン配列されたGI電極11,G2電極12,
G3電極13およびG4電極14から構成され、各電極は一体形
成された電極支持子15、及び支持強度を補強するために
必要に応じて取付けられた補助支持子16を二本の絶縁物
支持杆17に埋設することにより、所定電極間隔を保持し
て固定されている。電子銃電極構体1の陰極構体10A,10
B,10Cには距離Sに保たれた各電子ビーム経路に対応し
て三つの陰極10KがG1電極11から所定距離を保って各陰
極構体の支持筒に挿入固定され、更に図示しないが各陰
極10K内にはヒータが挿入され、陰極頂部に塗布された
電子放射物質を700〜850℃に加熱する。
FIGS. 2 and 3 show an example of an electron gun electrode assembly having such a structure. In an in-line type electron gun that generates three electron beams in the same plane, the main electron lens has a bi-potential potential.
FIG. 4 is a front view and a side view of the in-line type electron gun electrode assembly 1 for obtaining the focus system, and FIG. 4 is a line AA ′ in FIG.
FIG. The electron gun electrode assembly 1 is composed of three cathode assemblies 10A, 10B, 10C which are insulated from each other and arranged in a line at an equal distance S in the same plane, and are sequentially arranged in opposition to the electron beam advancing direction. GI electrode 11, G2 electrode 12, which are electrically common and have three electron beam transmission apertures arranged in-line.
Each of the electrodes is composed of a G3 electrode 13 and a G4 electrode 14, and each electrode has an electrode supporter 15 integrally formed with it, and an auxiliary supporter 16 attached as necessary to reinforce the support strength. By embedding it in 17, it is fixed while maintaining a predetermined electrode interval. Electron gun electrode assembly 1 cathode assembly 10A, 10
Three cathodes 10K are fixed to B and 10C corresponding to the electron beam paths kept at the distance S at a predetermined distance from the G1 electrode 11 and inserted into and fixed to the support cylinder of each cathode assembly. A heater is inserted in 10 K to heat the electron emitting material applied to the top of the cathode to 700 to 850 ° C.

かかる電子銃電極構体1を備えたカラー陰極線管では、
ヒータに電圧を印加することにより陰極10Kの温度は上
昇し、ここからの熱放射,熱伝導によりG1電極11の温度
が上昇し、ヒータ点火後充分時間経過した安定時の温度
は約300〜400℃に上昇する。一方、G2電極12,G3電極13
等は陰極の熱源から離れているためと、G1電極11により
構造上熱的に遮蔽されているため、約150℃以下と、G1
電極11より低い温度で安定する。従って、陰極線管動作
時には陰極構体10A,10B,10C以外ではG1電極11の温度上
昇が最も大きく、電極の熱膨脹も最大となる。第4図の
X−Y平面内に於て、G1電極11はY軸方向に熱膨脹
(F1)しようとするが、電極支持子15は絶縁物支持杆17
でY軸方向に固定されているのでX軸方向に熱膨脹
(F2)する。このため、G1電極11の中央開孔11Bは電極
中央に位置するため熱膨脹によりX−Y平面内の移動は
生じないが、これと等間隔距離S離れた両外側開孔11A,
11CはX軸上左右に夫々離れていく。例えばステンレス
から成るG1電極11の熱膨脹率は18×10-6mm/℃,G1電源温
度300℃,S=6.6mmとすれば、外側開孔11A,11Cの熱膨脹
による移動量は約0.036mmとなる。
In a color cathode ray tube equipped with such an electron gun electrode assembly 1,
By applying a voltage to the heater, the temperature of the cathode 10K rises, and the temperature of the G1 electrode 11 rises due to heat radiation and heat conduction from this, and the temperature at the stable time, which is sufficient time after ignition of the heater, is about 300 to 400. Rise to ℃. On the other hand, G2 electrode 12, G3 electrode 13
Since they are far from the heat source of the cathode and because they are structurally thermally shielded by the G1 electrode 11, the temperature is less than about 150 ° C.
Stable at a lower temperature than the electrode 11. Therefore, during the operation of the cathode ray tube, the temperature rise of the G1 electrode 11 is the largest except for the cathode structures 10A, 10B and 10C, and the thermal expansion of the electrodes is also the maximum. In the XY plane of FIG. 4, the G1 electrode 11 tries to thermally expand (F 1 ) in the Y-axis direction, but the electrode support 15 has an insulator support rod 17
Since it is fixed in the Y-axis direction, thermal expansion (F 2 ) occurs in the X-axis direction. Therefore, since the central opening 11B of the G1 electrode 11 is located at the center of the electrode, it does not move in the XY plane due to thermal expansion.
The 11Cs move away from each other on the X axis. For example, if the coefficient of thermal expansion of the G1 electrode 11 made of stainless steel is 18 × 10 -6 mm / ° C, the temperature of the G1 power source is 300 ° C and S = 6.6 mm, the movement amount due to the thermal expansion of the outer openings 11A and 11C is about 0.036 mm. Become.

カラー陰極線管が熱的に十分安定してから蛍光面上で三
本の電子ビームを一点に集中するように調整後、電源を
切断し十分冷却後電源を投入し、蛍光面上での三本の電
子ビームの動きを見ると、上記理由から時間経過と共に
両外側電子ビームは不足集中状態から過集中状態に変化
し、30分以上時間経過後に両外側電子ビームが中央電子
ビームに一致する。この間蛍光面上には色ズレのした不
所望な画像が表示される。これを熱的コンバージェンス
・ドリフトと称する。
After the color cathode ray tube is sufficiently thermally stable, adjust the three electron beams to concentrate on one point on the phosphor screen, then turn off the power supply and cool it sufficiently and then turn on the power to set the three electron beams on the phosphor screen. Looking at the movement of the electron beam, the outer electron beams on both sides change from the under-concentrated state to the over-concentrated state with the lapse of time from the above reason, and both outer electron beams coincide with the central electron beam after a lapse of 30 minutes or more. During this time, an undesired image with a color shift is displayed on the fluorescent screen. This is called thermal convergence drift.

<発明が解決しようとする問題点> 熱的コンバージェンス・ドリフトを防止するためには、
陰極線管動作時に最も高温度に昇温するG1電極11及びG2
電極12を低熱膨脹材で形成すればよい。例えば、42%Ni
からなるFe−Ni合金である42合金を用いれば、温度範囲
200〜400℃に於て熱膨脹率は約7.2×10-6mm/℃となり、
G1,G2電極の熱膨脹は従来の半分以下となり、熱的コン
パージェンス・ドリフトを実用上無視可能の水準にする
ことができる。
<Problems to be Solved by the Invention> In order to prevent thermal convergence drift,
G1 electrodes 11 and G2 that heat up to the highest temperature during cathode ray tube operation
The electrode 12 may be formed of a low thermal expansion material. For example, 42% Ni
If you use 42 alloy which is Fe-Ni alloy consisting of
The coefficient of thermal expansion at 200-400 ℃ is about 7.2 × 10 -6 mm / ℃,
The thermal expansion of the G1 and G2 electrodes is less than half that of the conventional one, and the thermal convergence drift can be made to a practically negligible level.

しかるに、電子銃電極構体1に於て、その電極支持子15
の同一間隔l0に設定された絶縁物支持杆17に対する埋設
幅は、陰極構体10,G1電極11〜G4電極14,及び補助支持子
16に至る迄、全て同一の値l1に設定されているものの、
陰極線管動作時には電極形成材の熱膨張率と温度上昇の
差により、G1およびG2電極11,12(特にG1電極)と他電
極の埋設幅に差が生じる。すなわち、熱膨張対策された
G1およびG2電極11,12の埋設幅は、陰極線管の動作,非
動作でほとんど変化しないが、他の電極は熱膨張に対し
て未対称のため、動作時の温度上昇でG1,G2電極11,12の
埋設幅より若干大きくなる。このために、埋設幅が陰極
線管の動作,非動作により埋設幅の変化しないG1,およ
びG2電極11,12の埋設部付近には常にY軸方向上下に集
中応力がかかっている。陰極線管動作時と非動作時の熱
履歴によりついには絶縁物支持杆17はG1電極11又はG2電
極12の埋設部付近において割れが生じ、電子銃電極構体
11の破壊に至るという欠点があった。
However, in the electron gun electrode assembly 1, its electrode supporter 15
Of the insulating support rod 17 set to the same interval l 0 of the cathode assembly 10, the G1 electrode 11 to G4 electrode 14, and the auxiliary support.
Up to 16, although they are all set to the same value l 1 ,
During operation of the cathode ray tube, a difference in the coefficient of thermal expansion and temperature rise of the electrode forming material causes a difference in the buried width between the G1 and G2 electrodes 11 and 12 (particularly G1 electrode) and the other electrode. That is, thermal expansion was taken
The buried widths of the G1 and G2 electrodes 11 and 12 hardly change when the cathode ray tube operates and does not operate, but the other electrodes are asymmetric with respect to thermal expansion. A little larger than the buried width of 12,12. For this reason, concentrated stress is always applied in the vertical direction in the Y-axis direction in the vicinity of the embedded portions of the G1 and G2 electrodes 11 and 12 where the embedded width does not change due to the operation or non-operation of the cathode ray tube. Due to the thermal history of the cathode ray tube during operation and during non-operation, the insulator supporting rod 17 finally cracks near the embedded portion of the G1 electrode 11 or the G2 electrode 12, and the electron gun electrode assembly
It had the drawback of leading to the destruction of 11.

本発明は上述の欠点に鑑みてなされたものであり、陰極
線管用電子銃電極構体で熱的コンパージェンス・ドリフ
トを防止できて、且つその電子銃電極構体が破壊されな
いようにした電子銃電極構体を提供するものである。
The present invention has been made in view of the above-mentioned drawbacks, and an electron gun electrode assembly capable of preventing thermal convergence drift in the electron gun electrode assembly for a cathode ray tube and preventing the electron gun electrode assembly from being destroyed. It is provided.

<問題点を解決するための手段> 本発明は、複数の絶縁物支持杆に複数の電極の電極支持
子に埋設して構成されるカラー陰極線管用電子銃電極構
体に於て、相対的に低熱膨脹材で形成される電極の電極
支持子の埋設幅より他の電極の埋設幅を小さくして絶縁
物支持杆に埋設したことを特徴とする。
<Means for Solving the Problems> The present invention provides an electron gun electrode assembly for a color cathode ray tube, which is constructed by embedding a plurality of insulator support rods in a plurality of electrode supporters embedded in a plurality of insulator support rods. It is characterized in that the embedded width of the other electrode is made smaller than the embedded width of the electrode supporter of the electrode formed of the thermal expansion material and embedded in the insulator support rod.

この様に構成することによって、熱膨脹率の異なる材料
で形成された電極群を混合して同一間隔に設定された絶
縁物支持杆に埋設して、陰極線管の動作,非動作時の熱
履歴を受けても絶縁物支持杆の破壊を防止することが可
能となる。
With such a configuration, the electrode groups formed of materials having different thermal expansion coefficients are mixed and embedded in the insulator supporting rods set at the same intervals, so that the thermal history of the cathode ray tube during operation and non-operation can be improved. Even if received, it is possible to prevent the insulator supporting rod from being broken.

<実施例> 以下、図面を参照して本発明の一実施例を詳細に説明す
る。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例に基づく電子銃電極構体20の
側面図である。電子銃電極構体2は従来と同様に、互に
絶縁されて同一平面内で等間隔距離Sを保って一列に整
列した三つの陰極構体20A,20B,20Cと、これに対向して
電子ビーム進行方向に順次配置される電気的に共通で、
三つの電子ビーム透過開孔がインライン配列されたG1電
極21,G2電極,G3電極およびG4電極24から構成され、各電
極は一体形成された電極支持子25、及び支持強度を補強
するために必要に応じて取付けられた補助支持子26を間
隔l0になるよう平行に設定された二本の絶縁物支持杆17
に埋設することにより、所定電極間隔を保持して固定さ
れている。
FIG. 1 is a side view of an electron gun electrode assembly 20 according to an embodiment of the present invention. As in the conventional case, the electron gun electrode assembly 2 has three cathode assemblies 20A, 20B, 20C which are insulated from each other and arranged in a line at equal distances S in the same plane, and the electron beam traveling in opposition thereto. Electrically common to each other sequentially,
Three electron beam transmission apertures are composed of G1 electrode 21, G2 electrode, G3 electrode and G4 electrode 24, which are arranged in-line, and each electrode is required to reinforce the support strength and the electrode support 25 integrally formed. two of the insulator support rod 17 which is parallel to set to be a distance l 0 auxiliary Shijiko 26 attached according to
By embedding in, it is fixed while maintaining a predetermined electrode interval.

なお、G1電極21,G2電極22は熱的コンバージェンス・ド
リフト対策のため、低熱膨脹材、例えば42合金で形成さ
れ、他の電極はステンレス材で形成されている。この場
合、G1,G2電極21,22の絶縁物支持杆17に対する電極支持
子25の埋設幅は従来と同様l1に、それ以外の電極はl1
り小さい埋設幅l2に設定されている。従って、陰極線管
動作時に陰極からの熱によっても、低熱膨張材で形成さ
れたG1電極21,G2電極22はほとんど熱膨張することな
く、絶縁物支持杆17に対する埋設幅l1より熱膨張未対策
のためにG1電極21,G2電極22より若干熱膨張幅が大きく
なる他の電極の埋設幅l2の方が小さくなっているため、
熱膨張によって絶縁物支持杆7に加えられる全ての電極
支持子からの応力を等しくすることができる。このため
絶縁物支持杆17には全ての電極支持子25,補助支持子26
から均一の応力がかかり、絶縁物支持杆17に局部的歪応
力を与えることなく、その熱的歴履によっても絶縁物支
持杆17が破壊されることは防止される。
Note that the G1 electrode 21 and the G2 electrode 22 are formed of a low thermal expansion material, for example, 42 alloy, and other electrodes are formed of a stainless material in order to prevent thermal convergence / drift. In this case, the embedding width of the electrode supporter 25 with respect to the insulator supporting rod 17 of the G1, G2 electrodes 21, 22 is set to l 1 as in the conventional case, and the other electrodes are set to the embedding width l 2 smaller than l 1 . . Therefore, the G1 electrode 21 and the G2 electrode 22 formed of the low thermal expansion material hardly undergo thermal expansion even by the heat from the cathode during the operation of the cathode ray tube, and the thermal expansion is less than the embedding width l 1 of the insulator supporting rod 17 Because of this, the embedded width l 2 of the other electrode, which has a slightly larger thermal expansion width than the G1 electrode 21 and the G2 electrode 22, is smaller,
It is possible to equalize the stresses applied to the insulator support rod 7 from all the electrode supports by thermal expansion. For this reason, all of the electrode support 25 and the auxiliary support 26 are mounted on the insulator support rod 17.
A uniform stress is applied to the insulator support rod 17, and the insulator support rod 17 is prevented from being destroyed by the thermal stress of the insulator support rod 17 without giving a local strain stress to the insulator support rod 17.

以上の説明で、絶縁物支持杆に対してこれに埋設される
電極支持子の応力を均一にするため、全ての電極をG1,G
2電極と同一の低熱膨脹材で形成しない理由は次の通り
である。
In the above explanation, in order to make the stress of the electrode support embedded in the insulator support rod uniform, all electrodes are set to G1, G
The reason for not forming the same low thermal expansion material as the two electrodes is as follows.

すなわち、一般に低熱膨脹材は物理的特性が弾性材に近
くなり、プレス加工やG1電極,G2電極の微小開孔加工が
困難となり、特にG3,G4電極のような絞り加工が非常に
困難となり、更に低熱膨脹材は非磁性にすることが出来
ないため、外部磁界の影響を受けたり、カラー陰極線管
硝子頚部外に置かれる磁気による補正素子に対し磁気遮
蔽してその作用を無能化させてしまう等の作用があるた
めである。
That is, in general, the low thermal expansion material has physical properties close to those of the elastic material, making it difficult to press work or micro-perforate the G1 electrode and G2 electrode, and it becomes very difficult to draw the G3 and G4 electrodes. Furthermore, since the low thermal expansion material cannot be made non-magnetic, it will be affected by an external magnetic field, or magnetically shield the magnetic correction element placed outside the glass neck of the color cathode ray tube to render its action ineffective. This is because there are such effects.

なお、上述の説明ではG1電極,G2電極双方を低熱膨脹材
で形成した場合を取り上げたが、必ずしもこれに限定さ
れることなく、陰極に最も近いG1電極だけ低熱膨脹材化
してもよい。
In the above description, the case where both the G1 electrode and the G2 electrode are made of the low thermal expansion material is taken up, but the present invention is not necessarily limited to this, and only the G1 electrode closest to the cathode may be made the low thermal expansion material.

また、絶縁物支持杆を二本以上、例えば電極支持子片側
につき二本、計四本使用する場合にも本発明が適用可能
であることはいうまでもない。
Needless to say, the present invention can be applied to a case where two or more insulator support rods are used, for example, two on each side of the electrode support, that is, a total of four.

<発明の効果> 以上述べたように本発明によれば、熱膨脹率の異る材料
で形成された複数の電極群を混合して同一間隔に設定さ
れた絶縁物支持杆に埋設して電子銃電極構体を構成し
て、陰極線管の動作,非動作時の熱履歴を受けても、絶
縁物支持杆の破壊を防止することが可能となる。
<Effects of the Invention> As described above, according to the present invention, a plurality of electrode groups formed of materials having different coefficients of thermal expansion are mixed and embedded in an insulator supporting rod set at the same interval to form an electron gun. It is possible to prevent the destruction of the insulator supporting rod even when the cathode assembly is constructed and the thermal history of the cathode ray tube during the operation and non-operation is received.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例のインライン型電子銃電極構
体の側面図、第2図,第3図はそれぞれ従来用いられて
いるインライン型電子銃電極構体の正面図および側面
図、第4図は第2図のA−A′断面図である。 10A,10B,10C,20B……陰極構体、11,21……G1電極,12,22
……G2電極、13,23……G3電極、14,24……G4電極、15,2
5……電極支持子、16,26……補助支持子、17……絶縁物
支持杆、11A,11B,11C……G1電極の電子ビーム透過開
孔。
FIG. 1 is a side view of an in-line type electron gun electrode assembly according to an embodiment of the present invention, and FIGS. 2 and 3 are front and side views of a conventionally used in-line type electron gun electrode assembly, respectively. The drawing is a sectional view taken along the line AA 'in FIG. 10A, 10B, 10C, 20B …… Cathode structure, 11,21 …… G1 electrode, 12,22
...... G2 electrode, 13,23 …… G3 electrode, 14,24 …… G4 electrode, 15,2
5 ... Electrode support, 16, 26 ... Auxiliary support, 17 ... Insulator support rod, 11A, 11B, 11C ... G1 Electron beam transmission aperture.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】二つ以上の絶縁物支持杆に複数の電極に設
けられた電極支持子を埋設して構成される陰極線管用電
子銃電極構体において、相対的に低熱膨脹材で形成され
る電極の電極支持子の埋設幅より他の電極の電極支持子
の埋設幅を小さくして絶縁物支持杆に埋設したことを特
徴とする陰極線管用電子銃電極構体。
1. An electron gun electrode assembly for a cathode ray tube, comprising an electrode support provided on a plurality of electrodes embedded in two or more insulator support rods, and an electrode formed of a relatively low thermal expansion material. An electron gun electrode assembly for a cathode ray tube, characterized in that the embedded width of an electrode support of another electrode is smaller than the embedded width of the electrode support of (1) and the electrode support is embedded in an insulator support rod.
JP23431087A 1987-09-17 1987-09-17 Electron gun electrode assembly for cathode ray tube Expired - Lifetime JPH0740472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23431087A JPH0740472B2 (en) 1987-09-17 1987-09-17 Electron gun electrode assembly for cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23431087A JPH0740472B2 (en) 1987-09-17 1987-09-17 Electron gun electrode assembly for cathode ray tube

Publications (2)

Publication Number Publication Date
JPS6476647A JPS6476647A (en) 1989-03-22
JPH0740472B2 true JPH0740472B2 (en) 1995-05-01

Family

ID=16968999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23431087A Expired - Lifetime JPH0740472B2 (en) 1987-09-17 1987-09-17 Electron gun electrode assembly for cathode ray tube

Country Status (1)

Country Link
JP (1) JPH0740472B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4992698A (en) * 1989-05-10 1991-02-12 Rca Licensing Corp. Color picture tube including an electron gun with an electrode having an optimized attachment means

Also Published As

Publication number Publication date
JPS6476647A (en) 1989-03-22

Similar Documents

Publication Publication Date Title
JPH0740472B2 (en) Electron gun electrode assembly for cathode ray tube
US2939981A (en) Grid frame support structures for cathode ray tubes
JPH0668956B2 (en) Cathode ray tube
US3121181A (en) Plural beam electron gun
JPH03171534A (en) Color picture tube
KR100456488B1 (en) Color cathode ray tube
US4061942A (en) In line gun support arrangement with expansion compensation
KR200190103Y1 (en) Electron gun for cathode ray tube
KR100322067B1 (en) Electron gun for color cathode ray tube
KR100728191B1 (en) Electron gun for cathode ray tube
JPH0475236A (en) Electron gun for cathode-ray tube
JPS63231847A (en) Color cathode ray tube
KR920005827Y1 (en) Electron gun structure
KR940005495B1 (en) Heater supporter for crt electron gun
KR100339372B1 (en) electron gun for cathode ray tube
KR100223839B1 (en) Cathode supporter in electron gun for color braun tube
EP0016484A1 (en) Colour television display tube
JPH0527793Y2 (en)
KR0131438Y1 (en) Electrode of electron gun for color picture tube
JPH0773819A (en) Electron gun system
KR20000015634U (en) Electron gun for color CRT
JPH06267454A (en) Electron gun for cathode-ray tube
JPH06150842A (en) Electron gun
JPH06150843A (en) Electron gun
JPH09245668A (en) Cathode-ray tube