JPH0740471B2 - Electron gun electrode structure - Google Patents

Electron gun electrode structure

Info

Publication number
JPH0740471B2
JPH0740471B2 JP62124773A JP12477387A JPH0740471B2 JP H0740471 B2 JPH0740471 B2 JP H0740471B2 JP 62124773 A JP62124773 A JP 62124773A JP 12477387 A JP12477387 A JP 12477387A JP H0740471 B2 JPH0740471 B2 JP H0740471B2
Authority
JP
Japan
Prior art keywords
electrode
electron gun
electron
cathode
integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62124773A
Other languages
Japanese (ja)
Other versions
JPS63289746A (en
Inventor
一晃 内記
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62124773A priority Critical patent/JPH0740471B2/en
Publication of JPS63289746A publication Critical patent/JPS63289746A/en
Publication of JPH0740471B2 publication Critical patent/JPH0740471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、陰極線管に用いられる電子銃電極構体の改善
に関するものである。
The present invention relates to an electron gun electrode assembly used in a cathode ray tube.

〔従来の技術〕[Conventional technology]

通常のカラー陰極線管では三本の電子ビームを個別に発
生する陰極構体と、電気的、構造的に共通で各電子ビー
ム通路には実質的に個別、或いは共通の電子レンズを形
成する一体化電極を備えたインライン型電子銃が広く用
いられている。
In a normal color cathode ray tube, a cathode structure that individually generates three electron beams, and an integrated electrode that is electrically and structurally common and forms substantially individual or common electron lenses in each electron beam passage. An in-line type electron gun equipped with is widely used.

第4図、第5図はこのような構成の電子銃電極構体の一
例であって、三電子ビームを同一平面内に発生するイン
ライン型電子銃で主電子レンズがバイ・ポテンシャル・
フォーカス方式を採るインライン型電子銃電極構体1の
正面図、側面図で、第6図は第4図のA−A断面図であ
る。電子銃電極構体1は、互に絶縁されて同一平面内で
等間隔距離Sを保って一列に整列した三つの陰極構体10
A,10B,10Cと、これに対向して電子ビーム進行方向に順
次配置される電気的に共通で、三つの電子ビーム透過開
孔がインライン配設されたG1電極11、G2電極12、G3電極
13、G4電極14から構成され、各電極に一体形成された電
極支持子15、及び支持強度を補強するために必要に応じ
て取付けられた補助支持子16を二本の絶縁物支持杆17に
埋設固定することにより、所定電極間隔を保持してい
る。
FIG. 4 and FIG. 5 show an example of an electron gun electrode assembly having such a structure. In an in-line type electron gun that generates three electron beams in the same plane, the main electron lens has a bi-potential potential.
FIG. 6 is a front view and a side view of the in-line type electron gun electrode assembly 1 adopting the focus method, and FIG. 6 is a sectional view taken along line AA of FIG. The electron gun electrode assembly 1 includes three cathode assemblies 10 which are insulated from each other and arranged in a line at equal distances S in the same plane.
A, 10B, 10C and G1 electrode 11, G2 electrode 12, and G3 electrode, which are electrically common to each other and are sequentially arranged in the electron beam traveling direction so that three electron beam transmission apertures are arranged inline
13, an electrode support 15 composed of a G4 electrode 14 and integrally formed on each electrode, and an auxiliary support 16 attached as necessary to reinforce the support strength, on two insulator support rods 17. By embedding and fixing, a predetermined electrode interval is maintained.

電子銃電極構体1の陰極構体10A,10B,10Cには距離Sに
保たれた各電子ビーム経路に対応して三つの陰極がG1電
極11から所定距離bを保って各陰極構体の支持筒に挿入
固定される。
In the cathode structures 10A, 10B, 10C of the electron gun electrode structure 1, three cathodes are provided at a predetermined distance b from the G1 electrode 11 corresponding to the electron beam paths maintained at the distance S, and are attached to the support cylinders of the respective cathode structures. Inserted and fixed.

上記電子銃電極構体を備えたカラー陰極線管では電気的
に独立した陰極に輝度信号を印加する陰極駆動方式が用
いられ、受像画像を高品質とする回路設計上は各電子銃
の陰極とG1電極間距離b、G1電極11とG2電極12間距離f
等の製造工程の設定寸法で決まる陰極遮断電圧COEKの絶
対値が所定値にあり、且つ同一陰極線管内ではその最大
値と最小値の比は可能の限り1.0に近いことが望まし
く、例えばMax.COEK/Min.COEK≦1.15程度にする必要が
ある。このようにするため距離b、fを精密に設定する
方法や、各種電極構造が提案されている。更にこれらの
方法、構造では補償出来ない同一電子銃電極構体内での
寸法ばらつきによるCOEKのばらつきを第7図に示す様に
G1電極を電気的に完全に三分割したG1電極11A,11B,11C
で構成し、その各々に直流バイアスを印加してCOEKを同
一電子銃内で一致させる方法が知られている。
In the color cathode ray tube equipped with the electron gun electrode structure, a cathode driving method is used in which a luminance signal is applied to an electrically independent cathode, and the cathode of each electron gun and the G1 electrode are designed in terms of a circuit design for high quality image reception. Distance b, distance f between G1 electrode 11 and G2 electrode 12
There absolute value of the cathode cut-off voltage COE K determined by setting the size of the manufacturing process and the like within a predetermined value, and it is desirable close to 1.0 as long as possible the ratio of the maximum value to the minimum value in the same cathode-ray tube, for example, Max. COE K /Min.COE K ≦ 1.15 is required. In order to do this, a method of precisely setting the distances b and f and various electrode structures have been proposed. Furthermore, as shown in Fig. 7, COE K variations due to dimensional variations within the same electron gun electrode assembly that cannot be compensated by these methods and structures are shown in Fig. 7.
G1 electrode 11A, 11B, 11C, which is an electrically completely divided G1 electrode
It is known that the COE Ks are matched in the same electron gun by applying a DC bias to each of them.

一方、カラー陰極線管が計算機端末装置としてデータ表
示や、グラフィク表示等の高密度表示装置として用いら
れた場合、一層高密度表示を行うには陰極線管の水平偏
向速度を現行TVの4倍以上の64KHZ以上と高速にし、こ
れに伴い映像周波数を100〜200MHZ或いはそれ以上に設
定することが行われる。この場合、前記高周波映像信号
に対応した陰極線管への入力信号電圧、即ち陰極駆動電
圧は大きな振幅を得ることが回路設計上、及び使用可能
な回路素子上非常に困難となり、陰極駆動電圧が小さい
と陰極線管から必要十分な輝度を得られなくなる。とこ
ろが、上述の様にG1電極11が電気的に3分割されていれ
ば、陰極線管への入力信号電圧を陰極とG1電極とに重畳
して印加出来、その各々の入力信号振幅が小さくても合
成効果として陰極線管への駆動信号は倍になり必要な輝
度を得ることが容易に可能となる。
On the other hand, when the color cathode ray tube is used as a high-density display device such as a data display or a graphic display as a computer terminal device, the horizontal deflection speed of the cathode ray tube should be four times or more that of the current TV in order to achieve higher density display. The speed is increased to 64 KHZ or higher, and the video frequency is set to 100 to 200 MHZ or higher accordingly. In this case, it is very difficult to obtain a large amplitude of the input signal voltage to the cathode ray tube corresponding to the high-frequency video signal, that is, the cathode driving voltage in view of circuit design and usable circuit elements, and the cathode driving voltage is small. And it becomes impossible to obtain the necessary and sufficient brightness from the cathode ray tube. However, as described above, if the G1 electrode 11 is electrically divided into three, the input signal voltage to the cathode ray tube can be applied by being superimposed on the cathode and the G1 electrode, and even if the input signal amplitude of each is small. As a combined effect, the drive signal to the cathode ray tube is doubled, and it becomes possible to easily obtain the required brightness.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述した様にG1電極を電気的に三分割出来ると、同一陰
極線管内での三つの陰極遮断電圧のばらつきを電気的に
補正したり、各陰極と対応G1電極の双方に駆動電圧を重
畳させて小さい励振信号振幅でも十分な輝度を得られる
利点があるが、電子銃電極構体は陰極線管頚部の内径内
の限定された空間的に収納する必要があるため、その電
極支持は困難となり、その支持構造は第7図に示した様
に複雑となる。この様な複雑な支持構造をとっても、両
外側のG1電極11A,11Cの支持は不安定で、G1電極とG2電
極間隔が精密に設定出来ず、陰極遮断電圧が大きくばら
ついたり、電子光学特性を劣化させ、陰極線管の画質特
性が悪くなる欠点があった。
As described above, if the G1 electrode can be electrically divided into three parts, it is possible to electrically correct the variation of the three cathode cutoff voltages in the same cathode ray tube, or to superimpose the drive voltage on both the cathode and the corresponding G1 electrode. Although there is an advantage that sufficient brightness can be obtained even with a small excitation signal amplitude, it is difficult to support the electrode gun electrode assembly because it needs to be housed in a limited space within the inner diameter of the neck of the cathode ray tube. The structure is complicated as shown in FIG. Even with such a complicated support structure, the support of the G1 electrodes 11A and 11C on both outer sides is unstable, the gap between the G1 electrode and the G2 electrode cannot be precisely set, the cathode cutoff voltage greatly varies, and the electro-optical characteristics are improved. There is a drawback that it deteriorates and the image quality characteristics of the cathode ray tube deteriorate.

本発明は上述の欠点に鑑みてなされたものであり、三本
の電子ビームを個別に発生する陰極構体と、電気的、構
造的に共通で各電子ビーム通路には実質的に個別、或い
は共通の電子レンズを形成する一体化電極を備えたイン
ライン型電子銃電極構体に於て、前記電極の少くとも一
つが電気的に三つに分割された電極間相対距離を精密に
設定出来る構造の電子銃電極構体を提供するものであ
る。
The present invention has been made in view of the above-described drawbacks, and is electrically and structurally common to the cathode structure that individually generates three electron beams, and is substantially individual or common to each electron beam passage. In an in-line type electron gun electrode assembly having an integrated electrode forming an electron lens of the above, at least one of the electrodes is electrically divided into three, and an electron having a structure capable of precisely setting a relative distance between the electrodes. A gun electrode assembly is provided.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、三本の電子ビームを個別に発生する陰極構体
と、電気的に三分割された少くとも一つの分割型電極
と、更に電気的、構造的に共通で各電子ビーム通路には
実質的に個別、或いは共通の電子レンズを形成する一体
化電極を備えたインライン型電子銃電極構体に於て、前
記分割型電極は三つの電子ビーム透過開孔を持ち他の一
体化電極とほぼ等しい対向面積を持った一体化電極とし
て形成され、これを共通の絶縁基板に固定し、然る後レ
ーザ光等でその金属性電極部のみを、予め一体形成され
た電極支持子を持つ中央電極と、電極支持子を持たない
両外側電極部に分割したことを特徴としている。この様
に構成することによって、分割型電極は中央と両外側電
極部の相対位置を高精度に保つことが可能となり、且つ
その中央電極の一部に支持部を形成すればよく、構造は
簡単になり、剛体であり絶縁基板に三つの電極部が共通
に固定されているため、電極は機械的に一体化された剛
体構造となり、変形は生じくく、各電極面に垂直方向の
前後に配設される電極間相対距離が精密設定可能とな
る。
The present invention provides a cathode structure for individually generating three electron beams, at least one split type electrode that is electrically divided into three parts, and is electrically and structurally common to each other so that each electron beam path is substantially In an in-line type electron gun electrode structure provided with an integrated electrode that individually or commonly forms an electron lens, the split type electrode has three electron beam transmission apertures and is substantially equal to other integrated electrodes. It is formed as an integrated electrode having a facing area, and it is fixed to a common insulating substrate, and then only the metallic electrode part is formed by laser light etc. with a central electrode having an electrode supporter integrally formed in advance. It is characterized in that it is divided into both outer electrode portions having no electrode support. With this configuration, the split electrode can maintain the relative position of the center and both outer electrode parts with high accuracy, and the support part may be formed on a part of the center electrode, and the structure is simple. Since the electrodes are rigid and the three electrodes are commonly fixed to the insulating substrate, the electrodes have a mechanically integrated rigid structure, and deformation is unlikely to occur. The relative distance between the electrodes provided can be set precisely.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す制御電極である分割型
G1電極20が絶縁物支持杆17に埋設支持されている状態を
示す平面図、第2図はG1電極を一体に固定する絶縁基板
30の斜視図、第3図(a)は分割前のG1電極の斜視図、
第3図(b)は第3図(a)のA−A断面図を夫々示
す。
FIG. 1 is a split type control electrode showing an embodiment of the present invention.
FIG. 2 is a plan view showing a state in which the G1 electrode 20 is embedded and supported in the insulator support rod 17, and FIG. 2 is an insulating substrate for integrally fixing the G1 electrode.
30 is a perspective view, FIG. 3 (a) is a perspective view of the G1 electrode before division,
FIG. 3 (b) is a sectional view taken along line AA of FIG. 3 (a).

分割型G1電極20は第1図に示す様に、ほぼ中央に電子ビ
ーム透過孔22が穿設された外側電極21A,21C、及び中央
電極21Bの三素子と、これを共通に支持固定した絶縁基
板30から構成されている。第3図に示す様に、分割型G1
電極20は当初三つの電子ビーム透過孔22が一直線上に等
間隔距離Sを保って穿設された大略長円形状を呈した他
の一体化電極とほぼ等しい対向面積を持った一体化電極
となっている。電子ビーム透過孔部はその平面度を保
持、強化するためにエンボス23で夫々取囲まれており、
インライン配列された電子ビーム透過孔22の配列方向と
直交し、各電子ビーム透過孔22を通る直線上に案内孔24
が各透過孔毎にこれをはさむ様に二個穿設されている。
更に中央透過孔部と外側透過孔部との間には第3図
(b)に示すように線状薄肉部27が形成され、夫々外側
電極部21A,21C、中央電極部21Bとに分けられ、中央電極
部21Bには案内孔24を結ぶ方向の電極面両端を折曲げ部2
6を形成し、第二の平面としてその先端には絶縁物支持
杆17に対する融着強度を高める切欠き25Aを持った電極
支持子25が一体形成されている。絶縁基板30は第2図に
示す様に、例えばアルミナ等のセラミックスで大略長円
形状に形成された基板で、その片面に分割前のG1電極の
外形が嵌合し、その電極形成材の板厚程度の深さを持っ
た凹陥部31が形成され、その面内にG1電極のエンボス23
が嵌合する直径を持ち、透過孔22と同一間隔を保った三
つの開孔32が一直線上に穿設され、更にその配列方向に
垂直で、各開孔32の中心を通る直線上には各電極部の案
内孔24に対応した案内孔34が夫々二個ずつ穿設されてい
る。この絶縁基板30の凹陥部31に分割型G1電極20を嵌合
させ、その間に微小ガラス粉末を入れ、炉中で焼成し両
者を接着固定する。この際、案内孔24,34は両者の位置
合せ基準として利用出来る。一方分割型G1電個20の線状
薄肉部27には第3図(a)にA−A矢印で示す同図
(b)のA−A断面拡大図に示す様に、プレス又はエッ
チング加工であらかじめV字型の溝が形成されており、
分割型G1電極20と絶縁基板30の一体品はこの線状薄肉部
27に例えばレーザ光を照射して切断し、第1図に示す様
に外側電極21A,21Cと中央電極21Bに分割する。
As shown in FIG. 1, the split-type G1 electrode 20 has three elements, an outer electrode 21A, 21C having an electron beam transmission hole 22 formed in the substantially center thereof, and a central electrode 21B, and an insulating element that supports and fixes them in common. It is composed of a substrate 30. As shown in Fig. 3, the split type G1
Initially, the electrode 20 is an integrated electrode having a facing area substantially equal to that of another integrated electrode having a substantially oval shape in which three electron beam transmission holes 22 are formed in a straight line at equal intervals S. Has become. The electron beam transmission holes are surrounded by embossing 23 to maintain and enhance their flatness.
A guide hole 24 is formed on a straight line that is orthogonal to the arrangement direction of the electron beam transmission holes 22 arranged in-line and passes through each electron beam transmission hole 22.
Two perforations are formed so as to sandwich each permeation hole.
Further, a linear thin portion 27 is formed between the central transmission hole portion and the outer transmission hole portion as shown in FIG. 3 (b), which is divided into outer electrode portions 21A and 21C and a central electrode portion 21B, respectively. , The central electrode portion 21B has a bent portion 2 at both ends of the electrode surface in the direction of connecting the guide hole 24.
6 is formed, and an electrode supporter 25 having a notch 25A for enhancing the fusion bonding strength to the insulator support rod 17 is integrally formed at the tip as a second plane. As shown in FIG. 2, the insulating substrate 30 is a substrate formed of ceramics such as alumina in a generally oval shape, and the outer shape of the G1 electrode before division fits on one surface of the substrate, and the plate of the electrode forming material is used. A recessed portion 31 having a depth of about a thickness is formed, and the embossed portion 23 of the G1 electrode is formed within the recessed portion 31.
Has a diameter that fits, and three openings 32 are formed in a straight line at the same intervals as the transmission holes 22, and are perpendicular to the array direction, and on a straight line passing through the center of each opening 32. Two guide holes 34 corresponding to the guide holes 24 of each electrode portion are formed. The split-type G1 electrode 20 is fitted into the concave portion 31 of the insulating substrate 30, and fine glass powder is put between them and baked in a furnace to bond and fix both. At this time, the guide holes 24, 34 can be used as a reference for alignment between the two. On the other hand, the linear thin portion 27 of the split type G1 electric piece 20 is pressed or etched as shown in the AA cross-sectional enlarged view of FIG. V-shaped groove is already formed,
The linear thin-walled part is the integrated product of the split G1 electrode 20 and the insulating substrate 30.
27 is irradiated with, for example, laser light to be cut, and divided into outer electrodes 21A and 21C and a central electrode 21B as shown in FIG.

この様に構成された分割型G1電極20は電気的には完全に
独立しているが、機械的には絶縁基板30で一体化され、
且つ両者を切断前に接着されているため、切断後も外側
電極と中央電極の相対的位置精度は切断前と同様に高精
度に保持されている。更に中央電極21Bにはこれと一体
化された電極支持子25を持っており、電極としての構造
は簡単となり、電子銃電極構体の組立てに際しては従来
の一体化電極と同一の扱いが可能となつている。両外側
電極21A,21C、及び中央電極21Bは剛体である絶縁基板30
に共通に固定されているため、分割型G1電極20は機械的
に一体化された剛体構造となり、電子銃電極構体組立時
に変形したり、その支持が不安定となることはなくな
る。従って分割型G1電極20の前後に配設される電極間相
互距離はG1電極の変形によって狂うことなく、設定値に
対し精密に設定可能となる。又案内孔24、34は電子銃電
極組立時に、組立治具に対する案内孔としても利用出来
る。
The split-type G1 electrode 20 configured in this manner is completely electrically independent, but mechanically integrated by the insulating substrate 30,
Moreover, since both are bonded before cutting, the relative positional accuracy of the outer electrode and the central electrode is maintained with high accuracy even after cutting, as with before cutting. Further, the central electrode 21B has an electrode supporter 25 integrated with the central electrode 21B, which simplifies the structure as an electrode and allows the same treatment as a conventional integrated electrode when assembling the electron gun electrode structure. ing. Both outer electrodes 21A and 21C, and the central electrode 21B are rigid insulating substrates 30.
Since the split type G1 electrode 20 has a mechanically integrated rigid body structure, the split type G1 electrode 20 will not be deformed during the assembling of the electron gun electrode assembly or its support will be unstable. Therefore, the mutual distance between the electrodes arranged in front of and behind the split type G1 electrode 20 can be precisely set with respect to the set value without being changed by the deformation of the G1 electrode. The guide holes 24 and 34 can also be used as guide holes for an assembly jig when assembling the electron gun electrode.

一方、従来電極間相互距離設定は電子銃電極構体組立時
に、電極間へ所定厚みの間隔子を挿入し、組立後それを
抜き取ることが行われているが、本発明では分割型G1電
極20の絶縁基板30の外側部厚みを適当に設定すれば、こ
れに間隔子を兼ねさせることが出来て、しかもこの場合
は電子銃電極構体として組み立てられても間隔子を抜く
必要がなく、電子銃電極構体は電極間隔変動のない一層
強固な剛体構造とすることが可能となる。又、電極の切
断にレーザ光を用いる場合は絶縁基板30の材質として透
明石英ガラスを用いれば、レーザ光はこれを透過し、且
つ耐熱性があるため基板に損傷を与えずに電極だけを選
択的に切断することは更に容易となる。或いは、切断手
段として高圧ジェット水流を用いればその圧力調整によ
り同様に基板に損傷を与えることなく、電極だけを容易
に切断することは可能となる。
On the other hand, in the conventional mutual distance setting between electrodes, at the time of assembling the electron gun electrode structure, a spacer having a predetermined thickness is inserted between the electrodes, and it is taken out after the assembly, but in the present invention, the split type G1 electrode 20 If the thickness of the outer side of the insulating substrate 30 is appropriately set, it can also serve as a spacer, and in this case, even if it is assembled as an electron gun electrode assembly, it is not necessary to remove the spacer, and the electron gun electrode The structure can have a more rigid rigid structure with no variation in the electrode spacing. When laser light is used to cut the electrodes, if transparent quartz glass is used as the material of the insulating substrate 30, the laser light is transparent and heat resistant, so only the electrode is selected without damaging the substrate. It becomes even easier to cut off. Alternatively, if a high-pressure jet water flow is used as the cutting means, it is possible to easily cut only the electrode without damaging the substrate by adjusting the pressure.

以上の説明では便宜的に分割型電極構造としてG1電極を
取り上げたが、これに限定されることなく、他の電極に
も本発明が適用可能であることはいうまでもない。
In the above description, the G1 electrode is taken up as a split type electrode structure for convenience, but it is needless to say that the present invention is applicable to other electrodes as well.

〔発明の効果〕〔The invention's effect〕

以上述べた様に、本発明の分解型G1電極を用いれば、こ
れを電気的に三つに分解しても、電極支持構造は簡単
で、機械的には一体化された剛体構造となり、電極の変
形は生じにくく、G1電極面の垂直方向にあるG2電極間相
対距離は精密に設定可能となる。又電極の分割は基板に
接着固定後切断されるため、分割後の各電極相対位置精
度は、分割前と同一に高精度に保たれる。
As described above, if the disassembled G1 electrode of the present invention is used, even if it is electrically disassembled into three, the electrode support structure is simple, and the mechanically integrated rigid body structure is obtained. Is less likely to occur, and the relative distance between the G2 electrodes in the direction perpendicular to the G1 electrode surface can be set precisely. Moreover, since the division of the electrodes is cut after being adhered and fixed to the substrate, the relative positional accuracy of each electrode after the division is kept as high as that before the division.

従って、陰極遮断電圧が同一電子銃内でばらついたり、
電子光学特性が劣化することは防止され、陰極線管の画
質特性に影響を与えることはなく、陰極線管への三つの
映像信号を陰極とG1電極に重畳して印加出来、小さな入
力信号振幅でもその合成効果として回路性能に大きな負
担を与えることなく、必要な駆動が容易に可能となる。
更に、たとえ陰極遮断電圧が電子銃内でばらついても、
電気的に分割されたG1電極に直流偏倚電圧を印加するこ
とで、そのばらつきを調整し、駆動信号レベルを同一に
合せることも可能となる。
Therefore, the cathode cutoff voltage varies within the same electron gun,
Deterioration of the electro-optical characteristics is prevented, the image quality characteristics of the cathode ray tube are not affected, and three video signals to the cathode ray tube can be applied by superimposing them on the cathode and G1 electrodes, and even with a small input signal amplitude, Necessary driving can be easily performed without giving a large load to the circuit performance as a synthetic effect.
Furthermore, even if the cathode cutoff voltage varies within the electron gun,
By applying a DC bias voltage to the electrically divided G1 electrodes, it is possible to adjust the variation and make the drive signal levels the same.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例である分割型G1電極が絶縁物
支持杆に埋設電極されている状態を示す平面図、第2図
はG1電極を一体に固定する絶縁基板の斜視図、第3図
(a)は分割型G1電極の斜視図、第3図(b)は第3図
(a)のA−A断面拡大図、第4図、第5図は従来のイ
ンライン型電子銃電極構体の正面図、側面図、第6図は
第4図のA−A断面図、第7図は従来の分割型G1電極の
第6図に対応する断面図である。 1……電子銃電極構体、10A、10B、10C……陰極構体、1
1……G1電極、12……G2電極、13……G3電極、14……G4
電極、17……絶縁物支持杆、20……分割型G1電極、21A,
21C……外側電極、21B……中央電極、22……電子ビーム
透過孔、23……エンボス、24,34……案内孔、25……電
極支持子、27……線状薄肉部、30……絶縁基板、31……
凹陥部、32……開孔。
FIG. 1 is a plan view showing a state in which a split type G1 electrode according to an embodiment of the present invention is embedded in an insulator supporting rod, and FIG. 2 is a perspective view of an insulating substrate integrally fixing the G1 electrode. FIG. 3 (a) is a perspective view of a split type G1 electrode, FIG. 3 (b) is an enlarged sectional view taken along the line AA of FIG. 3 (a), FIGS. 4 and 5 are conventional in-line type electron guns. FIG. 7 is a front view, a side view, FIG. 6 is a sectional view taken along the line AA in FIG. 4, and FIG. 7 is a sectional view corresponding to FIG. 6 of a conventional split type G1 electrode. 1 ... Electron gun electrode assembly, 10A, 10B, 10C ... Cathode assembly, 1
1 …… G1 electrode, 12 …… G2 electrode, 13 …… G3 electrode, 14 …… G4
Electrode, 17 ... Insulator support rod, 20 ... Split type G1 electrode, 21A,
21C ... Outer electrode, 21B ... Central electrode, 22 ... Electron beam transmitting hole, 23 ... Embossing, 24, 34 ... Guide hole, 25 ... Electrode support, 27 ... Linear thin portion, 30 ... … Insulating substrate, 31 ……
Recessed part, 32 ... Open hole.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】三本の電子ビームを個別に発生する陰極構
体と、電気的に三分割された少くとも一つの分割型電極
と、更に電気的、構造的に共通で各電子ビーム通路には
実質的に個別、或いは共通の電子レンズを形成する一体
化電極を備えたインライン型電子銃電極構体に於て、前
記分割型電極は、三つの電子ビーム透過開孔を持ち、他
の一体化電極とほぼ等しい対向面積を持った一体化電極
を共通の絶縁基板に固定した後、その金属製電極部のみ
を予め一体形成された電極支持子を持つ中央電極部と、
電極支持子を持たない両外側電極部とに分割して形成さ
れたことを特徴とする電子銃電極構体。
1. A cathode assembly for individually generating three electron beams, at least one split type electrode which is electrically divided into three parts, and is electrically and structurally common to each electron beam passage. In an in-line type electron gun electrode assembly provided with an integrated electrode forming a substantially individual or common electron lens, the split type electrode has three electron beam transmission apertures and another integrated electrode. After fixing an integrated electrode having a substantially equal facing area to a common insulating substrate, a central electrode part having an electrode support integrally formed with only the metal electrode part in advance,
An electron gun electrode assembly, characterized in that the electron gun electrode structure is formed by being divided into both outer electrode portions having no electrode support.
JP62124773A 1987-05-20 1987-05-20 Electron gun electrode structure Expired - Lifetime JPH0740471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62124773A JPH0740471B2 (en) 1987-05-20 1987-05-20 Electron gun electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62124773A JPH0740471B2 (en) 1987-05-20 1987-05-20 Electron gun electrode structure

Publications (2)

Publication Number Publication Date
JPS63289746A JPS63289746A (en) 1988-11-28
JPH0740471B2 true JPH0740471B2 (en) 1995-05-01

Family

ID=14893756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62124773A Expired - Lifetime JPH0740471B2 (en) 1987-05-20 1987-05-20 Electron gun electrode structure

Country Status (1)

Country Link
JP (1) JPH0740471B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141451U (en) * 1979-03-29 1980-10-09
JPS5767359U (en) * 1980-10-13 1982-04-22

Also Published As

Publication number Publication date
JPS63289746A (en) 1988-11-28

Similar Documents

Publication Publication Date Title
FI89220B (en) FAERGAOTERGIVNINGSSYSTEM OCH KATODSTRAOLEROER
JPH0740471B2 (en) Electron gun electrode structure
KR100479840B1 (en) Display device
CZ110594A3 (en) Color tube with electron gun being in line with three astigmatic lenses
EP0637051B1 (en) Image display apparatus and method of making the same
JPH08315751A (en) Deflection aberration correcting method of cathode-ray tube and cathode-ray tube and image display device
US5736812A (en) Electron guns for color picture tube
KR20030066406A (en) Color picture tube device obtainable high resolutions in all areas of screen and electron gun thereof
JPS63301448A (en) Electron gun for color picture tube
US5655942A (en) Method of fabricating flat type image display
JPH03171534A (en) Color picture tube
JP3104478B2 (en) Image display device and method of manufacturing the same
US6617780B2 (en) Deflection yoke for braun tube and fabrication method thereof
KR20010015851A (en) Cathode ray tube and deflection unit
JPH039579B2 (en)
JPH03101036A (en) Color picture tube device
KR930008122Y1 (en) In-line type electron gun for cathode-ray tube
KR100384673B1 (en) Color Cathode Ray Tube Having In-line Type Electron Gun
JPS58198830A (en) Cathode-ray tube
JPH05275026A (en) Electron gun
KR200150440Y1 (en) Electrode spacer
JPS60211736A (en) Manufacture of image display device
JP2001143630A (en) Cathode ray tube
JPH09223471A (en) Electron gun for cathode ray tube
JPH06124667A (en) Flat type dipslay apparatus