JPH0740009B2 - Biomass measurement electrode - Google Patents

Biomass measurement electrode

Info

Publication number
JPH0740009B2
JPH0740009B2 JP2269417A JP26941790A JPH0740009B2 JP H0740009 B2 JPH0740009 B2 JP H0740009B2 JP 2269417 A JP2269417 A JP 2269417A JP 26941790 A JP26941790 A JP 26941790A JP H0740009 B2 JPH0740009 B2 JP H0740009B2
Authority
JP
Japan
Prior art keywords
electrode
solution
measuring
polarization
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2269417A
Other languages
Japanese (ja)
Other versions
JPH04147050A (en
Inventor
健 三島
精男 三村
義昌 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2269417A priority Critical patent/JPH0740009B2/en
Publication of JPH04147050A publication Critical patent/JPH04147050A/en
Publication of JPH0740009B2 publication Critical patent/JPH0740009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、培養装置内の生物量をオンラインで計測する
ための電極に関するものである。したがって本発明は、
バイオインダストリをはじめ、医療、食品工業、下水・
廃水処理といった分野において非常に重要な役割を果た
すものである。
TECHNICAL FIELD The present invention relates to an electrode for on-line measurement of a biomass in a culture device. Therefore, the present invention
Bioindustry, medical, food industry, sewage,
It plays a very important role in fields such as wastewater treatment.

(従来の技術) 各種微生物、動物細胞、植物細胞等を用いて有用物質を
生産するバイオリアクタや培養装置は、その内部の生物
量が時々刻々変化するものであり、バイオリアクタ、培
養装置の制御を行ったり、内部状態を知る上で生物量を
測定することが非常に重要である。
(Prior Art) Bioreactors and culturing devices that produce useful substances using various microorganisms, animal cells, plant cells, etc., control the bioreactor and culturing devices because the amount of living organisms inside them changes moment by moment. It is very important to measure the amount of living organisms in order to carry out or to know the internal condition.

バイオリアクタ等において、細胞の大きさが小さい各種
微生物においては、懸濁溶液中の菌体濃度の測定では、
培地中での微生物の各種光学的性質に基づいて、微生物
濃度を測定することが一応は可能である。しかし、光を
使用した各種測定法では生物以外のSS(懸濁固体)の混
在による生物量の誤認、測定溶液の色や気泡による誤差
の増大、測定機構の複雑さ等の問題点がある。この様な
場合には、現在のところリアクタや培養装置から細胞を
サンプリング法により採取しなければならず、培養系へ
の雑菌汚染の危険性が大きく、雑菌汚染のため高価な培
養液を廃棄しなければならないことが多く、培養効率の
向上が望まれていたのである。また生物量等の情報をリ
アクタや培養装置のオンライン制御等に反映することは
不可能であり、生物をサンプリングすることなく、オン
ラインで生物量を測定できる方法の開発が重要視されて
きたのである。
In bioreactors, etc., for various microorganisms with small cell size, in measuring the bacterial cell concentration in the suspension solution,
It is possible to measure the concentration of microorganisms based on various optical properties of the microorganisms in the medium. However, various measurement methods using light have problems such as misidentification of the biomass due to the mixture of SS (suspended solids) other than organisms, increase in error due to color and bubbles of the measurement solution, and complexity of the measurement mechanism. In such a case, at present, cells have to be collected from a reactor or a culture device by a sampling method, and there is a high risk of contamination of various bacteria in the culture system. In many cases, it was necessary to improve the culture efficiency. In addition, it is impossible to reflect information such as biomass on online control of reactors and culture devices, and it has been emphasized to develop a method that can measure biomass online without sampling the organism. .

最近、本発明者らにより、培養装置内に電極を装着し電
気伝導度(導電率)および/又は電気容量(誘電率)を
測定することにより生物量をオンライン・リアルタイム
に計測する方法が発明された(特願昭62−224018号:特
開昭64−67200号公報参照)。
Recently, the present inventors have invented a method for measuring the amount of living organisms in real time online by mounting electrodes in a culture device and measuring electric conductivity (conductivity) and / or electric capacity (dielectric constant). (See Japanese Patent Application No. 62-224018: Japanese Patent Laid-Open No. 64-67200).

本発明は、上記計測法により電気容量の測定を可能とす
る生物量計測用電極として、溶射加工した金属を電極と
して用いるものであり、また焼結金属を電極として用い
るものであって、このような電極は従来知られておら
ず、新規である。
The present invention uses a spray-processed metal as an electrode, and a sintered metal as an electrode, as a biological amount measuring electrode capable of measuring an electric capacity by the above-mentioned measuring method. No such electrode has hitherto been known and is new.

(発明が解決しようとする問題点) 従来、電気容量および/又は電気伝導度を測定すること
により生物濃度を計測する生物量計測用電極としては、
ステンレス、白金、白金黒等が用いられていた。しか
し、ステンレスや白金電極は、電極分極の影響が高い周
波数帯域におよぶため高イオン濃度領域では、生物量の
計測が困難であった。一方、白金黒電極は、電極分極の
影響は低い周波数帯域にとどまっているという優れた特
性を有するが、機械的刺激等を受けた場合、メッキした
部分がはげ落ち特性が変化するという欠点があった。
(Problems to be Solved by the Invention) Conventionally, as a biological amount measuring electrode for measuring biological concentration by measuring electric capacity and / or electric conductivity,
Stainless steel, platinum, platinum black, etc. were used. However, it was difficult to measure the amount of organisms in the high ion concentration region for stainless steel and platinum electrodes because the influence of electrode polarization extends to a high frequency band. On the other hand, the platinum black electrode has an excellent property that the effect of electrode polarization is limited to a low frequency band, but it has a drawback that the plated part is peeled off when mechanical stimulus is applied. It was

(問題点を解決するための手段) 本発明は、上記欠点を一挙に解決するためになされたも
のであって、電極として用いる金属表面を溶射加工する
こと、また焼結金属を電極として用いることにより、ス
テンレス、白金、チタン等を電極として用いる場合に比
較し、電極分極の影響を小さくすることにより、高イオ
ン濃度溶液中においても生物量の計測を可能とするとと
もに、白金黒電極に比べて優れた強度を持たすことによ
り本発明の完成に至ったものである。
(Means for Solving Problems) The present invention has been made to solve the above-mentioned drawbacks all at once, in which the surface of a metal used as an electrode is subjected to thermal spraying, and a sintered metal is used as an electrode. Therefore, compared to the case of using stainless steel, platinum, titanium, etc. as the electrode, by reducing the effect of electrode polarization, it is possible to measure the biomass even in a high ion concentration solution, and compared to the platinum black electrode. The present invention has been completed by having excellent strength.

まず電極分極がどの様なものか、どの様に電気容量値に
影響するかを述べる。電極分極は電気二重層によるもの
であり、電気二重層の概念は非常に広範囲に定着してお
り、電極をはじめあらゆる固定表面が電解質溶液と接触
すると、固液界面に電気二重層が形成されると考えられ
ている(電気化学測定法、藤嶋、他、技報堂出版、P.4
4)。
First, we describe what the electrode polarization is and how it affects the capacitance value. Electrode polarization is due to the electric double layer, and the concept of the electric double layer has been established in a very wide range, and when any fixed surface including the electrode comes into contact with the electrolyte solution, the electric double layer is formed at the solid-liquid interface. (Electrochemical assay, Fujishima et al., Gihodo Publishing, P.4)
Four).

電極分極の値は測定周波数に依存しており、第1図に示
すような周波数特性を示す。またこの周波数特性は電解
液中のイオン濃度に関係しており、イオン濃度が高いと
第1図に示すように高周波側にシフトする。さて、測定
周波数が高く、電極分極がほぼ無視できる周波数帯域で
は、電気容量値は溶液中のイオンの影響を受けない。し
たがってこのような周波数帯域においては、細胞を含む
溶液の電気容量は、電極が形成する電界中に存在するも
の(例えば、細胞、水、空気等のガス、糖やタンパク質
等の物質、等)によってきまる。このうち細胞は、非常
に大きい電気容量値を示すことが知られており、溶液中
の細胞が増加するとほど細胞濃度と一定の関係で電気容
量値が増加することが知られてる(特開昭64−67200号
公報)。
The value of the electrode polarization depends on the measured frequency, and exhibits frequency characteristics as shown in FIG. Further, this frequency characteristic is related to the ion concentration in the electrolytic solution, and when the ion concentration is high, it shifts to the high frequency side as shown in FIG. Now, in the frequency band where the measurement frequency is high and the electrode polarization is almost negligible, the capacitance value is not affected by the ions in the solution. Therefore, in such a frequency band, the capacitance of the solution containing cells depends on those existing in the electric field formed by the electrodes (eg, cells, water, gas such as air, substances such as sugar and protein, etc.). It's decided Among them, cells are known to have a very large capacitance value, and it is known that as the number of cells in a solution increases, the capacitance value increases in a constant relationship with the cell concentration (Japanese Patent Laid-Open Publication No. Sho. 64-67200).

測定周波数が低く電極分極の影響を受ける周波数帯域で
も電気伝導度が変動しなければ、電気容量値と細胞濃度
との間に一定の関係を得ることができるはずである。し
かし細胞を含む培養系では、細胞の代謝等によりイオン
濃度、組成は変化する。また細胞自体が溶液中の抵抗成
分となり、細胞濃度の変化自体が溶液中の電気伝導度の
変動要因となる。したがって電極分極の影響を無視でき
ない周波数帯域では実際上、生物量の計測は不可能とな
る。
If the electrical conductivity does not fluctuate even in the frequency band where the measurement frequency is low and is affected by the electrode polarization, it should be possible to obtain a constant relationship between the capacitance value and the cell concentration. However, in a culture system containing cells, the ion concentration and composition change due to cell metabolism and the like. In addition, the cells themselves become a resistance component in the solution, and the change in the cell concentration itself becomes a factor of fluctuation in the electrical conductivity in the solution. Therefore, it is practically impossible to measure the biomass in the frequency band where the influence of electrode polarization cannot be ignored.

一方、生物細胞の存在による電気容量値の増加は測定周
波数がほぼ10MHz以下である(特開昭64−67200号公
報)。したがって、電気容量を測定することにより細胞
濃度を算出するためには、数MHz以下の周波数を用いる
必要がある。この際、電極分極の影響が小さい必要があ
る。したがって電極分極の影響ができるだけない状態、
言い替えれば電極分極ができるだけ低周波側にシフトし
た状態で測定するのが望ましい。
On the other hand, the increase in the capacitance value due to the presence of biological cells is such that the measurement frequency is approximately 10 MHz or less (JP-A-64-67200). Therefore, in order to calculate the cell concentration by measuring the electric capacity, it is necessary to use a frequency of several MHz or less. At this time, the influence of electrode polarization needs to be small. Therefore, the state of the effect of electrode polarization is as small as possible,
In other words, it is desirable to measure with the electrode polarization shifted to the low frequency side as much as possible.

さて電極分極は、溶液中のイオン濃度が高くなるとその
影響が及ぶ周波数帯域が高くなることを先に述べたが、
その他の要因として、電極材質も関係する。言い替える
と、電極分極が低周波数側にシフトした特性を示す材質
ほど良い材質とみることができる。なお電極間距離、電
極面積、また先に述べたように溶液中のイオン濃度も電
極分極に関係するため、同じ材質の電極でも生物量の計
測ができる場合とできない場合があるが、よい電極材料
を用いればより広い範囲の条件下での計測が可能とな
る。
As mentioned above, electrode polarization has a higher frequency band that is affected by higher ion concentration in the solution.
Another factor is the electrode material. In other words, it can be considered that a material having a property that the electrode polarization is shifted to the low frequency side is a better material. Since the distance between electrodes, the electrode area, and the ion concentration in the solution are also related to the electrode polarization as described above, there are cases where the amount of living organisms can be measured even with electrodes of the same material, but a good electrode material By using, it becomes possible to measure under a wider range of conditions.

そこで目的とする電極材料を追求して鋭意各方面から検
討した結果、表面を溶射加工した金属、及び焼結金属が
好適であることを発見し、この新知見を基礎として更に
研究を行い、本発明の完成に至った。
Therefore, as a result of earnestly examining the target electrode material from various directions, we found that the metal whose surface was spray-processed and sintered metal were suitable, and based on this new knowledge, further research was conducted. The invention was completed.

以下、本発明について詳しく述べることとする。Hereinafter, the present invention will be described in detail.

先ずはじめに、第2図に示した測定セル1(例えば20mm
×20mm×40mm)を用意し、その内壁2,2(例えば20mm×2
0mmの面)に、ステンレス(a)、チタン(b)、白金
(c)、白金黒(d)、ステンレス表面にステンレスを
溶射したもの(e)、チタン表面にチタンを溶射したも
の(f)からなる電極3,3をそれぞれ装着し、内部空間
4に1%NaCl溶液を満たし、電気容量の周波数特性を測
定した。
First of all, the measuring cell 1 shown in FIG. 2 (for example, 20 mm
X 20mm x 40mm) and prepare its inner wall 2,2 (for example, 20mm x 2)
0 mm surface), stainless steel (a), titanium (b), platinum (c), platinum black (d), stainless steel surface sprayed with stainless steel (e), titanium surface sprayed with titanium (f) The electrodes 3 and 3 each made up of 1 were attached, and the internal space 4 was filled with a 1% NaCl solution, and the frequency characteristic of the electric capacity was measured.

測定結果を第3図に示す。この結果から、いずれの場合
にも測定周波数が低くなるにつれ電気容量値が増加する
現象がみられるが、これは電極分極の影響である。本結
果からステンレス(a)、チタン(b)、白金(c)電
極間では電気容量の周波数特性に相違のないことがわか
った。またステンレス(e)およびチタン(f)の溶射
電極は、白金黒(d)電極に比較すると電極分極の影響
は高周波数帯域まで及ぶが、ステンレス(a)、チタン
(b)に比較すると、電極分極の影響が低周波数帯域に
とどまっていることが明らかとなった。これから金属表
面を溶射加工することは、溶液の電気容量を測定する
際、電極分極の影響を小さくする効果のあることが分か
った。
The measurement results are shown in FIG. From these results, it can be seen that in any case, the capacitance value increases as the measurement frequency decreases, which is an effect of electrode polarization. From this result, it was found that there was no difference in the frequency characteristic of the electric capacity between the stainless (a), titanium (b) and platinum (c) electrodes. Further, the sprayed electrodes of stainless steel (e) and titanium (f) are affected by electrode polarization up to a high frequency band as compared with the platinum black (d) electrode, but compared with stainless steel (a) and titanium (b). It was revealed that the effect of polarization was limited to the low frequency band. From this, it was found that the thermal spraying of the metal surface has the effect of reducing the influence of electrode polarization when measuring the electric capacity of the solution.

本発明において溶射電極としては、金属を溶融し圧縮空
気を用いて粉霧状にしたものを、予じめ粗面化した被溶
射体の表面に吹付けて、機械的に密着させる等、業界周
知の溶射処理によって製造される電極をすべて包含する
ものである。
As the thermal spraying electrode in the present invention, a metal atomized and atomized by using compressed air is sprayed onto the surface of the object to be sprayed, which has been roughened in advance, and mechanically adhered thereto. It includes all electrodes manufactured by the well-known thermal spraying process.

また、白金黒電極は実質上の電極面積が非常に大きくな
ることが知られており、実質上の電極面積を拡大するこ
とにより、電極分極の影響を低周波数側にシフトできる
のではないか(溶液の電気容量を測定する際、電極分極
の影響を小さくできる)との考えのもとに、上記のよう
に電極表面を溶射法により電極面積を拡大した電極、お
よび、焼結法により電極面積を拡大した電極を作製し
た。
Moreover, it is known that the electrode area of the platinum black electrode is substantially large, and the effect of electrode polarization may be shifted to the lower frequency side by enlarging the electrode area of the electrode. Based on the idea that the influence of electrode polarization can be reduced when measuring the capacitance of a solution), the electrode surface is enlarged by the thermal spraying method as described above, and the electrode area by the sintering method. An electrode having an enlarged size was manufactured.

本発明においては、焼結金属電極としては、粉末状の金
属を加圧して固め、これを加熱して団鉱又は塊状の金属
ないし合金を得る、常法によるシンタリング操作によっ
て製造される電極を広く包含するものである。このよう
にして作製した。表面を溶射加工した金属又は焼結金属
を電極面とすれば、目的とする生物量計測用電極が自由
に作製することができ、これらの電極面は、下記するよ
うに二重構造を有する電極として使用することにより、
所期の正確にして迅速な生物量の計測が可能となる。
In the present invention, as the sintered metal electrode, an electrode manufactured by a sintering operation according to a conventional method, in which a powdery metal is pressed and solidified, and this is heated to obtain a briquette or lumpy metal or alloy It is a broad inclusion. It was produced in this way. If the surface of the metal sprayed or sintered metal is used as the electrode surface, the target biological quantity measuring electrode can be freely prepared, and these electrode surfaces have the double structure as described below. By using as
It is possible to accurately and quickly measure the desired amount of biomass.

本発明における二重構造を有する電極としては、外側の
電極が内側の電極を覆うよう電極面が二重構造を有する
電極をすべて包含するものであり、例えば電極面が二重
円筒型のもの、あるいは電極面が二重殻状をしているも
の等が適宜使用される。
The electrode having a double structure in the present invention includes all electrodes whose electrode surface has a double structure so that the outer electrode covers the inner electrode, for example, the electrode surface having a double cylindrical shape, Alternatively, an electrode surface having a double shell shape or the like is appropriately used.

第4図は前者のタイプの一例を図示したものであって、
11は二重円筒型電極を指し、12は内側電極、13は外側電
極を指す。14は絶縁物からなる支持体である。外側電極
13は、下面を開放した円筒状をなし、その側面及び上面
には穴をそれぞれ4カ所穿設した。
FIG. 4 shows an example of the former type,
11 indicates a double cylindrical electrode, 12 indicates an inner electrode, and 13 indicates an outer electrode. 14 is a support made of an insulator. Outer electrode
13 has a cylindrical shape with an open lower surface, and four holes are formed on each of the side surface and the upper surface thereof.

このような構造を有する二重殻型電極11において、外側
の電極13はステンレスで作製し、内側の電極12をチタン
溶射およびステンレス焼結で作製し、生物濃度の測定実
験を行った。なお本電極では、第2図に示した測定セル
における電極に比べ、一般に電極面積(内側電極)は小
さくなり、かつ電極間距離は短くなる。また同じイオン
濃度の溶液を測定する場合の電気伝導度は測定セルに比
べて非常に高くなる(測定セルでは電界はセル容積でき
まるが、溶液中に挿入する電極では電界が広い範囲に広
がるため)。これらの条件により、本電極における電極
分極の影響は、測定セルに比べ高周波数側にシフトす
る。
In the double-shell type electrode 11 having such a structure, the outer electrode 13 was made of stainless steel, the inner electrode 12 was made of titanium spraying and stainless sintering, and a biological concentration measurement experiment was performed. In this electrode, the electrode area (inner electrode) is generally smaller and the inter-electrode distance is shorter than the electrode in the measuring cell shown in FIG. In addition, the electric conductivity when measuring a solution with the same ion concentration is much higher than that of the measurement cell (the electric field in the measurement cell can be made up by the cell volume, but the electric field spreads over a wide range in the electrode inserted in the solution ). Under these conditions, the effect of electrode polarization on this electrode shifts to the high frequency side as compared with the measurement cell.

以下、本発明の実施例について述べる。Examples of the present invention will be described below.

実施例1 第4図に示す様な同心円筒型電極を作製し酵母の計測実
験を行った。外側電極は直径40mm、高さ40mmで側面4カ
所に直径20mm、上面4カ所に直径10mmの穴を開け電極内
に溶液が自由に出入りできる様になっている。下面は開
いている。電極材質はステンレスである。内側電極は直
径10mm、高さ2mmで、材質は焼結ステンレスである。
Example 1 A concentric cylindrical electrode as shown in FIG. 4 was produced and a yeast measurement experiment was conducted. The outer electrode has a diameter of 40 mm, a height of 40 mm, and a hole with a diameter of 20 mm at four side surfaces and a diameter of 10 mm at four upper surfaces so that the solution can freely flow in and out of the electrode. The underside is open. The electrode material is stainless steel. The inner electrode has a diameter of 10 mm and a height of 2 mm, and the material is sintered stainless steel.

本電極を培養槽(内容積5L)中に装着し、3Lの培養液を
充填し電気容量を測定した。つぎに溶液中に順次パン酵
母を入れ電気容量を測定するとともに10mlの溶液をサン
プリングし、乾燥重量法により酵母濃度を求めた。
This electrode was mounted in a culture tank (internal volume 5 L), filled with 3 L of culture solution, and the electric capacity was measured. Next, baker's yeast was sequentially put into the solution to measure the electric capacity, 10 ml of the solution was sampled, and the yeast concentration was determined by the dry weight method.

第5図に電気容量値と酵母濃度との関係を示す。縦軸は
測定周波数1MHzにおける酵母溶液の電気容量と酵母を含
まない培養液との差であり、横軸には酵母濃度を示して
いる。ここで用いた培養液のイオン濃度は1%NaCl相当
のものであり、この様な高イオン濃度条件下でも両者の
間には直線関係が認められ(内側電極にもステンレスを
用いた電極では分極の影響が大きく測定できない。)、
本電極を用いて酵母濃度の計測が可能であることがわか
った。
FIG. 5 shows the relationship between the capacitance value and the yeast concentration. The vertical axis represents the difference between the electric capacity of the yeast solution at the measurement frequency of 1 MHz and the culture solution containing no yeast, and the horizontal axis represents the yeast concentration. The ion concentration of the culture solution used here was equivalent to 1% NaCl, and a linear relationship was observed between the two even under such high ion concentration conditions (the inner electrode made of stainless steel has a polarization. The effect of is not measurable.),
It was found that the yeast concentration can be measured using this electrode.

実施例2 第4図に示す様な同心円筒型電極を作製し酵母の計測実
験を行った。外側電極は直径40mm、高さ40mmで側面4カ
所に直径20mm、上面4カ所に直径10mmの穴を開け電極内
に溶液が自由に出入りできる様になっている。下面は開
口である。電極材質はステンレスである。内側電極は直
径5mm、高さ5mmで、材質はチタンにチタンを厚さ0.1mm
溶射したものである。
Example 2 A concentric cylindrical electrode as shown in FIG. 4 was produced and a yeast measurement experiment was conducted. The outer electrode has a diameter of 40 mm, a height of 40 mm, and a hole with a diameter of 20 mm at four side surfaces and a diameter of 10 mm at four upper surfaces so that the solution can freely flow in and out of the electrode. The lower surface is an opening. The electrode material is stainless steel. The inner electrode has a diameter of 5 mm and a height of 5 mm, and the material is titanium to titanium with a thickness of 0.1 mm.
It was sprayed.

第6図に電気容量値と酵母濃度との関係を示す。縦軸は
測定周波数1MHzにおける酵母溶液の電気容量と酵母を含
まない培養液との差であり、横軸には酵母濃度を示す。
ここで用いた培養液のイオン濃度は1%NaCl相当のもの
であり、この様な高イオン濃度条件下でも両者の間には
直線関係が認められ(内側電極に溶射加工しないチタン
を用いた電極では分極の影響が大きいため測定できな
い)、本電極を用いて酵母濃度の計測が可能であること
がわかった。
FIG. 6 shows the relationship between the capacitance value and the yeast concentration. The vertical axis represents the difference between the electric capacity of the yeast solution at the measurement frequency of 1 MHz and the culture solution containing no yeast, and the horizontal axis represents the yeast concentration.
The ion concentration of the culture solution used here was equivalent to 1% NaCl, and a linear relationship was observed between them even under such high ion concentration conditions (the inner electrode made of titanium without thermal spraying was used). However, it was not possible to measure because of the large influence of polarization), and it was found that the yeast concentration can be measured using this electrode.

(発明の効果) 表面を溶射加工した金属、焼結金属を用いた電極によ
り、従来繰り返し使用するには、洗浄や特性変化に注意
を必要とした生物量計測電極において、従来なしえなか
った耐久性に優れた電極が得られた。
(Effect of the invention) Due to the electrode using a metal whose surface is sprayed or sintered metal, it is impossible to use it repeatedly in the conventional method. An electrode having excellent properties was obtained.

したがって本発明によれば、微生物、動物細胞および植
物細胞量を非破壊的に測定することができ、バイオテク
ノロジー、ワクチン製造、微生物、動物細胞および植物
細胞を用いる実験、研究の技術分野、その他各方面にお
いて広く本発明を利用することができる。
Therefore, according to the present invention, the amount of microorganisms, animal cells and plant cells can be nondestructively measured, and biotechnology, vaccine production, experiments using microorganisms, animal cells and plant cells, technical fields of research, and others The present invention can be widely used in various fields.

【図面の簡単な説明】[Brief description of drawings]

第1図は、種々のNaCl溶液における電気容量の周波数特
性の一例を示した図である。セル定数(0.08)の測定セ
ルを用いて測定した。なお測定溶液の塩濃度は以下の通
りである。 a:0.5%NaCl b:1%NaCl c:2%NaCl d:3%NaCl e:5%NaCl 第2図は、測定セルの外観を図示したものである。 第3図は、第2図に示した測定セルに、種々の金属電極
(a〜f)を装着し、1%NaCl溶液について電気容量の
周波数特性を測定した結果を示した図である。 但し、a:ステンレス、b:チタン、c:白金、d:白金黒、e:
ステンレス表面にステンレスを溶射、f:チタン表面にチ
タンを溶射 第4図は、同心円筒型電極の外観を図示したものであ
る。 第5図は、焼結ステンレスを用いた同心円筒型電極での
酵母濃度の計測結果を示したグラフである。 第6図は、溶射チタンを用いた同心円筒型電極での酵母
濃度の計測結果を図示したグラフである。
FIG. 1 is a diagram showing an example of frequency characteristics of electric capacities in various NaCl solutions. It measured using the measuring cell of cell constant (0.08). The salt concentration of the measurement solution is as follows. a: 0.5% NaCl b: 1% NaCl c: 2% NaCl d: 3% NaCl e: 5% NaCl Figure 2 shows the appearance of the measuring cell. FIG. 3 is a diagram showing the results of measuring the frequency characteristic of the electric capacity of a 1% NaCl solution by mounting various metal electrodes (a to f) on the measuring cell shown in FIG. However, a: stainless steel, b: titanium, c: platinum, d: platinum black, e:
Spraying stainless steel on the surface of stainless steel, f: spraying titanium on the surface of titanium Fig. 4 shows the appearance of the concentric cylindrical electrode. FIG. 5 is a graph showing the measurement results of the yeast concentration using a concentric cylindrical electrode made of sintered stainless steel. FIG. 6 is a graph showing the measurement results of yeast concentration at a concentric cylindrical electrode using sprayed titanium.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】表面を溶射加工した金属を電極面として電
気容量を測定することを特徴とする生物量計測用電極。
1. An electrode for measuring a biological amount, characterized in that a metal whose surface is sprayed is used as an electrode surface to measure an electric capacity.
【請求項2】焼結金属を電極面として電気容量を測定す
ることを特徴とする生物量計測用電極。
2. An electrode for measuring a biological amount, which measures a capacitance by using a sintered metal as an electrode surface.
【請求項3】外側の電極が内側の電極を覆うよう電極面
が二重構造を有することを特徴とする請求項1又は2に
記載の生物量計測用電極。
3. The biomass measuring electrode according to claim 1, wherein the electrode surface has a double structure so that the outer electrode covers the inner electrode.
JP2269417A 1990-10-09 1990-10-09 Biomass measurement electrode Expired - Lifetime JPH0740009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2269417A JPH0740009B2 (en) 1990-10-09 1990-10-09 Biomass measurement electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2269417A JPH0740009B2 (en) 1990-10-09 1990-10-09 Biomass measurement electrode

Publications (2)

Publication Number Publication Date
JPH04147050A JPH04147050A (en) 1992-05-20
JPH0740009B2 true JPH0740009B2 (en) 1995-05-01

Family

ID=17472129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2269417A Expired - Lifetime JPH0740009B2 (en) 1990-10-09 1990-10-09 Biomass measurement electrode

Country Status (1)

Country Link
JP (1) JPH0740009B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6143329B2 (en) * 2012-02-10 2017-06-07 株式会社エム・ビー・エス Method and apparatus for detecting food bacteria using electrical impedance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2157445B (en) * 1984-04-13 1988-09-14 Water Res Centre Continuous monitoring of water quality
JPH0663999B2 (en) * 1988-11-22 1994-08-22 株式会社神戸製鋼所 Biomass measurement electrode

Also Published As

Publication number Publication date
JPH04147050A (en) 1992-05-20

Similar Documents

Publication Publication Date Title
Yardley et al. On-line, real-time measurements of cellular biomass using dielectric spectroscopy
Raoof et al. L‐Cysteine voltammetry at a carbon paste electrode bulk‐modified with ferrocenedicarboxylic acid
Abe et al. Electrochemical imaging of dopamine release from three-dimensional-cultured PC12 cells using large-scale integration-based amperometric sensors
US4321322A (en) Pulsed voltammetric detection of microorganisms
EP0282532B1 (en) Determination of biomass
JP2001501515A (en) Electrode for electrochemical detection of nitric oxide
Karube et al. Microbioassay of nystatin with a yeast electrode
Su et al. Covalent organic frameworks and electron mediator-based open circuit potential biosensor for in vivo electrochemical measurements
Niwa et al. Continuous monitoring of L-glutamate released from cultured nerve cells by an online sensor coupled with micro-capillary sampling
Wang et al. One-step electropolymeric co-immobilization of glucose oxidase and heparin for amperometric biosensing of glucose
De Beer et al. Gradients in immobilized biological systems
CN114235924B (en) Enzyme-free blood glucose sensor microelectrode of Pt/Au nano-alloy modified acupuncture needle with cabbage structure and preparation method thereof
Takeda et al. Electrochemical chip integrating scalable ring–ring electrode array to detect secreted alkaline phosphatase
Markx et al. The dielectric permittivity at radio frequencies and the Bruggeman probe: novel techniques for the on-line determination of biomass concentrations in plant cell cultures
EP0277789B1 (en) Method for measuring biomass
CN1260486A (en) Detecting method and apparatus for yeast concentration (measuring bioconcentration)
JPH0740009B2 (en) Biomass measurement electrode
JP2007534926A (en) Voltammetric detection of metabolites in physiological body fluids
EP0028793B1 (en) Method for measuring metabolic activity of animal or plant tissues
Hofmann et al. Development of a four electrode sensor array for impedance spectroscopy in high content screenings of fermentation processes
Deepa et al. A sensitive and selective electrochemical investigation of dopamine at fabricated sorbitol film modified pencil graphite electrode: A voltammetric study
NZ194089A (en) Electrolytic detection of microorganisms: redox potential determination
Wang et al. Tissue bioelectrode for eliminating protein interferences
Wang et al. Reticulated vitreous carbon-plant tissue composite bioelectrodes
Male et al. Oscillations in yeast observed electrically