JPH0739719A - Method and apparatus for wet type exhaust gas desulfurization - Google Patents

Method and apparatus for wet type exhaust gas desulfurization

Info

Publication number
JPH0739719A
JPH0739719A JP5191015A JP19101593A JPH0739719A JP H0739719 A JPH0739719 A JP H0739719A JP 5191015 A JP5191015 A JP 5191015A JP 19101593 A JP19101593 A JP 19101593A JP H0739719 A JPH0739719 A JP H0739719A
Authority
JP
Japan
Prior art keywords
desulfurization
particles
flue gas
exhaust gas
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5191015A
Other languages
Japanese (ja)
Inventor
Hirobumi Yoshikawa
博文 吉川
Hiroyuki Kako
宏行 加来
Hiroshi Ishizaka
浩 石坂
Naruhito Takamoto
成仁 高本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP5191015A priority Critical patent/JPH0739719A/en
Publication of JPH0739719A publication Critical patent/JPH0739719A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To omit a thickener, to decrease load of a dehydrator and to achieve more higher desulfurization properties. CONSTITUTION:A separation apparatus 16 for removing needle-like particles in solid particles included in an absorbing soln. from a circulation system (a circulation pump 5 and a drawing pipe 10) of a desulfurization tower main body 1 is provided. In an absorbing soln. with a solid concn., viscosity of an absorbing soln. contg. more needle-like solid particles is higher than that of a absorbing soln. contg. more nearly spherical solid particles and decrease in desulfurization properties caused by absorption of SO2 is large. Then, as viscosity of the absorbing soln. becomes lower than that of the absorbing soln. contg. needle-like solid particles at the same solid concn. by removing the needle-like solid particles from the absorbing soln. by means of a separation apparatus 16, circulation inside a liq. drop becomes easier and absorption properties of SO2 are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、湿式排煙脱硫方法と装
置に係わり、特に吸収液中に含まれる針状の固体粒子を
除去することにより高い脱硫性能を維持したまま、シッ
クナーを省略できる湿式排煙脱硫方法と装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet flue gas desulfurization method and apparatus, and in particular, by removing needle-like solid particles contained in an absorbent, a thickener can be omitted while maintaining high desulfurization performance. The present invention relates to a wet flue gas desulfurization method and apparatus.

【0002】[0002]

【従来の技術】火力発電所などにおいて、化石燃料の燃
焼に伴って発生する排煙中の硫黄酸化物、中でも特に二
酸化硫黄(SO2)は、大気汚染、酸性雨などの地球的
環境問題の主原因の一つである。このため、排煙中から
SO2を除去する排煙脱硫法の研究および排煙脱硫装置
の開発は極めて重要な課題となっている。上記排煙脱硫
法としては、さまざまなプロセスが提案されているが、
湿式法が主流を占めている。この湿式法には、吸収剤に
ソーダ化合物を用いるソーダ法、カルシウム化合物を用
いるカルシウム法およびマグネシウム化合物を用いるマ
グネシウム法などがある。このうち、ソーダ法は吸収剤
とSO2との反応性に優れている反面、使用するソーダ
類が非常に高価である。このため、発電用の大型ボイラ
などの排煙脱硫装置には、比較的安価な炭酸カルシウム
などのカルシウム化合物を用いる方法が最も多く採用さ
れている。
2. Description of the Related Art Sulfur oxides, especially sulfur dioxide (SO 2 ), in flue gas generated by burning fossil fuels in thermal power plants and the like is a cause of global environmental problems such as air pollution and acid rain. It is one of the main causes. Therefore, research on a flue gas desulfurization method for removing SO 2 from flue gas and development of a flue gas desulfurization apparatus have become extremely important subjects. Although various processes have been proposed as the flue gas desulfurization method,
The wet method is the mainstream. This wet method includes a soda method using a soda compound as an absorbent, a calcium method using a calcium compound, and a magnesium method using a magnesium compound. Among these, the soda method is excellent in reactivity between the absorbent and SO 2 , but the soda used is very expensive. For this reason, a method using a relatively inexpensive calcium compound such as calcium carbonate is most often used for a flue gas desulfurization apparatus such as a large-scale boiler for power generation.

【0003】このカルシウム化合物を吸収液として用い
る排煙脱硫システムは、気液接触方法の違いによりスプ
レー方式、濡れ壁方式およびバブリング方式の3種類に
大別される。各方式ともそれぞれ特徴を有しているが、
実績が多く信頼性の高いスプレー方式が世界的にも多く
採用されている。このスプレー方式の排煙脱硫システム
としては、従来から排ガスの冷却・除塵を行う冷却塔、
吸収液を噴霧して排ガス中のSO2と反応させる吸収
塔、吸収塔で生成した亜硫酸カルシウムを酸化する酸化
塔の3塔で構成されていた。しかし、近年になって吸収
塔に冷却・酸化の機能を持たせた一塔型脱硫塔(タンク
内酸化法)の開発が進み、最近では一塔型排煙脱硫シス
テムがスプレー方式の主流になりつつある。
Flue gas desulfurization systems using this calcium compound as an absorbing liquid are roughly classified into three types, a spray type, a wet wall type and a bubbling type, depending on the difference in the gas-liquid contacting method. Each method has its own characteristics,
The spray method, which has a proven track record and is highly reliable, is widely used worldwide. This spray-type flue gas desulfurization system has traditionally been a cooling tower that cools and removes exhaust gas,
It consisted of three towers: an absorption tower that sprays the absorbing liquid and reacts with SO 2 in the exhaust gas, and an oxidation tower that oxidizes the calcium sulfite produced in the absorption tower. However, in recent years, the development of a single tower desulfurization tower (in-tank oxidation method) in which the absorption tower has functions of cooling and oxidation has progressed, and recently, the single tower flue gas desulfurization system has become the mainstream of the spray method. It's starting.

【0004】図10に従来技術のスプレー方式による一
塔型排煙脱硫装置の一例を示す。一塔型の脱硫塔は、主
に塔本体1、入口ダクト2、出口ダクト3、スプレーノ
ズル4、吸収液ポンプ5、酸化タンク6、撹拌機7、空
気吹込み装置8、ミストエリミネータ9、吸収液抜出し
管10、石膏抜出し管11、石灰石供給管12、シック
ナー13、脱水機14などから構成される。スプレーノ
ズル4は水平方向に複数個、さらに高さ方向に複数段設
置されている。また、撹拌機7および空気吹込み装置8
は脱硫塔下部の吸収液が滞留する酸化タンク6に設置さ
れ、ミストエリミネータ9は吸収塔内最上部あるいは出
口ダクト3内に設置される。
FIG. 10 shows an example of a conventional one-column type flue gas desulfurization system by a spray method. The single tower type desulfurization tower mainly includes a tower body 1, an inlet duct 2, an outlet duct 3, a spray nozzle 4, an absorbing liquid pump 5, an oxidizing tank 6, an agitator 7, an air blowing device 8, a mist eliminator 9, and an absorbing member. It is composed of a liquid extraction pipe 10, a gypsum extraction pipe 11, a limestone supply pipe 12, a thickener 13, a dehydrator 14, and the like. A plurality of spray nozzles 4 are installed in the horizontal direction, and a plurality of spray nozzles 4 are installed in the height direction. Also, the agitator 7 and the air blowing device 8
Is installed in the oxidation tank 6 in the lower part of the desulfurization tower where the absorbing liquid remains, and the mist eliminator 9 is installed in the uppermost part of the absorption tower or in the outlet duct 3.

【0005】ボイラから排出される排ガスは、入口ダク
ト2より脱硫塔本体1に導入され、出口ダクト3より排
出される。この間、脱硫塔には吸収液抜出し管10を通
じてポンプ5から送られる吸収液が複数のスプレーノズ
ル4から噴霧され、吸収液と排ガスの気液接触が行われ
る。このとき吸収液は排ガス中のSO2を選択的に吸収
し、亜硫酸カルシウムを生成する。亜硫酸カルシウムを
生成した吸収液は酸化タンク6に溜まり、撹拌機7によ
って撹拌されながら、空気吹込み装置8から供給される
空気により吸収液中の亜硫酸カルシウムが酸化され、石
膏を生成する。石灰石などの脱硫剤は石灰石供給管12
より酸化タンク6内の吸収液に添加される。炭酸カルシ
ウムおよび石膏が共存する酸化タンク6内の吸収液の一
部は、吸収液ポンプ5によって吸収液抜出し管10から
再びスプレーノズル4に送られ、一部は石膏抜出し管1
1よりシックナー13を経て脱水機14に送られ、脱水
された水の一部は管路(図示せず)より脱硫塔へ戻され
る。また、スプレーノズル4から噴霧された微粒化され
た吸収液の内、液滴径の小さいものは排ガスに同伴され
るが、脱硫塔上部に設けられたミストエリミネータ9に
よって回収される。
Exhaust gas discharged from the boiler is introduced into the desulfurization tower main body 1 through the inlet duct 2 and discharged through the outlet duct 3. During this time, the desulfurization tower is sprayed with the absorption liquid sent from the pump 5 through the absorption liquid extraction pipe 10 from the plurality of spray nozzles 4, and the absorption liquid and the exhaust gas are brought into gas-liquid contact. At this time, the absorbing liquid selectively absorbs SO 2 in the exhaust gas and forms calcium sulfite. The absorption liquid that has generated calcium sulfite is accumulated in the oxidation tank 6, and while being stirred by the stirrer 7, the calcium sulfite in the absorption liquid is oxidized by the air supplied from the air blowing device 8 to generate gypsum. Desulfurizing agents such as limestone are used for limestone supply pipe 12
More is added to the absorbing liquid in the oxidation tank 6. A part of the absorption liquid in the oxidation tank 6 in which calcium carbonate and gypsum coexist is sent to the spray nozzle 4 again from the absorption liquid extraction pipe 10 by the absorption liquid pump 5, and a part of the absorption liquid 1
Part 1 is sent to the dehydrator 14 via the thickener 13, and a part of the water dehydrated is returned to the desulfurization tower through a pipe line (not shown). Further, among the atomized absorption liquid sprayed from the spray nozzle 4, those having a small droplet diameter are entrained in the exhaust gas, but are recovered by the mist eliminator 9 provided at the upper part of the desulfurization tower.

【0006】SO2の吸収率は吸収液中のアルカリ(例
えば石灰石)濃度に影響され、当然のことながら吸収液
中の石灰石濃度が高いほどSO2の吸収率(脱硫率)も
高くなる。しかし、抜き出された吸収液の一部は脱水さ
れた後、石膏として利用されるため、石膏の品質低下を
防ぐ目的で抜き出された吸収液中の石膏に対する石灰石
の割合はあまり上げることはできない(抜き出し後、硫
酸などで余剰の石灰石を石膏にすることは可能である
が、経済的ではない。)。そこで、吸収液中の石膏の濃
度も高くする(吸収液中の固形分はほとんど石膏なので
固体濃度を高くすることになる)ことにより、抜き出さ
れる石膏の品質を低下させることなく石灰石濃度も高く
し、脱硫性能を向上させる方法が考えられる。さらに、
このような吸収液の固体濃度を高くすることは、シック
ナー13を省略し、吸収液を脱水する際に用いる脱水機
の負荷を低減する点からも有効な方法である。しかし、
本発明者らが検討した結果、吸収液の固体濃度および石
灰石濃度を高くしても必ずしも脱硫性能は高くならない
ことが判明した。
The absorption rate of SO 2 is influenced by the concentration of alkali (for example, limestone) in the absorption liquid, and naturally, the higher the concentration of limestone in the absorption liquid, the higher the absorption rate of SO 2 (desulfurization rate). However, a part of the absorbed liquid extracted is dehydrated and then used as gypsum, so it is not possible to raise the ratio of limestone to gypsum in the extracted liquid in order to prevent deterioration of the quality of gypsum. Not possible (after extraction, it is possible to turn excess limestone into gypsum with sulfuric acid, etc., but this is not economical). Therefore, by increasing the concentration of gypsum in the absorption liquid (the solid content in the absorption liquid is mostly gypsum, the solid concentration will be increased), so that the limestone concentration will be high without degrading the quality of the extracted gypsum. However, a method of improving the desulfurization performance can be considered. further,
Increasing the solid concentration of such an absorbing solution is an effective method from the viewpoint of omitting the thickener 13 and reducing the load on the dehydrator used for dehydrating the absorbing solution. But,
As a result of examination by the present inventors, it was found that even if the solid concentration and limestone concentration of the absorbing solution were increased, the desulfurization performance was not necessarily improved.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術は、脱硫
塔内での石灰石スラリによる脱硫反応に及ぼす吸収液中
の固体粒子の形状の影響について配慮されておらず、高
い脱硫性能が得られないという問題があった。本発明の
目的は、シックナーを省略し、脱水機の負荷を少なく
し、かつより高い脱硫性能を達成することにある。
The above prior art does not consider the influence of the shape of the solid particles in the absorbing liquid on the desulfurization reaction by the limestone slurry in the desulfurization tower, and cannot obtain high desulfurization performance. There was a problem. An object of the present invention is to eliminate the thickener, reduce the load on the dehydrator, and achieve higher desulfurization performance.

【0008】[0008]

【課題を解決するための手段】本発明の上記目的は、次
の構成によって達成される。すなわち、ボイラなどの燃
焼装置から排出される排ガスと循環供給される吸収液を
接触させることにより排ガス中の硫黄酸化物を処理する
湿式排煙脱硫方法において、吸収液中に含まれる固体粒
子の中の針状の粒子を吸収液の前記循環供給系外に選択
的に除去する湿式排煙脱硫方法である。前記循環供給系
外に除去する針状の粒子の形状係数が3以上であること
が望ましい。また、針状の粒子を除去した吸収液を吸収
液の循環供給系に戻して再使用することができる。
The above object of the present invention can be achieved by the following constitutions. That is, in a wet flue gas desulfurization method of treating sulfur oxides in exhaust gas by contacting the exhaust gas discharged from a combustion device such as a boiler with the absorption liquid circulated and supplied, among solid particles contained in the absorption liquid. Is a wet flue gas desulfurization method for selectively removing the acicular particles outside the circulation supply system of the absorbing liquid. It is desirable that the shape factor of the acicular particles removed to the outside of the circulation supply system is 3 or more. Further, the absorption liquid from which the needle-shaped particles are removed can be returned to the absorption liquid circulation supply system and reused.

【0009】本発明の上記目的は、次の構成によって達
成される。すなわち、ボイラなどの燃焼装置から排出さ
れる排ガスと循環供給される吸収液を脱硫塔で接触さ
せ、排ガス中の硫黄酸化物を吸収液中に吸収させて吸収
液タンクに回収し、該吸収液タンク内の吸収液の一部を
吸収塔に循環供給し、他の一部を脱硫塔循環供給系から
除去する湿式排煙脱硫装置において、吸収液中に含まれ
る固体粒子の中の針状の粒子を前記脱硫塔循環供給系か
ら除去する分離装置を設けた湿式排煙脱硫装置である。
The above object of the present invention can be achieved by the following constitutions. That is, the exhaust gas discharged from a combustion device such as a boiler is contacted with an absorbent that is circulated and supplied in a desulfurization tower, and the sulfur oxides in the exhaust gas are absorbed in the absorbent to be recovered in an absorbent tank. In a wet flue gas desulfurization device that circulates and supplies a part of the absorption liquid in the tank to the absorption tower and removes the other part from the desulfurization tower circulation supply system, needle-shaped particles in the solid particles contained in the absorption liquid. It is a wet flue gas desulfurization apparatus provided with a separator for removing particles from the desulfurization tower circulation supply system.

【0010】[0010]

【作用】石灰石スラリなどのアルカリ性のスラリがSO
2を吸収すると、液滴の表面のpHが低くなってSO2
吸収性能がある程度低下する。しかし、液滴中には石灰
石などのアルカリが存在し、かつ液滴内部には排ガスと
の相対速度の違いによる循環が生じるため一度低下した
pHが回復し、SO2の吸収性能も再び高くなる。とこ
ろが、吸収液中の石膏などの固体粒子の濃度が高くなる
と吸収液の粘度が高くなり、排ガスとの相対速度の違い
による液滴内部の循環が生じにくくなるため一度低下し
たpHが回復せず、SO2の吸収性能も高くならない。
特に、針状の固体粒子を多く含む場合は粘度が高くなる
ため、液滴内部の循環が生じにくくなり脱硫性能の低下
も大きい。これは吸収液中では針状の粒子はその最大径
を直径とする球と同じ体積を占めるためと考えられる。
このため、同じ固体濃度の吸収液でも針状の固体粒子を
多く含む吸収液の粘度は球に近い形状の固体粒子を多く
含む吸収液に比較して高くなり、また、SO2吸収によ
る脱硫性能の低下が大きい。本発明においては針状の固
体粒子を吸収液から除去するため、同じ固体濃度でも針
状の固体粒子を含む吸収液に比べ、吸収液の粘度が低く
なるため液滴内部の循環が生じやすくなりSO2の吸収
性能も高くなる。
[Function] Alkaline slurry such as limestone slurry is SO
When 2 is absorbed, the pH of the surface of the droplet is lowered and the SO 2 absorption performance is lowered to some extent. However, since alkali such as limestone exists in the droplets and circulation occurs due to the difference in relative velocity with the exhaust gas inside the droplets, the once lowered pH is recovered and the SO 2 absorption performance is also increased again. . However, when the concentration of solid particles such as gypsum in the absorption liquid becomes high, the viscosity of the absorption liquid becomes high, and it becomes difficult for the liquid droplets to circulate due to the difference in the relative velocity with the exhaust gas, so the pH once lowered cannot be recovered. , SO 2 absorption performance is not improved.
In particular, when many needle-shaped solid particles are contained, the viscosity becomes high, so that circulation inside the liquid droplets is less likely to occur, and the desulfurization performance is greatly reduced. It is considered that this is because the acicular particles occupy the same volume as the sphere having the maximum diameter as the diameter in the absorbing liquid.
For this reason, the viscosity of the absorbing liquid containing many needle-shaped solid particles even with the same solid concentration is higher than that of the absorbing liquid containing many solid particles having a shape close to a sphere, and the desulfurization performance by SO 2 absorption is high. The decrease is large. In the present invention, since the needle-shaped solid particles are removed from the absorption liquid, the viscosity of the absorption liquid becomes lower than that of the absorption liquid containing the needle-shaped solid particles even at the same solid concentration, so that the circulation inside the droplet is likely to occur. The SO 2 absorption performance is also improved.

【0011】[0011]

【実施例】本発明は、下記の実施例によって、さらに詳
細に説明されるが、下記の例で制限されるものではな
い。 実施例1 本発明による実施例を図1に示す。図10に示した従来
技術の脱硫塔と同様に本実施例の排煙脱硫装置の脱硫塔
は塔本体1、入口ダクト2、出口ダクト3、スプレーノ
ズル4、吸収液ポンプ5、酸化タンク6、撹拌機7、空
気吹込み装置8、ミストエリミネータ9などから構成さ
れる。しかし、本発明による実施例では、図10の脱硫
塔と異なり、炭酸カルシウムおよび石膏が共存する酸化
タンク6内の吸収液の一部は、石膏抜出し管11より分
離装置16に送られる。ここで針状の石膏粒子を多く含
むスラリは吸収液から分離されて脱水機14に送られ、
それ以外の吸収液は酸化タンク6に戻される。ボイラか
ら排出される排ガスは、入口ダクト2より脱硫塔本体1
に導入され、出口ダクト3より排出される。この間、脱
硫塔にはポンプ5から送られる吸収液が複数のスプレー
ノズル4から噴霧され、吸収液と排ガスの気液接触が行
われる。このとき吸収液は排ガス中のSO2を選択的に
吸収し、亜硫酸カルシウムを生成する。亜硫酸カルシウ
ムを生成した吸収液は酸化タンク6に溜まり、撹拌機7
によって撹拌されながら、空気吹込み装置8から供給さ
れる空気により吸収液中の亜硫酸カルシウムが酸化され
石膏を生成する。石灰石および石膏が共存するタンク6
内の吸収液の一部は、吸収液ポンプ5によって吸収液抜
出し管10から再びスプレーノズル4に送られ、一部は
石膏抜出し管11より分離装置16に送られる。
The present invention will be explained in more detail by the following examples, but it should not be construed as being limited thereto. Example 1 An example according to the present invention is shown in FIG. Similar to the conventional desulfurization tower shown in FIG. 10, the desulfurization tower of the flue gas desulfurization apparatus of the present embodiment has a tower body 1, an inlet duct 2, an outlet duct 3, a spray nozzle 4, an absorbent pump 5, an oxidation tank 6, It is composed of a stirrer 7, an air blowing device 8, a mist eliminator 9, and the like. However, in the embodiment according to the present invention, unlike the desulfurization tower of FIG. 10, a part of the absorbing liquid in the oxidation tank 6 in which calcium carbonate and gypsum coexist is sent to the separating device 16 from the gypsum withdrawing pipe 11. Here, the slurry containing many needle-shaped gypsum particles is separated from the absorbing liquid and sent to the dehydrator 14,
The other absorption liquid is returned to the oxidation tank 6. The exhaust gas discharged from the boiler is discharged from the inlet duct 2 into the desulfurization tower body 1
And is discharged from the outlet duct 3. During this time, the desulfurization tower is sprayed with the absorbing liquid sent from the pump 5 from the plurality of spray nozzles 4, and the absorbing liquid and the exhaust gas are brought into gas-liquid contact. At this time, the absorbing liquid selectively absorbs SO 2 in the exhaust gas and forms calcium sulfite. The absorbing liquid that produced calcium sulfite is stored in the oxidation tank 6 and is stirred by the agitator 7.
While being stirred by, the calcium sulfite in the absorbing liquid is oxidized by the air supplied from the air blowing device 8 to produce gypsum. Tank 6 in which limestone and gypsum coexist
A part of the absorbing liquid therein is sent again to the spray nozzle 4 from the absorbing liquid extracting pipe 10 by the absorbing liquid pump 5, and a part of the absorbing liquid is sent to the separating device 16 from the gypsum extracting pipe 11.

【0012】本実施例に用いた分離装置16のフローの
一例を図2に示す。ライン18から石膏粒子を含むスラ
リが沈降槽(水ふるい)19に供給され、粒径の大きな
粒子や針状の粒子は沈降しやすく、微粒子は沈降しにく
いので分離できる。粒径の大きな粒子と針状の粒子は湿
式サイクロン20に送られ、針状の粒子は垂直管21か
ら、球に近い形状の粒子は下部の排出管22からそれぞ
れ排出される。このようにして針状の粒子を分離でき
る。また、必要に応じて沈降槽19から排出された微粒
子も湿式サイクロン20で粒子形状によって分離するこ
とも可能である。石膏(二水塩)の純粋の結晶は単斜晶
系に属するが、実際の排煙脱硫装置の中ではポンプや噴
霧ノズルでの摩砕のため角が丸くなったものも多い。し
かし、ここでは石膏粒子の形状を図3に示すように近似
し、その最大径と最小径の比率を形状係数と定義する。
図3に示す例では、形状係数は最大径(=高さ(b))
/最小径(=奥行き(c))である。
An example of the flow of the separating device 16 used in this embodiment is shown in FIG. A slurry containing gypsum particles is supplied from a line 18 to a settling tank (water sieving) 19, large particles or needle-shaped particles are easily settled, and fine particles are difficult to settle, so that they can be separated. The large-sized particles and the needle-shaped particles are sent to the wet cyclone 20, the needle-shaped particles are discharged from the vertical pipe 21, and the particles having a shape close to a sphere are discharged from the lower discharge pipe 22. In this way, needle-shaped particles can be separated. Further, if necessary, the fine particles discharged from the settling tank 19 can also be separated by the wet cyclone 20 according to the particle shape. Pure crystals of gypsum (dihydrate) belong to the monoclinic system, but in actual flue gas desulfurization equipment, many of them have rounded corners due to grinding with a pump or a spray nozzle. However, here, the shape of the gypsum particles is approximated as shown in FIG. 3, and the ratio of the maximum diameter to the minimum diameter is defined as the shape factor.
In the example shown in FIG. 3, the shape factor is the maximum diameter (= height (b)).
/ Minimum diameter (= depth (c)).

【0013】本実施例に基づく装置を用いて脱硫試験を
行った。ただし、脱硫塔入口では排ガス中の亜硫酸ガス
は濃度1000ppmであり、石灰石供給管12から供
給される石灰石は合計で排ガス中の亜硫酸ガスの等量の
約0.97倍であるが、厳密には吸収液中の石灰石と石
膏の比率(以下、石灰石過剰率と呼ぶ)をモル比で1%
に維持するように石灰石供給量を調整した。また、石膏
抜出し管11より抜き出す吸収液量および石灰石供給管
12より供給する石灰石スラリ中の水分量を調整するこ
とにより酸化タンク6内部の吸収液の固体濃度(吸収液
スラリ単位重量当りの石膏、石灰石および亜硫酸カルシ
ウムなどの固体粒子の占める割合、以下同様)を10〜
30重量%の範囲で変化させ、分離装置16の運転条件
を調整することにより酸化タンク6中の固体粒子の平均
形状係数を変化させた。
A desulfurization test was conducted using the apparatus according to this example. However, the concentration of sulfurous acid gas in the exhaust gas at the inlet of the desulfurization tower is 1000 ppm, and the total amount of limestone supplied from the limestone supply pipe 12 is about 0.97 times the equivalent amount of sulfurous acid gas in the exhaust gas, but strictly speaking, The ratio of limestone and gypsum in the absorption liquid (hereinafter referred to as limestone excess ratio) is 1% in molar ratio
The limestone supply was adjusted to maintain Further, by adjusting the amount of the absorbing liquid extracted from the gypsum withdrawing pipe 11 and the amount of water in the limestone slurry supplied from the limestone supplying pipe 12, the solid concentration of the absorbing liquid inside the oxidation tank 6 (the gypsum per unit weight of the absorbing liquid slurry, The ratio of solid particles such as limestone and calcium sulfite, the same shall apply hereinafter)
The average shape factor of the solid particles in the oxidation tank 6 was changed by adjusting the operating conditions of the separator 16 while changing the range of 30% by weight.

【0014】図4に、固体濃度30%での粒子の平均形
状係数と脱硫率の関係を示す。この図から形状係数が3
以上になると脱硫率の低下が大きくなることが分かる。
図5に吸収液中の固体濃度を10〜30重量%に変化さ
せた時の形状係数3以上の粒子の割合と脱硫率の関係を
示す。ただし、縦軸は形状係数3以上の粒子を10重量
%含む時の脱硫率を1とした時の相対値で表している。
図5に示すように形状係数3以上の粒子の割合が少ない
ほど脱硫率は高くなる。また、固体濃度が高いほど脱硫
性能に及ぼす粒子の形状係数の影響が大きくなることが
分かった。一方、脱水機14に送られる石膏粒子中の形
状係数3以上の粒子の割合と脱水機14の処理容量の関
係を図6に示す。ただし、縦軸は形状係数3以上の粒子
を10重量%含む時の処理量を1とした時の相対値で表
している。形状係数3以上の粒子の割合が多いほど脱水
機14の処理容量も増加している。このように、本実施
例によれば、脱水機14に送られる石膏粒子の平均形状
係数が大きくなるため、脱硫性能だけでなく脱水機の処
理量も増加できることが分かる。
FIG. 4 shows the relationship between the average shape factor of particles and the desulfurization rate at a solid concentration of 30%. From this figure, the shape factor is 3
It can be seen that the desulfurization rate decreases significantly when the above is exceeded.
FIG. 5 shows the relationship between the desulfurization rate and the ratio of particles having a shape factor of 3 or more when the solid concentration in the absorbing liquid is changed to 10 to 30% by weight. However, the vertical axis represents a relative value when the desulfurization rate is 1 when particles having a shape factor of 3 or more are contained in an amount of 10% by weight.
As shown in FIG. 5, the desulfurization rate increases as the proportion of particles having a shape factor of 3 or more decreases. It was also found that the higher the solid concentration, the greater the effect of the particle shape factor on the desulfurization performance. On the other hand, FIG. 6 shows the relationship between the proportion of particles having a shape factor of 3 or more in the gypsum particles sent to the dehydrator 14 and the processing capacity of the dehydrator 14. However, the vertical axis represents a relative value when the treatment amount when particles containing a shape factor of 3 or more is 10% by weight is set to 1. As the proportion of particles having a shape factor of 3 or more increases, the processing capacity of the dehydrator 14 also increases. As described above, according to this example, since the average shape factor of the gypsum particles sent to the dehydrator 14 becomes large, not only the desulfurization performance but also the throughput of the dehydrator can be increased.

【0015】実施例2 実施例1と同じ排煙脱硫装置を用いて、実施例1と同様
の脱硫試験を行った。ただし、脱硫塔の入口ダクト2で
の排ガス中の亜硫酸ガス濃度は3000ppmであっ
た。図7に吸収液中の固体濃度を10〜30重量%に変
化させた時の形状係数3以上の粒子の割合と脱硫率の関
係を示す。実施例1と同様、形状係数3以上の粒子の割
合が少ないほど脱硫率は高くなる。また、固体濃度が高
いほど脱硫性能に及ぼす粒子の形状係数の影響が大きく
なることが観測された。さらに、脱硫塔の入口ダクト2
での排ガス中の亜硫酸ガス濃度を100〜5000pp
mまで変化させたが、同様の結果が得られた。
Example 2 Using the same flue gas desulfurization apparatus as in Example 1, the same desulfurization test as in Example 1 was conducted. However, the sulfur dioxide gas concentration in the exhaust gas in the inlet duct 2 of the desulfurization tower was 3000 ppm. FIG. 7 shows the relationship between the desulfurization rate and the ratio of particles having a shape factor of 3 or more when the solid concentration in the absorbing liquid is changed to 10 to 30% by weight. Similar to Example 1, the smaller the proportion of particles having a shape factor of 3 or more, the higher the desulfurization rate. It was also observed that the higher the solid concentration, the greater the effect of the particle shape factor on the desulfurization performance. Furthermore, the inlet duct 2 of the desulfurization tower
Concentration of sulfur dioxide in exhaust gas at 100-5000pp
The same result was obtained although the value was changed to m.

【0016】実施例3 実施例1では排ガス中の亜硫酸ガスと接触する吸収液中
に含まれる固体粒子の粒径を調整する方法として、酸化
タンク6内から抜出すスラリを分離し、形状係数の小さ
な粒子のみ酸化タンク6に戻した。これと同じ効果は、
図8に示すフローでも得られる。図8において、図1と
同一の番号の装置は同一機能をもつ装置であり、その説
明は省略する。図8に示すフローでは、循環ライン17
の途中に分離機16を設置し、形状係数の小さな粒子を
含む吸収液をスプレーノズル4から噴霧する。分離機1
6で分離された形状係数の大きな(針状の)固体粒子は
シックナー13または脱水機14に送られる。本実施例
のフローを用いて、排ガス中の亜硫酸ガス濃度および吸
収液中の固体濃度を変化させた場合の脱硫性能、脱水機
処理容量の関係は実施例1または実施例2の場合と同様
の結果が得られた。
Example 3 In Example 1, as a method for adjusting the particle size of the solid particles contained in the absorbing liquid which comes into contact with the sulfurous acid gas in the exhaust gas, the slurry extracted from the oxidation tank 6 is separated and the shape factor Only small particles were returned to the oxidation tank 6. The same effect as this
It can also be obtained by the flow shown in FIG. In FIG. 8, the devices having the same numbers as those in FIG. 1 have the same functions, and the description thereof will be omitted. In the flow shown in FIG. 8, the circulation line 17
A separator 16 is installed in the middle of, and an absorbing liquid containing particles having a small shape factor is sprayed from the spray nozzle 4. Separator 1
The solid particles having a large shape factor (acicular shape) separated in 6 are sent to the thickener 13 or the dehydrator 14. Using the flow of this example, the relationship between the desulfurization performance and the dehydrator treatment capacity when the sulfur dioxide gas concentration in the exhaust gas and the solid concentration in the absorbing liquid were changed was the same as in Example 1 or Example 2. Results were obtained.

【0017】実施例4 図9には循環ライン17の途中に分離機16を設置し、
形状係数の大きな(針状の)固体粒子は酸化タンク6に
戻され、形状係数の小さな粒子を含む吸収液を噴霧する
フローを示す。図9において、図1と同一の番号の装置
は同一機能をもつ装置であり、その説明は省略する。本
実施例のフローにおいても、排ガス中の亜硫酸ガス濃度
および吸収液中の固体濃度を変化させた場合の脱硫性
能、脱水機処理容量の関係は実施例1または実施例2の
場合と同様の結果が得られた。本発明の上記実施例で
は、針状粒子の分離装置16として沈降槽と湿式サイク
ロンを組み合わせた装置を用いているが、形状の異なる
粒子を分離できるものであれば、他の方法を用いること
も可能である。また、本発明法が、スプレー方式の排煙
脱硫装置だけでなく濡れ壁方式などの他の方式の排煙脱
硫装置にも適用可能であることは言うまでもない。
Embodiment 4 In FIG. 9, a separator 16 is installed in the middle of the circulation line 17,
A flow in which solid particles having a large shape factor (acicular shape) are returned to the oxidation tank 6 and an absorbing solution containing particles having a small shape factor is sprayed is shown. In FIG. 9, the devices having the same numbers as those in FIG. 1 have the same functions, and the description thereof will be omitted. Also in the flow of this example, the relationship between the desulfurization performance and the dehydrator treatment capacity when the sulfur dioxide gas concentration in the exhaust gas and the solid concentration in the absorption liquid were changed was the same as that in the case of Example 1 or Example 2. was gotten. In the above-described embodiment of the present invention, a device combining a settling tank and a wet cyclone is used as the needle-shaped particle separating device 16, but other methods may be used as long as they can separate particles having different shapes. It is possible. Further, it goes without saying that the method of the present invention can be applied not only to the flue gas desulfurization apparatus of the spray type, but also to other flue gas desulfurization apparatuses of the wet wall type and the like.

【0018】[0018]

【発明の効果】本発明によれば、シックナーを省略し、
脱水機の処理容量や脱硫性能を高めることができる。
According to the present invention, the thickener is omitted,
The processing capacity and desulfurization performance of the dehydrator can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明による実施例1、実施例2の湿式排煙
脱硫装置のフローを示す図である。
FIG. 1 is a diagram showing a flow of a wet flue gas desulfurization apparatus of Example 1 and Example 2 according to the present invention.

【図2】 本発明法に用いる分離装置のフローを示す図
である。
FIG. 2 is a diagram showing a flow of a separation device used in the method of the present invention.

【図3】 石膏粒子の形状を模式的に示した図である。FIG. 3 is a diagram schematically showing the shape of gypsum particles.

【図4】 本発明の実施例1の脱硫性能に関する実験デ
ータを示す図である。
FIG. 4 is a diagram showing experimental data regarding desulfurization performance of Example 1 of the present invention.

【図5】 本発明の実施例1の脱硫性能に関する実験デ
ータを示す図である。
FIG. 5 is a diagram showing experimental data regarding desulfurization performance of Example 1 of the present invention.

【図6】 本発明の実施例1の脱硫性能に関する実験デ
ータを示す図である。
FIG. 6 is a diagram showing experimental data regarding desulfurization performance of Example 1 of the present invention.

【図7】 本発明の実施例2の脱硫性能に関する実験デ
ータを示す図である。
FIG. 7 is a diagram showing experimental data on desulfurization performance of Example 2 of the present invention.

【図8】 本発明の実施例3の湿式排煙脱硫装置のフロ
ーを示す図である。
FIG. 8 is a diagram showing a flow of a wet flue gas desulfurization apparatus according to a third embodiment of the present invention.

【図9】 本発明の実施例4の湿式排煙脱硫装置のフロ
ーを示す図である。
FIG. 9 is a diagram showing a flow of a wet flue gas desulfurization apparatus according to a fourth embodiment of the present invention.

【図10】 従来の技術による湿式排煙脱硫装置のフロ
ーを示す図である。
FIG. 10 is a diagram showing a flow of a conventional wet flue gas desulfurization apparatus.

【符号の説明】 1…塔本体、2…入口ダクト、3…出口ダクト、4…ス
プレーノズル、5…吸収液ポンプ、6…酸化タンク、7
…撹拌機、8…空気吹込み装置、9…ミストエリミネー
タ、10…吸収液抜出し管、11…石膏抜出し管、12
…石灰石供給管、13…シックナー、14…脱水機、1
6…分離装置、17…循環ライン、18…ライン、19
…沈降槽、20…湿式サイクロン、21…垂直管、22
…排出管
[Explanation of reference numerals] 1 ... Tower body, 2 ... Inlet duct, 3 ... Exit duct, 4 ... Spray nozzle, 5 ... Absorbing liquid pump, 6 ... Oxidation tank, 7
... Stirrer, 8 ... Air blowing device, 9 ... Mist eliminator, 10 ... Absorbing liquid withdrawing pipe, 11 ... Gypsum withdrawing pipe, 12
… Limestone supply pipe, 13… Thickener, 14… Dehydrator, 1
6 ... Separator, 17 ... Circulation line, 18 ... Line, 19
... Settling tank, 20 ... Wet cyclone, 21 ... Vertical tube, 22
... Discharge pipe

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/34 125 Q (72)発明者 高本 成仁 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内Continuation of front page (51) Int.Cl. 6 Identification number Reference number in the agency FI Technical indication location B01D 53/34 125 Q (72) Inventor Narihito Takamoto 3 36 Takaracho, Kure-shi, Hiroshima Babcock-Hitachi Kure Co., Ltd. In the laboratory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ボイラなどの燃焼装置から排出される排
ガスと循環供給される吸収液を接触させることにより排
ガス中の硫黄酸化物を処理する湿式排煙脱硫方法におい
て、吸収液中に含まれる固体粒子の中の針状の粒子を吸
収液の前記循環供給系外に選択的に除去することを特徴
とする湿式排煙脱硫方法。
1. In a wet flue gas desulfurization method for treating sulfur oxides in exhaust gas by bringing exhaust gas discharged from a combustion device such as a boiler into contact with absorption liquid circulatingly supplied, solids contained in the absorption liquid. A wet flue gas desulfurization method, characterized in that needle-like particles in the particles are selectively removed to the outside of the circulation system of the absorbing liquid.
【請求項2】 循環供給系外に除去する針状の粒子の形
状係数が3以上であることを特徴とする請求項1記載の
湿式排煙脱硫方法。
2. The wet flue gas desulfurization method according to claim 1, wherein the shape factor of the needle-shaped particles to be removed to the outside of the circulation supply system is 3 or more.
【請求項3】 針状の粒子を除去した吸収液を循環供給
系に使用することを特徴とする請求項1または2記載の
湿式排煙脱硫方法。
3. The wet flue gas desulfurization method according to claim 1, wherein the absorbing liquid from which the acicular particles have been removed is used in a circulation supply system.
【請求項4】 ボイラなどの燃焼装置から排出される排
ガスと循環供給される吸収液を脱硫塔で接触させ、排ガ
ス中の硫黄酸化物を吸収液中に吸収させて吸収液タンク
に回収し、該吸収液タンク内の吸収液の一部を吸収塔に
循環供給し、他の一部を脱硫塔循環供給系から除去する
湿式排煙脱硫装置において、吸収液中に含まれる固体粒
子の中の針状の粒子を前記脱硫塔循環供給系から除去す
る分離装置を設けたことを特徴とする湿式排煙脱硫装
置。
4. Exhaust gas discharged from a combustion device such as a boiler is brought into contact with an absorbent that is circulated and supplied in a desulfurization tower, and sulfur oxides in the exhaust gas are absorbed in the absorbent and recovered in an absorbent tank. In a wet flue gas desulfurization device that circulates and supplies a part of the absorption liquid in the absorption liquid tank to the absorption tower and removes the other part from the desulfurization tower circulation supply system, the solid particles contained in the absorption liquid A wet flue gas desulfurization apparatus comprising a separator for removing needle-shaped particles from the desulfurization tower circulation supply system.
JP5191015A 1993-08-02 1993-08-02 Method and apparatus for wet type exhaust gas desulfurization Pending JPH0739719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5191015A JPH0739719A (en) 1993-08-02 1993-08-02 Method and apparatus for wet type exhaust gas desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5191015A JPH0739719A (en) 1993-08-02 1993-08-02 Method and apparatus for wet type exhaust gas desulfurization

Publications (1)

Publication Number Publication Date
JPH0739719A true JPH0739719A (en) 1995-02-10

Family

ID=16267466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5191015A Pending JPH0739719A (en) 1993-08-02 1993-08-02 Method and apparatus for wet type exhaust gas desulfurization

Country Status (1)

Country Link
JP (1) JPH0739719A (en)

Similar Documents

Publication Publication Date Title
JP3650836B2 (en) Wet flue gas desulfurization apparatus and method using solid desulfurization agent
JP3332678B2 (en) Wet flue gas desulfurization equipment
JPH10277361A (en) Method for treating desulfurizing/absorbing solution and treating device
JPH0780243A (en) Desulfurization method and apparatus by desulfurizing agent slurry with high concentration
JPH11290646A (en) Method and device for wet flue gas desulfurization
JPS62193630A (en) Method and equipment for wet stack-gas desulfurization
JPH0739719A (en) Method and apparatus for wet type exhaust gas desulfurization
JP3834341B2 (en) Exhaust gas treatment method
JPH09867A (en) Treatment process for exhaust gas
JPH0722675B2 (en) Wet flue gas desulfurization equipment
JPH10137539A (en) Flue gas desulfurizing method using coarse-grain solid desulfurizing agent and device therefor
JPH0810643A (en) Flue gas desulfurization method
JP3429012B2 (en) Wet flue gas desulfurization method and apparatus
JP3219493B2 (en) High-performance flue gas desulfurization method
JPH10192647A (en) Wet type flue gas desulfurization equipment
JPH06319940A (en) Method and apparatus for exhaust desulfurization in wet process
JPH11128669A (en) Wet type flue gas desulfurization method and device using the method
JPH06114233A (en) Wet stack gas desulfurizer and method thereof
JPH06343824A (en) Wet flue gas desulfurizer and its method
JPH07171337A (en) Flue gas desulfurization device
JP3396662B2 (en) Wet lime gypsum method desulfurization method and apparatus
JPH0227868Y2 (en)
JPS621440A (en) Wet waste gas desulfurization apparatus
JP3498803B2 (en) Wet flue gas desulfurization equipment
JPH09308815A (en) Wet flue gas desulfurization method