JPH0739377A - Method for producing immobilized body of physiologically active substance - Google Patents

Method for producing immobilized body of physiologically active substance

Info

Publication number
JPH0739377A
JPH0739377A JP20835593A JP20835593A JPH0739377A JP H0739377 A JPH0739377 A JP H0739377A JP 20835593 A JP20835593 A JP 20835593A JP 20835593 A JP20835593 A JP 20835593A JP H0739377 A JPH0739377 A JP H0739377A
Authority
JP
Japan
Prior art keywords
physiologically active
active substance
immobilized
acid
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20835593A
Other languages
Japanese (ja)
Other versions
JP3154205B2 (en
Inventor
Tsuruo Nakayama
鶴雄 中山
Hitoshi Wake
仁志 和気
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentel Co Ltd
Original Assignee
Pentel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentel Co Ltd filed Critical Pentel Co Ltd
Priority to JP20835593A priority Critical patent/JP3154205B2/en
Publication of JPH0739377A publication Critical patent/JPH0739377A/en
Application granted granted Critical
Publication of JP3154205B2 publication Critical patent/JP3154205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

(57)【要約】 【構成】 多孔質陽極酸化アルミニウム膜を300℃を
越える温度で加熱処理後、これを生理活性物質の固定化
担体として生理活性物質を固定する。 【効果】 生理活性物質の活性が高く、かつ、経時的な
活性低下の少ない生理活性物質の固定化体を得ることが
できる。
(57) [Summary] [Structure] The porous anodic aluminum oxide film is heat-treated at a temperature exceeding 300 ° C., and then the physiologically active substance is immobilized using this as a carrier for immobilizing the physiologically active substance. [Effect] It is possible to obtain an immobilized body of a physiologically active substance, which has a high activity of the physiologically active substance and whose activity does not decrease over time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐薬品性に優れた多孔
質陽極酸化アルミニウム膜を使用した生理活性物質固定
化体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a physiologically active substance-immobilized body using a porous anodic aluminum oxide film having excellent chemical resistance.

【0002】[0002]

【従来の技術とその課題】酵素、酵素阻害剤、抗原、抗
体、ホルモンなどの生理活性物質をイオン交換能を有す
る樹脂や、シリカ、アルミナなどの無機物に固定化した
ものがバイオリアクタ−、酵素センサ−などに応用され
ている。
2. Description of the Related Art Bioreactors and enzymes in which physiologically active substances such as enzymes, enzyme inhibitors, antigens, antibodies and hormones are immobilized on a resin having ion exchange ability or an inorganic substance such as silica or alumina It is applied to sensors.

【0003】ここで、各種材料に生理活性物質を固定化
する方法としては、(1)架橋法、(2)包括法、
(3)担体結合法などがある。しかし、架橋法や包括法
は、比較的激しい条件下で酵素を固定化するため、固定
化した生理活性物質の活性度が低下する問題がある。ま
た、担体結合法も、共有結合法、イオン結合法、物理的
吸着法に分けられ、用いる基材の特性に合わせて選択さ
れるが、特にイオン結合法と物理吸着法は、比較的温和
な条件下で生理活性物質を固定化できるので、活性の高
い固定化体が得られるものの、結合力が弱いため、経時
により生理活性物質が脱離して活性が低下する問題があ
る。
Here, as a method for immobilizing a physiologically active substance on various materials, (1) crosslinking method, (2) encapsulation method,
(3) There is a carrier binding method and the like. However, the cross-linking method and the entrapping method have a problem that the activity of the immobilized physiologically active substance is lowered because the enzyme is immobilized under relatively violent conditions. The carrier binding method is also divided into a covalent binding method, an ionic binding method, and a physical adsorption method, and is selected according to the characteristics of the base material used. In particular, the ionic binding method and the physical adsorption method are relatively mild. Since a physiologically active substance can be immobilized under the conditions, an immobilized substance with high activity can be obtained, but since the binding force is weak, there is a problem that the physiologically active substance is released over time and the activity decreases.

【0004】そこで、本発明者等は、陽極酸化アルミニ
ウム膜の吸着活性とイオン交換能の特性に着目し、多孔
質陽極酸化アルミニウム膜に生理活性物質を固定してな
る生理活性物質の固定化体について先に提案した(特公
平3−73278号など)。多孔質陽極酸化アルミニウ
ム膜は吸着活性が高く、しかも、イオン交換能を有して
いるため、生理活性物質は多孔質陽極酸化膜の孔に吸着
し、かつ、イオン結合し、それゆえ非常に安定であり、
また、固定化は温和に行えるため、活性が高く経時安定
性に優れている。
Therefore, the present inventors have focused on the characteristics of the adsorption activity and ion exchange capacity of the anodic aluminum oxide film, and have immobilized the physiologically active substance on the porous anodic aluminum oxide film. Was previously proposed (Japanese Patent Publication No. 3-73278, etc.). Since the porous anodized aluminum film has a high adsorption activity and also has an ion exchange capacity, the physiologically active substance is adsorbed to the pores of the porous anodized film and is ionically bonded, and therefore is very stable. And
Further, since the immobilization can be carried out mildly, the activity is high and the stability over time is excellent.

【0005】本発明は、これら先の提案に続くものであ
る。一般に、生理活性物質の固定化体を用いる水溶液
は、生理活性物質の安定なpH領域で用いられ、そのp
Hは4〜9程度の領域である。これらの領域で生理活性
物質を固定化した多孔質陽極酸化アルミニウム膜を用い
ると、pH緩衝剤の種類などによっては、pH4.5以
下あるいは8.5以上の場合において、経時により多孔
質陽極酸化アルミニウム膜の溶解が発生し、固定された
生理活性物質の脱離が発生し、活性の低下が発生するこ
とがある。また、pH7付近の中性溶液中で、多孔質陽
極酸化アルミニウム膜が水分を吸着し、孔を塞ぐいわゆ
る封孔現象が発生し、生理活性物質の脱離はないもの
の、反応物質との接触が低下し、反応速度を低下させる
こともある。
The present invention follows these earlier proposals. In general, an aqueous solution using an immobilized body of a physiologically active substance is used in a stable pH range of the physiologically active substance, and its p
H is an area of about 4 to 9. When a porous anodized aluminum film having a physiologically active substance immobilized in these regions is used, depending on the type of pH buffer and the like, when the pH is 4.5 or less or 8.5 or more, the porous anodized aluminum film is used with time. The dissolution of the membrane may occur, the immobilized physiologically active substance may be released, and the activity may be reduced. In a neutral solution of around pH 7, the porous anodic aluminum oxide film adsorbs water, causing a so-called sealing phenomenon that blocks the pores, and the physiologically active substance is not detached, but contact with the reaction substance is not caused. It may decrease the reaction rate.

【0006】一般に、硫酸、燐酸等の鉱酸、シュウ酸、
マロン酸、マレイン酸などの脂肪族カルボン酸、スルホ
サルチル酸、スルホフタル酸に少量の硫酸を添加した混
酸中でアルミニウム及びその合金を陽極酸化することに
より、多孔質の酸化皮膜は形成されている。これらの多
孔質酸化皮膜は非晶質であり、水分と陽極酸化に用いる
酸アニオンとを少量吸着している。この多孔質酸化皮膜
は、強酸、強アルカリ水溶液によって溶解することがあ
る。そのため、用いるpH緩衝剤との組合せ如何によっ
て、pH4.5以下あるいはpH8.5以上で、徐々に
ではあるが溶解することがある。ここで、生理活性物質
の種類によっては、これらのpH領域で安定なものもあ
る。利用価値をより高める上でも耐薬品性の向上が必要
と考えられるところである。尚、pH7付近の中性水溶
液中で、水を吸着し、この吸着水によって陽極酸化皮膜
の体積が増加し、その結果、孔の径が狭まり、反応物質
との接触性が低下し、反応速度の低下が発生する原因に
ついては、物理的に吸着しているH2Oが影響し、この
2Oにより酸アルカリを皮膜中に吸収し、多孔質陽極
酸化アルミニウム膜が溶解し、また、非晶質のため酸化
アルミニウムの結合が低く、吸着されたH2Oにより酸
化アルミニウムの結合が部分的に切れ、体積が増加する
ものと考えられる。
Generally, mineral acids such as sulfuric acid and phosphoric acid, oxalic acid,
A porous oxide film is formed by anodizing aluminum and its alloy in a mixed acid obtained by adding a small amount of sulfuric acid to an aliphatic carboxylic acid such as malonic acid and maleic acid, sulfosalicylic acid, and sulfophthalic acid. These porous oxide films are amorphous and adsorb a small amount of water and acid anions used for anodic oxidation. This porous oxide film may be dissolved by a strong acid or strong alkaline aqueous solution. Therefore, depending on the combination with the pH buffer used, it may dissolve gradually but at a pH of 4.5 or lower or a pH of 8.5 or higher. Here, some physiologically active substances are stable in these pH regions. It is considered necessary to improve chemical resistance in order to further increase the utility value. It should be noted that water is adsorbed in a neutral aqueous solution near pH 7, and the volume of the anodized film is increased by this adsorbed water, resulting in a reduction in the diameter of the pores and a decrease in the contact property with the reaction substance. the cause of decrease in occurs, H 2 O is affected that are physically adsorbed, the H 2 O by absorbing the alkali in the coating, dissolving porous anodic aluminum oxide films, also, non It is considered that the bond of aluminum oxide is low due to the crystallinity, and the bond of aluminum oxide is partially broken by the adsorbed H 2 O to increase the volume.

【0007】[0007]

【課題を解決するための手段】本発明は、多孔質陽極酸
化アルミニウム膜に含まれている水分とその皮膜の非晶
質に着目し、熱処理により、物理的に吸着しているH2
Oの除去と酸化アルミニウムの化学結合の強化をなし、
もって、耐薬品性を向上し、経時安定性に優れた生理活
性物質の固定化体の製造方法を提供するものであり、そ
の要旨は、多孔質陽極酸化アルミニウム膜を300℃を
越える温度で加熱処理後、該多孔質陽極酸化アルミニウ
ム膜に生理活性物質を固定してなることを特徴とする生
理活性物質の固定化体の製造方法である。
The present invention focuses on the moisture contained in the porous anodized aluminum film and the amorphous state of the film, and H 2 is physically adsorbed by heat treatment.
It removes O and strengthens the chemical bond of aluminum oxide,
Accordingly, the present invention provides a method for producing an immobilized body of a physiologically active substance having improved chemical resistance and excellent stability over time, the gist of which is to heat a porous anodized aluminum film at a temperature exceeding 300 ° C. A method for producing an immobilized body of a physiologically active substance, which comprises fixing a physiologically active substance on the porous anodized aluminum film after the treatment.

【0008】固定化担体として使用する多孔質陽極酸化
アルミニウム膜は、公知方法、例えば、硫酸、リン酸、
クロム酸などの鉱酸、シュウ酸、マロン酸、マレイン
酸、イタコン酸などの脂肪属カルボン酸、スルホサルチ
ル酸、スルホフタル酸、スルホマレイン酸、スルホイタ
コン酸、スルホコハク酸等のスルホン酸に少量の硫酸を
添加した混酸の電解液中においてアルミニウムまたはそ
の合金を陽極酸化するとにより形成できるが、多孔質陽
極酸化アルミニウム膜をアルミニウムまたはその合金表
面より得るためには、特公昭47−444418号公
報、特公昭47−45854号公報、特公平2−254
192号公報等に記載されているようにアルミニウム箔
を陽極酸化させることによりアルミニウム箔全てを酸化
させる方法、特公昭53−31883号公報に記載され
ているようにアルミニウムまたはその合金を陽極酸化
し、次にこの電解液中で陰極として電気分解を行い、ア
ルミニウムと酸化アルミニウムの間に水素ガスを発生さ
せ、多孔質酸化アルミニウム膜を剥離する方法、EPA
178831に記載されているようにアルミニウムまた
はその合金を陽極酸化し、その後電圧を徐々に降下さ
せ、バリヤ−層を薄くしてから、この電解液中で陰極と
して電気分解を行い、アルミニウムと酸化アルミニウム
の間に水素ガスを発生させ、多孔質酸化アルミニウム膜
を剥離する方法、アルミニウムまたはその合金を陽極酸
化後、選択的にアルミニウムまたはその合金を溶質させ
る方法がある。得られた多孔質陽極酸化アルミニウム膜
の厚さは、1〜200μm程度の厚さであればよいもの
である。また、これらの方法で得られた多孔質陽極酸化
アルミニウム膜は、片側に緻密な酸化皮膜(バリヤ−
層)が残っている場合もあり、目的に応じて、酸、アル
カリに浸漬して除去してもよい。
The porous anodic aluminum oxide film used as the immobilization carrier can be prepared by a known method, for example, sulfuric acid, phosphoric acid,
Mineral acids such as chromic acid, aliphatic carboxylic acids such as oxalic acid, malonic acid, maleic acid, and itaconic acid, sulfosalicylic acid, sulfophthalic acid, sulfomaleic acid, sulfoitaconic acid, sulfosuccinic acid, and a small amount of sulfuric acid. It can be formed by anodizing aluminum or its alloy in an electrolytic solution of an added mixed acid, but in order to obtain a porous anodized aluminum film from the surface of aluminum or its alloy, Japanese Patent Publication Nos. 47-44418 and 47-47418 are used. -45854, Japanese Patent Publication No. 2-254
A method of oxidizing all aluminum foil by anodizing the aluminum foil as described in Japanese Patent Publication No. 192, etc., anodizing aluminum or its alloy as described in Japanese Patent Publication No. 53-31883. Next, a method of electrolyzing as a cathode in this electrolytic solution to generate hydrogen gas between aluminum and aluminum oxide and peeling the porous aluminum oxide film, EPA
Aluminum or its alloys are anodized as described in 178831, after which the voltage is gradually reduced to thin the barrier layer and then electrolyzed as a cathode in this electrolyte to form aluminum and aluminum oxide. There is a method in which hydrogen gas is generated during the process to peel off the porous aluminum oxide film, and a method in which aluminum or its alloy is selectively solute after anodizing aluminum or its alloy. The thickness of the obtained porous anodized aluminum film may be about 1 to 200 μm. The porous anodized aluminum film obtained by these methods has a dense oxide film (barrier) on one side.
The layer) may remain, and it may be removed by immersing it in an acid or alkali depending on the purpose.

【0009】熱処理は300℃を越える温度で行うが、
1300℃といった高温でもよい。真空中、大気中、酸
素中、窒素やアルゴン等の不活性ガス雰囲気中で行う。
尚、熱処理によって多孔質陽極酸化アルミニウム膜が変
形することもあるので、アルミナ、ジルコニア等のセラ
ミクス板でサンドイッチして処理を行ってもよい。
The heat treatment is performed at a temperature exceeding 300 ° C.
A high temperature such as 1300 ° C may be used. It is performed in vacuum, in the air, in oxygen, or in an atmosphere of an inert gas such as nitrogen or argon.
Since the porous anodized aluminum oxide film may be deformed by the heat treatment, the treatment may be carried out by sandwiching it with a ceramic plate of alumina, zirconia or the like.

【0010】こうして得た多孔質陽極酸化アルミニウム
膜は、物理的強度が高く、また、耐酸、耐アルカリ性も
向上し、経時的な水和化による膜の体積増加に基づく孔
の狭まりもないことから、経時安定性が高く、広範囲の
条件下で使用できる。
The porous anodized aluminum film thus obtained has a high physical strength, has improved acid resistance and alkali resistance, and has no pore narrowing due to the increase in the volume of the film due to hydration over time. It has high stability over time and can be used under a wide range of conditions.

【0011】また、生理活性物質を固定化担体である多
孔質陽極酸化アルミニウム膜に物理的に吸着、固定化さ
せるには、固定化させる生理活性物質をその安定なpH
域にある塩水溶液や緩衝液に溶解させ、この溶液に固定
化担体を浸漬、撹拌させればよい。吸着させる際の温度
は、生理活性物質の安定温度域であればよく、また、撹
拌時間は、生理活性物質の陽極酸化皮膜への吸着状態を
溶液中の活性量や蛋白量を測定しながら調節すればよ
い。通常は、温度5℃〜30℃、2〜24時間の撹拌で
固定化は完了する。
In order to physically adsorb and immobilize the physiologically active substance on the porous anodic aluminum oxide film which is the immobilization carrier, the physiologically active substance to be immobilized should have a stable pH.
It may be dissolved in an aqueous salt solution or a buffer solution in the region, and the immobilized carrier may be dipped and stirred in this solution. The temperature for adsorbing may be in the stable temperature range of the physiologically active substance, and the stirring time can be adjusted by adjusting the adsorption state of the physiologically active substance on the anodized film while measuring the active amount and protein amount in the solution. do it. Usually, the immobilization is completed by stirring at a temperature of 5 ° C to 30 ° C for 2 to 24 hours.

【0012】[0012]

【実施例】【Example】

<実施例1>20mm×20mm、厚さ0.5mmのア
ルミニウムの板(99.8%)を10%水酸化ナトリウ
ムに10秒浸漬し(50℃)、その後30%硝酸に浸漬
した(前処理)。その後1.5mol/Lの硫酸水溶液
中で、白金をカソ−ドとし、15℃、20Vの定電圧に
て1時間陽極酸化することによりアルミニウム表面に透
明な多孔質の酸化皮膜を形成し、その後電圧を2Vずつ
低下させ、バリヤ−層を薄くした。その後、カソ−ドを
酸化皮膜を形成したアルミニウム、アノ−ドを白金と
し、電気分解をすることによりアルミニウムと酸化皮膜
の間に水素を発生させ、厚さ50μmで透明な多孔質陽
極酸化アルミニウム膜を得た。
Example 1 An aluminum plate (99.8%) having a size of 20 mm × 20 mm and a thickness of 0.5 mm was dipped in 10% sodium hydroxide for 10 seconds (50 ° C.), and then dipped in 30% nitric acid (pretreatment. ). Then, in a 1.5 mol / L sulfuric acid aqueous solution, platinum was used as a cathode and anodized at a constant voltage of 20 V at 15 ° C. for 1 hour to form a transparent porous oxide film on the aluminum surface. The voltage was reduced by 2 V to thin the barrier layer. After that, the cathode is made of aluminum having an oxide film, the anode is made of platinum, and hydrogen is generated between the aluminum and the oxide film by electrolysis to give a transparent porous anodized aluminum film having a thickness of 50 μm. Got

【0013】この多孔質陽極酸化アルミニウム膜をアル
ミナ基盤にサンドイッチし、電気炉で50℃/時の速度
で昇温し、600℃で1時間熱処理を行った。得られた
ものは、pH3およびpH9の水溶液に4時間浸漬して
も重量変化はなく、耐薬品性の高いことが確認された。
This porous anodized aluminum film was sandwiched on an alumina substrate, heated in an electric furnace at a rate of 50 ° C./hour, and heat-treated at 600 ° C. for 1 hour. It was confirmed that the obtained product did not change in weight even when immersed in an aqueous solution of pH 3 and pH 9 for 4 hours, and had high chemical resistance.

【0014】これを純水にて十分水洗後、小麦カルボキ
シペプチターゼW(ぺんてる(株)製、発売元:生化学
工業(株))2mgを10mlの50mM酢酸−酢酸ナ
トリウム緩衝液(pH3.0)に溶解させた液に20℃
にて3時間浸漬撹拌し、その後、50mlの50mM酢
酸−酢酸ナトリウム緩衝液(pH3.0)で2回洗浄
し、カルボキシペプチターゼW固定化酸化アルミニウム
薄膜を得た。
After thoroughly washing this with pure water, 2 mg of wheat carboxypeptidase W (manufactured by Pentel Co., Ltd., distributor: Seikagaku Corporation) was added to 10 ml of 50 mM acetic acid-sodium acetate buffer (pH 3.0). ) In a liquid dissolved in
After 3 hours of immersion and stirring, the mixture was washed twice with 50 ml of 50 mM acetic acid-sodium acetate buffer (pH 3.0) to obtain a carboxypeptidase W-immobilized aluminum oxide thin film.

【0015】1mMになるようにベンジルオキシカルボ
ニル−グルタミル−チロシンを50mM酢酸−酢酸ナト
リウム緩衝液(pH3.0)に溶解し、この溶液10m
lにカルボキシペプチターゼW固定化酸化アルミニウム
薄膜を浸漬し、30℃で1時間反応させ、570nmの吸
光度測定にて酵素活性を求めた。1日1回5日間連続操
作して酵素活性を求め、また経時的な残存酵素活性
(%)を求めた結果を表1に示す。
Benzyloxycarbonyl-glutamyl-tyrosine was dissolved in 50 mM acetic acid-sodium acetate buffer solution (pH 3.0) so as to be 1 mM, and the solution was 10 m.
The aluminum oxide thin film on which carboxypeptidase W was immobilized was immersed in 1 and reacted at 30 ° C. for 1 hour to measure the enzyme activity by measuring the absorbance at 570 nm. Table 1 shows the results of determining the enzyme activity by continuously operating once a day for 5 days and determining the residual enzyme activity (%) over time.

【0016】[0016]

【表1】 [Table 1]

【0017】また、トリプシン(Sigma社製)1m
gを10mlのトリス(ヒドロキシアミノメタン)緩衝
液(pH9.0)に溶解させ、この溶液に上記の多孔質
酸化アルミニウム薄膜を4℃にて12時間浸漬撹拌し、
次いでこの薄膜を100mlの0.04Mトリス(ヒド
ロキシアミノメタン)緩衝液(pH9.0)で2回洗浄
し、トリプシン固定化薄膜を得た。TAME(p−トル
エンスルフォンアルギニンメチルエステル)を0.04
Mトリス(ヒドロキシアミノメタン)緩衝液(pH9.
0)に溶解し、1mMのTAME溶液(pH9.0)を
調製し、この溶液20mlにトリプシン固定化薄膜を浸
漬し、30℃で10分間反応させ、酵素活性を247n
mの吸光度の増加にて測定した。1日1回5日間連続操
作して酵素活性を求め、また経時的な残存酵素活性
(%)を求めた結果を表2に示す。
Also, trypsin (manufactured by Sigma) 1 m
g was dissolved in 10 ml of tris (hydroxyaminomethane) buffer (pH 9.0), and the above porous aluminum oxide thin film was immersed and stirred in this solution at 4 ° C. for 12 hours,
Next, this thin film was washed twice with 100 ml of 0.04 M tris (hydroxyaminomethane) buffer (pH 9.0) to obtain a trypsin-immobilized thin film. TAME (p-toluene sulfone arginine methyl ester) 0.04
M Tris (hydroxyaminomethane) buffer (pH 9.
0) to prepare a 1 mM TAME solution (pH 9.0), the trypsin-immobilized thin film is immersed in 20 ml of this solution, and the reaction is carried out at 30 ° C. for 10 minutes to obtain an enzyme activity of 247 n.
It was measured by the increase in absorbance at m. Table 2 shows the results of the enzymatic activity determined by continuous operation once a day for 5 days and the residual enzymatic activity (%) over time.

【0018】[0018]

【表2】 [Table 2]

【0019】また、リゾプスニベウス(Rhizopusniveu
s)のグルコースアミラーゼ(生化学工業(株)製)1
mgを50mM酢酸−酢酸ナトリウム緩衝液(pH4.
5)20mlに溶解させ、この溶液に上記多孔質酸化ア
ルミニウム薄膜を4℃にて4時間浸漬撹拌し、その後5
0mlの50mM酢酸−酢酸ナトリウム緩衝液(pH
4.5)で2回洗浄し、グルコースアミラーゼ固定化酸
化アルミニウム薄膜を得た。1%となるようにマルトー
ス(Grade3H:生化学工業(株)製)を50mM酢酸
−酢酸ナトリウム緩衝液(pH4.5)に溶解し、この
溶液20mlにグルコースアミラーゼ固定化酸化アルミ
ニウム薄膜を浸漬し、30℃で30分間反応させた。生
成するグルコースをグルコースオキシターゼペルオキシ
ターゼ−O−ジアニシジン法により定量することにより
酵素活性を測定した。1日1回5日間連続操作して酵素
活性を求め、また経時的な残存酵素活性(%)を求めた
結果を表3に示す。
In addition, Rhizopus niveu
s) glucose amylase (manufactured by Seikagaku Corporation) 1
mg to 50 mM acetic acid-sodium acetate buffer (pH 4.
5) Dissolve in 20 ml, dip and stir the porous aluminum oxide thin film in this solution at 4 ° C. for 4 hours, and then
0 ml of 50 mM acetic acid-sodium acetate buffer (pH
It was washed twice with 4.5) to obtain a glucose amylase-immobilized aluminum oxide thin film. Maltose (Grade 3H: manufactured by Seikagaku Corporation) was dissolved in 50 mM acetic acid-sodium acetate buffer (pH 4.5) so that the concentration became 1%, and 20 ml of this solution was dipped with a glucose amylase-immobilized aluminum oxide thin film, The reaction was carried out at 30 ° C for 30 minutes. The enzyme activity was measured by quantifying the produced glucose by the glucose oxidase peroxidase-O-dianisidine method. Table 3 shows the results of the enzymatic activity determined by continuous operation once a day for 5 days and the residual enzymatic activity (%) over time.

【0020】[0020]

【表3】 [Table 3]

【0021】<実施例2>20mm×20mm、厚さ
0.5mmのアルミニウムの板(99.8%)を10%
水酸化ナトリウムに10秒浸漬し(50℃)、その後3
0%硝酸に浸漬した(前処理)。その後0.3mol/
Lのシュウ酸水溶液で、白金をカソ−ドとし、15℃、
60Vの定電圧で1時間陽極酸化することによりアルミ
ニウム表面に薄い黄色に発色した多孔質の酸化皮膜を形
成し、その後塩化第一鉄と塩酸を含む10℃の水溶液に
浸漬することにより選択的にアルミニウムを溶解させ、
45μmの厚さの薄い黄色に発色した多孔質陽極酸化ア
ルミニウム膜を得た。
Example 2 An aluminum plate (99.8%) having a size of 20 mm × 20 mm and a thickness of 0.5 mm is 10%.
Soak in sodium hydroxide for 10 seconds (50 ° C), then 3
It was immersed in 0% nitric acid (pretreatment). Then 0.3 mol /
L with an aqueous solution of oxalic acid, using platinum as a cathode, at 15 ° C,
By anodizing at a constant voltage of 60 V for 1 hour, a porous oxide film that develops a pale yellow color is formed on the aluminum surface, and then it is selectively immersed in an aqueous solution containing ferrous chloride and hydrochloric acid at 10 ° C. Melting aluminum,
A porous anodized aluminum film having a light yellow color and a thickness of 45 μm was obtained.

【0022】この多孔質陽極酸化アルミニウム膜をアル
ミナ基盤にサンドイッチし、電気炉で酸素を10ml/
秒で流しながら、50℃/時の速度で昇温し、800
℃、1時間熱処理を行った。得られたものは透明で、皮
膜はX線回折で分析するとγ−アルミナであることが確
認された。また、pH3およびpH9の水溶液に4時間
浸漬しても重量変化はなく、耐薬品性の高いことも確認
された。
This porous anodic aluminum oxide film was sandwiched on an alumina substrate, and oxygen was added in an electric furnace at 10 ml /
While flowing for 2 seconds, raise the temperature at a rate of 50 ° C / hour to 800
Heat treatment was performed at 1 ° C. for 1 hour. The obtained product was transparent, and the film was confirmed to be γ-alumina by X-ray diffraction analysis. It was also confirmed that there was no weight change even when immersed in an aqueous solution of pH 3 and pH 9 for 4 hours, and high chemical resistance.

【0023】これを純水にて十分水洗後、小麦カルボキ
シペプチターゼW(ぺんてる(株)製、発売元:生化学
工業(株))2mgを10mlの50mM酢酸−酢酸ナ
トリウム緩衝液(pH3.0)に溶解させた液に20℃
にて3時間浸漬撹拌し、その後、50mlの50mM酢
酸−酢酸ナトリウム緩衝液(pH3.0)で2回洗浄
し、カルボキシペプチターゼW固定化酸化アルミニウム
薄膜を得た。
After thoroughly washing this with pure water, 2 mg of wheat carboxypeptidase W (manufactured by Pentel Co., Ltd., distributor: Seikagaku Corporation) was added to 10 ml of 50 mM acetic acid-sodium acetate buffer (pH 3.0). ) In a liquid dissolved in
After 3 hours of immersion and stirring, the mixture was washed twice with 50 ml of 50 mM acetic acid-sodium acetate buffer (pH 3.0) to obtain a carboxypeptidase W-immobilized aluminum oxide thin film.

【0024】1mMになるようにベンジルオキシカルボ
ニル−グルタミル−チロシンを50mM酢酸−酢酸ナト
リウム緩衝液(pH3.0)に溶解し、この溶液10m
lにカルボキシペプチターゼW固定化酸化アルミニウム
薄膜を浸漬し、30℃で1時間反応させ、570nmの吸
光度測定にて酵素活性を求めた。1日1回5日間連続操
作して酵素活性を求め、また経時的な残存酵素活性
(%)を求めた結果を表4に示す。
Benzyloxycarbonyl-glutamyl-tyrosine was dissolved in 50 mM acetic acid-sodium acetate buffer (pH 3.0) so that the concentration was 1 mM, and the solution was 10 m.
The aluminum oxide thin film on which carboxypeptidase W was immobilized was immersed in 1 and reacted at 30 ° C. for 1 hour to measure the enzyme activity by measuring the absorbance at 570 nm. Table 4 shows the results of determining the enzyme activity by continuously operating once a day for 5 days and determining the residual enzyme activity (%) over time.

【0025】[0025]

【表4】 [Table 4]

【0026】また、トリプシン(Sigma社製)1m
gを10mlのトリス(ヒドロキシアミノメタン)緩衝
液(pH9.0)に溶解させ、この溶液に上記の多孔質
酸化アルミニウム薄膜を4℃にて12時間浸漬撹拌し、
次いでこの薄膜を100mlの0.04Mトリス(ヒド
ロキシアミノメタン)緩衝液(pH9.0)で2回洗浄
し、トリプシン固定化薄膜を得た。TAME(p−トル
エンスルフォンアルギニンメチルエステル)を0.04
Mトリス(ヒドロキシアミノメタン)緩衝液(pH9.
0)に溶解し、1mMのTAME溶液(pH9.0)を
調製し、この溶液20mlにトリプシン固定化薄膜を浸
漬し、30℃で10分間反応させ、酵素活性を247n
mの吸光度の増加にて測定した。1日1回5日間連続操
作して酵素活性を求め、また経時的な残存酵素活性
(%)を求めた結果を表5に示す。
Also, trypsin (manufactured by Sigma) 1 m
g was dissolved in 10 ml of tris (hydroxyaminomethane) buffer (pH 9.0), and the above porous aluminum oxide thin film was immersed and stirred in this solution at 4 ° C. for 12 hours,
Next, this thin film was washed twice with 100 ml of 0.04 M tris (hydroxyaminomethane) buffer (pH 9.0) to obtain a trypsin-immobilized thin film. TAME (p-toluene sulfone arginine methyl ester) 0.04
M Tris (hydroxyaminomethane) buffer (pH 9.
0) to prepare a 1 mM TAME solution (pH 9.0), the trypsin-immobilized thin film is immersed in 20 ml of this solution, and the reaction is carried out at 30 ° C. for 10 minutes to obtain an enzyme activity of 247 n.
It was measured by the increase in absorbance at m. Table 5 shows the results of the enzymatic activity obtained by continuously operating once a day for 5 days and the residual enzymatic activity (%) over time.

【0027】[0027]

【表5】 [Table 5]

【0028】また、リゾプスニベウス(Rhizopusniveu
s)のグルコースアミラーゼ(生化学工業(株)製)1
mgを50mM酢酸−酢酸ナトリウム緩衝液(pH4.
5)20mlに溶解させ、この溶液に上記多孔質酸化ア
ルミニウム薄膜を4℃にて4時間浸漬撹拌し、その後5
0mlの50mM酢酸−酢酸ナトリウム緩衝液(pH
4.5)で2回洗浄し、グルコースアミラーゼ固定化酸
化アルミニウム薄膜を得た。1%となるようにマルトー
ス(Grade3H:生化学工業(株)製)を50mM酢酸
−酢酸ナトリウム緩衝液(pH4.5)に溶解し、この
溶液20mlにグルコースアミラーゼ固定化酸化アルミ
ニウム薄膜を浸漬し、30℃で30分間反応させた。生
成するグルコースをグルコースオキシターゼペルオキシ
ターゼ−O−ジアニシジン法により定量することにより
酵素活性を測定した。1日1回5日間連続操作して酵素
活性を求め、また経時的な残存酵素活性(%)を求めた
結果を表6に示す。
Further, Rhizopus niveu (Rhizopus niveu)
s) glucose amylase (manufactured by Seikagaku Corporation) 1
mg to 50 mM acetic acid-sodium acetate buffer (pH 4.
5) Dissolve in 20 ml, dip and stir the porous aluminum oxide thin film in this solution at 4 ° C. for 4 hours, and then
0 ml of 50 mM acetic acid-sodium acetate buffer (pH
It was washed twice with 4.5) to obtain a glucose amylase-immobilized aluminum oxide thin film. Maltose (Grade 3H: manufactured by Seikagaku Corporation) was dissolved in 50 mM acetic acid-sodium acetate buffer (pH 4.5) so that the concentration became 1%, and 20 ml of this solution was dipped with a glucose amylase-immobilized aluminum oxide thin film, The reaction was carried out at 30 ° C for 30 minutes. The enzyme activity was measured by quantifying the produced glucose by the glucose oxidase peroxidase-O-dianisidine method. Table 6 shows the results of determining the enzyme activity by continuously operating once a day for 5 days and determining the residual enzyme activity (%) over time.

【0029】[0029]

【表6】 [Table 6]

【0030】[0030]

【発明の効果】上記各表は、各例のものが5日後でも良
好な残存酵素活性を有し、経時的な活性低下が防止され
ているという結果を示すが、このように、本発明の製造
方法により得られた生理活性物質の固定化体は、生理活
性物質の活性が高く、かつ、経時的な活性低下の少ない
ものとなる。
INDUSTRIAL APPLICABILITY The above-mentioned tables show the results that each of the examples had a good residual enzyme activity even after 5 days, and the decrease in activity over time was prevented. The immobilized body of the physiologically active substance obtained by the production method has a high activity of the physiologically active substance and less decrease in activity over time.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 多孔質陽極酸化アルミニウム膜を300
℃を越える温度で加熱処理後、該多孔質陽極酸化アルミ
ニウム膜に生理活性物質を固定してなることを特徴とす
る生理活性物質の固定化体の製造方法。
1. A porous anodic aluminum oxide film 300
A method for producing an immobilized body of a physiologically active substance, which comprises subjecting the porous anodized aluminum film to a physiologically active substance after heat treatment at a temperature exceeding ° C.
JP20835593A 1993-07-30 1993-07-30 Method for producing immobilized body of physiologically active substance Expired - Fee Related JP3154205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20835593A JP3154205B2 (en) 1993-07-30 1993-07-30 Method for producing immobilized body of physiologically active substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20835593A JP3154205B2 (en) 1993-07-30 1993-07-30 Method for producing immobilized body of physiologically active substance

Publications (2)

Publication Number Publication Date
JPH0739377A true JPH0739377A (en) 1995-02-10
JP3154205B2 JP3154205B2 (en) 2001-04-09

Family

ID=16554923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20835593A Expired - Fee Related JP3154205B2 (en) 1993-07-30 1993-07-30 Method for producing immobilized body of physiologically active substance

Country Status (1)

Country Link
JP (1) JP3154205B2 (en)

Also Published As

Publication number Publication date
JP3154205B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
EP0561966B1 (en) Electrode, provided with a polymer coating with a redox enzyme bound thereto
Zheng et al. Gold nanoparticles-coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor
Pandey et al. A new glucose biosensor based on sandwich configuration of organically modified sol‐gel glass
Sampath et al. Renewable, reagentless glucose sensor based on a redox modified enzyme and carbon‐silica composite
JPH0210902B2 (en)
JPS5816698B2 (en) Enzyme electrode and its manufacturing method
JP2003533679A (en) Creatinine biosensor
JPS6239900B2 (en)
Sampath et al. Membrane-free, rhodium-modified, methyl silicate-graphite amperometric biosensor
JP2006500582A (en) Mesoporous platinum electrode and biochemical substrate detection method using the same
WO2010090271A1 (en) Electrochemical sensor and method for manufacturing same
JPH0235933B2 (en)
Koopal et al. Third-generation amperometric biosensor for glucose. Polypyrrole deposited within a matrix of uniform latex particles as mediator
Parpaleix et al. Potentiometric and voltammetric investigation of hydrogen/hydrogen (1+) catalysis by periplasmic hydrogenase from Desulfovibrio gigas immobilized at the electrode surface in an amphiphilic bilayer assembly
Ikeda et al. Enzyme-catalysed electrochemical oxidation of D-gluconate at electrodes coated with D-gluconate dehydrogenase, a membrane-bound flavohemoprotein
US20100230287A1 (en) Porous gold materials and production methods
JP3154205B2 (en) Method for producing immobilized body of physiologically active substance
Dimcheva et al. A glucose oxidase immobilized electrode based on modified graphite
Sun et al. Electrocatalytic reduction of hemoglobin at a chemically modified electrode containing riboflavin
Liang et al. An amperometric glucose biosensor based on titania sol-gel/Prussian Blue composite film
JPS6240437B2 (en)
JP3201124B2 (en) Method for producing crystalline aluminum oxide thin film
Zuo et al. An amperometric biosensor based on glucose oxidase immobilized in a sol–gel polyvinyl alcohol/silica hybrid composite film on a Prussian Blue modified electrode
JPH0373278B2 (en)
Ikeda et al. Development of a needle-type glucose sensor based on a titanium dioxide oxygen electrode for the artificial pancreas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees