JPH0739107B2 - Method for producing lightweight fiber reinforced thermoplastic resin molded article - Google Patents
Method for producing lightweight fiber reinforced thermoplastic resin molded articleInfo
- Publication number
- JPH0739107B2 JPH0739107B2 JP3202005A JP20200591A JPH0739107B2 JP H0739107 B2 JPH0739107 B2 JP H0739107B2 JP 3202005 A JP3202005 A JP 3202005A JP 20200591 A JP20200591 A JP 20200591A JP H0739107 B2 JPH0739107 B2 JP H0739107B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- fiber
- reinforced thermoplastic
- sheet
- resin sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Description
【0001】[0001]
【産業上の利用分野】本発明は繊維強化熱可塑性樹脂シ
ートを膨脹拡大させながら成形することによって、密度
0.92g/cm3 以下の繊維強化熱可塑性樹脂成形品
を製造する軽量繊維強化熱可塑性樹脂成形品の製造方法
に関するものである。本発明方法によって得られる軽量
繊維強化熱可塑性樹脂成形品は、軽量で、しかも高剛性
を必要とする自動車内外装材、弱電部品、土木建築用資
材などの各種工業用部品として有用なものである。FIELD OF THE INVENTION The present invention relates to a lightweight fiber-reinforced thermoplastic resin for producing a fiber-reinforced thermoplastic resin molded product having a density of 0.92 g / cm 3 or less by molding while expanding and expanding a fiber-reinforced thermoplastic resin sheet. The present invention relates to a method for manufacturing a resin molded product. The lightweight fiber-reinforced thermoplastic resin molded product obtained by the method of the present invention is lightweight and is useful as various industrial parts such as automobile interior / exterior materials, low-electricity parts, civil engineering and construction materials that require high rigidity. .
【0002】[0002]
【従来の技術】従来、繊維強化プラスチック材料の成形
品の製造方法としては、特開昭60−179234号公
報に記載される方法が知られている。該方法は、長さ7
〜50mmの高弾性係数を有する強化繊維を重量比20
〜70%分散させた熱可塑性合成樹脂の固化シートを加
熱及び成形することによって、前記繊維にかかる応力で
マトリックスをモールドの形状に膨脹拡大して多孔性に
することによって繊維強化合成樹脂成形品を製造するも
のであり、かかる方法で得られた繊維強化熱可塑性樹脂
成形品は、競合品で、かつ現在でも使用されている木粉
や不織布繊維を樹脂で固める方法によって得られた合成
樹脂シート成形品に比べて、重量当たりの強度、特に曲
げ弾性率などの点において顕著な改善が見られなかっ
た。2. Description of the Related Art Conventionally, as a method for producing a molded article of a fiber reinforced plastic material, a method described in JP-A-60-179234 is known. The method has a length of 7
The weight ratio of the reinforcing fiber having a high elastic modulus of ˜50 mm is 20
By heating and molding a solidified sheet of thermoplastic synthetic resin in which ˜70% is dispersed, the fiber-reinforced synthetic resin molded article is expanded by expanding the matrix into the shape of the mold by the stress applied to the fibers to make it porous. The fiber-reinforced thermoplastic resin molded product obtained by such a method is a synthetic resin sheet molded product obtained by the method of solidifying wood powder or non-woven fabric fiber with resin, which is a competitive product and is still used today. No significant improvement was observed in the strength per weight, particularly in the flexural modulus, as compared with the product.
【0003】一方、近年、自動車の燃費効率向上の観点
から、より軽量で剛性の高い成形材料が以前にも増して
強く求められるようになり、単位面積当たりの製品重量
を極力軽量化することが重要な課題となりつつある。し
かし、前記技術では軽量な成形品が得られるが、面剛性
の高い成形品は未だ得られるに至っていない。このよう
な軽量シート成形品の製造方法として、特公昭52−1
2283号公報には、表面活性剤を含む液体中に非常に
小さな気泡の形で分散されている気体を含む発泡した液
体媒体を気泡発生装置内で造る工程と、発泡した液体中
に繊維を分散させる工程と、繊維及び発泡した液体媒体
からなる分散液を有孔支持体上に注ぐ工程と、支持体を
通して分散液から液体を抜き取り支持体の上に繊維材料
ウエブを形成する工程とを含む紙又は他の非織繊維材料
を製造する方法において、繊維及び発泡した液体媒体か
らなる分散液中に含まれる気体の容積百分率を予め決め
る工程と、有孔支持体上にある分散液のところへ分散液
が注入されるとき分散液を監視して分散液中の気体の容
積百分率を確かめる工程と、監視によって得られる結果
に従って気泡発生装置の作用を制御してこの装置内で生
ずる発泡した液体媒体中の液体の容積百分率を調節する
工程とを含むことを特徴とする紙又は他の繊維の非織繊
維材料を製造する方法が提案されている。しかし、この
ような方法によって得られた軽量シート成形品も面剛性
の高いものでなく、より一層の強度の向上が望まれてい
た。On the other hand, in recent years, from the viewpoint of improving the fuel efficiency of automobiles, there has been a strong demand for a lighter weight and higher rigidity molding material, and the product weight per unit area can be reduced as much as possible. It is becoming an important issue. However, although a lightweight molded product can be obtained by the above technique, a molded product having high surface rigidity has not yet been obtained. As a method for producing such a light-weight sheet molded article, Japanese Patent Publication No.
No. 2283 discloses a process for producing a foamed liquid medium containing a gas dispersed in a liquid containing a surfactant in the form of very small bubbles in a bubble generator, and dispersing fibers in the foamed liquid. A paper comprising the steps of: providing a dispersion of fibers and a foamed liquid medium onto a perforated support; and extracting the liquid from the dispersion through the support to form a fibrous material web on the support. Or in a method for producing other non-woven fibrous materials, the step of predetermining the volume percentage of the gas contained in the dispersion consisting of the fibers and the foamed liquid medium, and dispersing to the dispersion on the perforated support. Monitoring the dispersion as it is being injected to ascertain the volume percentage of gas in the dispersion, and controlling the operation of the bubble generating device according to the results obtained by the monitoring to produce a foamed liquid generated within the device. Method of making a non-woven fibrous material of the paper or other fibers, characterized in that it comprises a step of adjusting the volume percentage of liquid in the body have been proposed. However, the lightweight sheet molded product obtained by such a method is not one having high surface rigidity, and further improvement in strength has been desired.
【0004】[0004]
【発明が解決しようとする課題】従って、本発明では、
抄造法で製造される繊維強化熱可塑性樹脂シートを用い
て、従来の木粉や不織布繊維を樹脂で固めて得られる合
成樹脂シート成形品よりも、重量当たりの強度、特に面
剛性や曲げ弾性率などの点において優れた、従来の技術
では達成できない程度に大幅な軽量化を図った軽量で剛
性の高い成形材料を提供しようとするものである。Therefore, according to the present invention,
Strength per weight, especially surface rigidity and flexural modulus, compared to conventional synthetic resin sheet molded products obtained by solidifying resin with wood flour or non-woven fiber using fiber reinforced thermoplastic resin sheet manufactured by papermaking method. It is intended to provide a lightweight and high-rigidity molding material which is excellent in respect of the above and has been significantly reduced in weight to the extent that conventional techniques cannot achieve.
【0005】[0005]
[発明の概要]本発明者らは、上記問題点に鑑みて鋭意
研究を重ねた結果、補強用繊維を熱可塑性樹脂マトリッ
クス中に分散させてなる繊維強化熱可塑性樹脂シート
を、該熱可塑性樹脂の融点以上に加熱し、前記繊維にか
かる応力を減少させて、該シートの厚み方向に膨脹拡大
させた後、該シートを成形用金型に移動して成形する軽
量繊維強化熱可塑性樹脂成形品の製造方法において、マ
トリックスの熱可塑性樹脂にメルトフローレートが50
g/10分以上の結晶性ポリプロピレンを用いることに
よって、加熱時の熱可塑性樹脂の粘度を低下させて、補
強用繊維の弾発力を回復させ、繊維強化熱可塑性樹脂シ
ートを膨脹拡大させると共に、結晶性ポリプロピレンの
固化後の機械的性質と比重の小ささとを利用すれば、成
形品の大幅な軽量化を図った軽量で剛性の高いシート成
形品を得ることができるとの知見に基づき本発明を完成
するに至ったものである。すなわち、本発明の軽量繊維
強化熱可塑性樹脂成形品の製造方法は、長さ6〜50m
mの補強用繊維を熱可塑性樹脂マトリックス中に30〜
70重量%の割合で分散させてなる繊維強化熱可塑性樹
脂シートを、該熱可塑性樹脂の融点以上に加熱し、前記
繊維にかかる応力を減少させることによって、該シート
の厚み方向に3〜8倍膨脹拡大させた後、該シートを金
型に移動して圧縮成形する密度が0.92g/cm3 以
下の軽量繊維強化熱可塑性樹脂成形品の製造方法におい
て、前記マトリックスの熱可塑性樹脂にメルトフローレ
ートが50g/10分以上の結晶性ポリプロピレンを用
いることを特徴とするものである。[Summary of the Invention] As a result of intensive studies conducted by the present inventors in view of the above problems, a fiber-reinforced thermoplastic resin sheet obtained by dispersing reinforcing fibers in a thermoplastic resin matrix is provided. A light weight fiber-reinforced thermoplastic resin molded product which is heated to a temperature equal to or higher than the melting point to reduce stress applied to the fibers, expands and expands in the thickness direction of the sheet, and then moves the sheet to a molding die for molding. In the production method of, the thermoplastic resin of the matrix has a melt flow rate of 50.
By using the crystalline polypropylene of g / 10 minutes or more, the viscosity of the thermoplastic resin at the time of heating is reduced, the elastic force of the reinforcing fibers is restored, and the fiber-reinforced thermoplastic resin sheet is expanded and expanded. Based on the finding that it is possible to obtain a lightweight and highly rigid sheet molded product with significantly reduced weight by utilizing the mechanical properties of crystalline polypropylene after solidification and the small specific gravity. The invention has been completed. That is, the method for producing a lightweight fiber-reinforced thermoplastic resin molded product according to the present invention has a length of 6 to 50 m.
30 to 30 m of reinforcing fiber in the thermoplastic resin matrix
A fiber-reinforced thermoplastic resin sheet dispersed in a proportion of 70% by weight is heated to a temperature equal to or higher than the melting point of the thermoplastic resin to reduce the stress applied to the fibers, thereby increasing the thickness of the sheet by 3 to 8 times. In the method for producing a lightweight fiber-reinforced thermoplastic resin molded product having a density of 0.92 g / cm 3 or less, which is obtained by expanding and expanding and then moving the sheet into a mold to perform compression molding, melt flow into the thermoplastic resin of the matrix It is characterized by using crystalline polypropylene having a rate of 50 g / 10 minutes or more.
【0006】[発明の具体的説明] [I] 繊維強化熱可塑性樹脂成形品の製造 (1) 繊維強化熱可塑性樹脂シート 本発明の軽量繊維強化熱可塑性樹脂成形品の製造方法に
おいて出発素材として用いられる繊維強化熱可塑性樹脂
シートは、長さ6〜50mmの補強用繊維と、メルトフ
ローレート(MFR)が50g/10分以上の結晶性ポ
リプロピレンとを混合して得られた、結晶性ポリプロピ
レンのマトリックス中に補強用繊維が30〜70重量%
の割合で分散されている状態よりなる、密度が1g/c
m3以上、好ましくは1.1〜1.3g/cm3 のシー
ト状物である。このような繊維強化熱可塑性樹脂シート
は、一般に、以下に示す原材料及び製造方法にて得られ
たものが用いられる。[Detailed Description of the Invention] [I] Production of Fiber Reinforced Thermoplastic Resin Molded Product (1) Fiber Reinforced Thermoplastic Resin Sheet Used as a starting material in the method for producing a lightweight fiber reinforced thermoplastic resin molded product of the present invention. The fiber-reinforced thermoplastic resin sheet to be obtained is a matrix of crystalline polypropylene obtained by mixing reinforcing fibers having a length of 6 to 50 mm and crystalline polypropylene having a melt flow rate (MFR) of 50 g / 10 minutes or more. 30 to 70% by weight of reinforcing fibers
The density is 1 g / c.
m 3 or more, preferably 1.1 to 1.3 g / cm 3 sheet-like material. As such a fiber-reinforced thermoplastic resin sheet, those obtained by the following raw materials and manufacturing method are generally used.
【0007】(a)原材料熱可塑性樹脂 前記繊維強化熱可塑性樹脂シートのマトリックスとして
使用される熱可塑性樹脂には、メルトフローレート(J
IS−K7210)が50g/10分以上、好ましくは
55〜200g/10分の結晶性ポリプロピレンを用い
ることが重要である。このように本発明ではマトリック
スである熱可塑性樹脂に、メルトフローレートの高い結
晶性ポリプロピレンを使用することによって、補強用繊
維と熱可塑性樹脂との含浸を良好に保つことができ、後
記繊維強化熱可塑性樹脂シートをマトリックス成分であ
る結晶性ポリプロピレンの融点以上に加熱した際に、該
シートの膨脹を均一に行なうことができる。また、結晶
性ポリプロピレンは補強用繊維を配合することによって
耐熱特性(例えば、熱変形温度)を顕著に向上させるこ
とができるなどの利点がある。本発明における出発材料
の繊維強化熱可塑性樹脂シートのマトリックス成分とし
て使用される結晶性ポリプロピレンとしては、具体的に
は、プロピレン単独重合体、プロピレン・エチレンラン
ダム共重合体、プロピレン・ブテン−1ランダム共重合
体、プロピレン・4−メチルペンテン−1ランダム共重
合体、プロピレン・エチレンブロック共重合体を挙げる
ことができる。(A) Raw Material Thermoplastic Resin The thermoplastic resin used as the matrix of the fiber-reinforced thermoplastic resin sheet includes a melt flow rate (J
It is important to use crystalline polypropylene having an IS-K7210) of 50 g / 10 min or more, preferably 55 to 200 g / 10 min. As described above, in the present invention, by using crystalline polypropylene having a high melt flow rate for the thermoplastic resin that is the matrix, it is possible to maintain good impregnation of the reinforcing fiber and the thermoplastic resin, and When the plastic resin sheet is heated above the melting point of crystalline polypropylene that is the matrix component, the expansion of the sheet can be performed uniformly. Further, crystalline polypropylene has an advantage that the heat resistance characteristics (for example, heat distortion temperature) can be remarkably improved by blending reinforcing fibers. The crystalline polypropylene used as the matrix component of the fiber-reinforced thermoplastic resin sheet of the starting material in the present invention specifically includes propylene homopolymer, propylene / ethylene random copolymer, and propylene / butene-1 random copolymer. Examples thereof include polymers, propylene-4-methylpentene-1 random copolymers, and propylene / ethylene block copolymers.
【0008】また、これら結晶性ポリプロピレンに本発
明の目的が著しく損なわれない程度に他の熱可塑性樹脂
を混合することもできる。このような他の熱可塑性樹脂
としては、ポリエチレンなどのポリオレフィン、ポリ塩
化ビニル、ポリスチレン、ABS、ポリアミド、ポリオ
キシメチレン、アクリル樹脂、ポリエステル、ポリカー
ボネート、ポリフェニレンエーテル、ポリエーテルスル
フォン、ポリサルフォン、ポリエーテルイミド、ポリエ
ーテルエーテルケトン、或いはこれらの変性体やブレン
ド物などを挙げることができる。更に、目的に応じて添
加剤、フィラー、着色剤、発泡剤、架橋剤などを添加す
ることもできる。It is also possible to mix these crystalline polypropylenes with other thermoplastic resins to the extent that the object of the present invention is not significantly impaired. Examples of such other thermoplastic resin include polyolefin such as polyethylene, polyvinyl chloride, polystyrene, ABS, polyamide, polyoxymethylene, acrylic resin, polyester, polycarbonate, polyphenylene ether, polyether sulfone, polysulfone, polyether imide, Examples include polyether ether ketone, modified products and blends thereof. Further, additives, fillers, colorants, foaming agents, cross-linking agents and the like can be added depending on the purpose.
【0009】強用繊維 本発明における出発材料の繊維強化熱可塑性樹脂シート
の結晶性ポリプロピレンマトリックス中に分散されてい
る補強用繊維としては、ガラス繊維、カーボン繊維、金
属繊維などの無機繊維、及びプラスチック繊維、アラミ
ッド繊維などの合成繊維、及び、それらの混合物を挙げ
ることができるが、特にガラス繊維が好んで用いられ
る。これらの補強用繊維の形態としては、用途に応じ
て、これらの単繊維状、ストランド状、或いは、それら
を組み合わせたものを用いることができるが、更にこれ
らの補強用繊維を表面処理したり、改質剤を含浸させた
ものを用いることができる。本発明における出発材料の
繊維強化熱可塑性樹脂シートに用いられる補強用繊維の
長さは6〜50mm、好ましくは13〜40mmのもの
を使用することが重要である。該補強用繊維の長さが上
記範囲以外のものでは、抄造法での補強用繊維の均一な
分散が不可能となり、しかも、前記本発明における補強
用繊維の効果、すなわち、後記繊維強化熱可塑性樹脂シ
ートをマトリックスである結晶性ポリプロピレンの融点
以上に加熱した際に、該シートの膨脹を均一に行なうこ
とができなくなり、成形品において十分満足する高い剛
性を示すものが得られ難くなる。また、補強用繊維の太
さは、直径が一般に3〜100μmφ、好ましくは6〜
20μmφのものが使用される。[0009] As the reinforcing fibers are dispersed in the crystalline polypropylene matrix of the fiber-reinforced thermoplastic resin sheet of the starting material in the strength fibers present invention, glass fibers, carbon fibers, inorganic fibers such as metal fibers, and plastics Fibers, synthetic fibers such as aramid fibers, and mixtures thereof can be mentioned, but glass fibers are particularly preferred. As the form of these reinforcing fibers, depending on the application, it is possible to use these monofilaments, strands, or a combination thereof, but further surface-treating these reinforcing fibers, A material impregnated with a modifier can be used. It is important to use a reinforcing fiber having a length of 6 to 50 mm, preferably 13 to 40 mm, which is used in the fiber-reinforced thermoplastic resin sheet as a starting material in the present invention. If the length of the reinforcing fiber is out of the above range, it is impossible to uniformly disperse the reinforcing fiber in the papermaking method, and further, the effect of the reinforcing fiber in the present invention, that is, the fiber-reinforced thermoplastic resin described later. When the resin sheet is heated above the melting point of the crystalline polypropylene that is the matrix, the sheet cannot be uniformly expanded, and it becomes difficult to obtain a molded article having sufficiently high rigidity. The thickness of the reinforcing fiber has a diameter of generally 3 to 100 μm φ , preferably 6 to
A 20 μmφ one is used.
【0010】量 比 前記繊維強化熱可塑性樹脂シートを構成する結晶性ポリ
プロピレンと補強用繊維との混合の際の量比は、該シー
ト中に補強用繊維が30〜70重量%、好ましくは35
〜60重量%の割合で配合されて、マトリックスとして
存在する前記結晶性ポリプロピレン中に分散されてい
て、シート全体の密度が通常1g/cm3 以上、好まし
くは1.1〜1.3g/cm3となっている。本発明で
は繊維強化熱可塑性樹脂シート中の熱可塑性樹脂成分と
して、メルトフローレートが高い結晶性ポリプロピレン
を使用することによって補強用繊維と熱可塑性樹脂との
含浸を良好に保つことができるのであるが、結晶性ポリ
プロピレンのメルトフローレートが50g/10分未満
でも補強用繊維の配合量が10〜25重量%と低い場合
には、成形品の剛性を上げて、強度をできるだけ高く維
持することができる。しかし、補強用繊維の配合量が高
くなるにしたがって、例えば、配合量が40%を超えて
くると、補強用繊維と熱可塑性樹脂との含浸が不十分と
なり、補強用繊維の配合量を高くしても期待される成形
品の剛性や強度が十分に発現し難くなる。 Amount ratio The amount ratio of the crystalline polypropylene and the reinforcing fiber constituting the fiber reinforced thermoplastic resin sheet in mixing is 30 to 70% by weight, preferably 35% by weight of the reinforcing fiber in the sheet.
It is compounded in a proportion of ˜60% by weight and dispersed in the crystalline polypropylene present as a matrix, and the density of the entire sheet is usually 1 g / cm 3 or more, preferably 1.1 to 1.3 g / cm 3. Has become. In the present invention, as the thermoplastic resin component in the fiber reinforced thermoplastic resin sheet, by using crystalline polypropylene having a high melt flow rate, it is possible to maintain good impregnation of the reinforcing fiber and the thermoplastic resin. Even if the melt flow rate of the crystalline polypropylene is less than 50 g / 10 minutes and the compounding amount of the reinforcing fiber is as low as 10 to 25% by weight, the rigidity of the molded product can be increased and the strength can be maintained as high as possible. . However, as the blending amount of the reinforcing fiber becomes higher, for example, when the blending amount exceeds 40%, the impregnation of the reinforcing fiber and the thermoplastic resin becomes insufficient and the blending amount of the reinforcing fiber becomes high. However, it is difficult for the expected rigidity and strength of the molded product to be sufficiently developed.
【0011】(b) 繊維強化熱可塑性樹脂シートの製造方
法 本発明の軽量繊維強化熱可塑性樹脂成形品の製造方法に
おいて、出発材料として用いられる繊維強化熱可塑性樹
脂シートは、前記原材料である熱可塑性樹脂の結晶性ポ
リプロピレンと補強用繊維とを混合することによって製
造されるが、その具体的製造方法に各種方法が知られて
おり、本発明において用いられる繊維強化熱可塑性樹脂
シートはこれら各種製法によって得られたものを使用す
ることができるが、特に抄造法を用いた湿式法によって
製造したスタンパブルシートを用いることが好ましい。(B) Method for producing a fiber-reinforced thermoplastic resin sheet In the method for producing a lightweight fiber-reinforced thermoplastic resin molded article of the present invention, the fiber-reinforced thermoplastic resin sheet used as a starting material is a thermoplastic material which is the above-mentioned raw material. It is produced by mixing the crystalline polypropylene of the resin and the reinforcing fiber, various methods are known for its specific production method, and the fiber-reinforced thermoplastic resin sheet used in the present invention is produced by these various production methods. The obtained product can be used, but it is particularly preferable to use a stampable sheet manufactured by a wet method using a papermaking method.
【0012】以下に、抄造法を用いた湿式法によるスタ
ンパブルシートの製造の一例を図1に基づき具体的に説
明する。湿式法(抄造法)によるスタンパブルシートの製造 長さ6〜50mmのガラス繊維などの補強用繊維1と熱
可塑性樹脂粉末2を分散槽3内の液体中に連続的に投入
する。該分散槽3内では、補強用繊維1と熱可塑性樹脂
粉末2を均一に分散させるための攪拌を行なう。次い
で、この十分に攪拌された分散液をポンプ4によりメッ
シュ状の電動ベルトコンベア5の上側に設置されたヘッ
ドボックス6内に供給する。このヘッドボックス6の下
側のメッシュ状の電動ベルトコンベア5の下にはウエッ
トボックス7が設置されており、該ウエットボックス7
内の圧力は負圧に保たれて、該ヘッドボックス6内の分
散液をメッシュ状の電動ベルトコンベア5を介して連続
的に吸引脱水することによって、電動ベルトコンベア5
上に補強用繊維1と熱可塑性樹脂粉末2とが均一に分散
された不織布材料8を得る。そして、この不織布材料8
を通風式の熱風乾燥炉9で乾燥し、更に、ダブルベルト
コンベア式の連続スチールプレス10上で該不織布材料
8をマトリックスである結晶性ポリプロピレンの融点以
上に加熱・溶融した後、加圧・冷却することによって補
強用繊維1を溶融した熱可塑性樹脂2により固着させた
連続した繊維強化熱可塑性樹脂シート11を得る。そし
て、この繊維強化熱可塑性樹脂シートをリール14など
で巻き取るか、カッター12により所定の長さに切断し
てマット状繊維強化熱可塑性樹脂シート13を得る。そ
の際、該繊維強化熱可塑性樹脂シート11,13の内部
には空隙が殆ど無いものにするのが普通であるが、一部
空隙を残した密度の低い繊維強化熱可塑性樹脂シート1
1,13にすることもある。An example of manufacturing a stampable sheet by a wet method using a papermaking method will be specifically described below with reference to FIG. Production of Stampable Sheet by Wet Method (Papermaking Method) Reinforcing fiber 1 such as glass fiber having a length of 6 to 50 mm and thermoplastic resin powder 2 are continuously charged into a liquid in dispersion tank 3. In the dispersion tank 3, stirring for uniformly dispersing the reinforcing fiber 1 and the thermoplastic resin powder 2 is performed. Next, the sufficiently stirred dispersion liquid is supplied by the pump 4 into the head box 6 installed above the mesh-shaped electric belt conveyor 5. A wet box 7 is installed below the mesh-shaped electric belt conveyor 5 below the head box 6.
The internal pressure is maintained at a negative pressure, and the dispersion liquid in the head box 6 is continuously sucked and dewatered through the mesh-shaped electric belt conveyor 5, whereby the electric belt conveyor 5
A non-woven material 8 is obtained in which the reinforcing fibers 1 and the thermoplastic resin powder 2 are uniformly dispersed on the top. And this non-woven material 8
After drying in a ventilation hot-air drying oven 9, the nonwoven fabric material 8 is heated on the double-belt conveyor continuous steel press 10 to a temperature higher than the melting point of the crystalline polypropylene as a matrix, and then pressurized / cooled. By doing so, a continuous fiber-reinforced thermoplastic resin sheet 11 in which the reinforcing fibers 1 are fixed by the melted thermoplastic resin 2 is obtained. Then, the fiber-reinforced thermoplastic resin sheet is wound on a reel 14 or the like, or cut into a predetermined length by a cutter 12 to obtain a mat-shaped fiber-reinforced thermoplastic resin sheet 13. At that time, it is usual that the fiber-reinforced thermoplastic resin sheets 11 and 13 have almost no voids inside, but the fiber-reinforced thermoplastic resin sheet 1 having a low density with some voids left.
It may be 1,13.
【0013】また、前記抄造法を用いた湿式法のスタン
パブルシート製造において、補強用繊維を一方向に配向
させて抄造することにより、機械的強度に方向性を与え
た熱可塑性樹脂シートを得ることもできる。上記繊維強
化熱可塑性樹脂シートの製造においては、抄造法を用い
た湿式法により製造しているが、補強用繊維と熱可塑性
樹脂粉末とを直接混合又は攪拌分散して、繊維強化熱可
塑性樹脂シートを製造するラミネート法を含む乾式法に
よっても同様の繊維強化熱可塑性樹脂シートを製造する
ことができる。Further, in the production of a wet stampable sheet using the above-mentioned paper-making method, the reinforcing fibers are oriented in one direction for paper-making to obtain a thermoplastic resin sheet having a directional mechanical strength. You can also In the production of the fiber-reinforced thermoplastic resin sheet, it is produced by a wet method using a papermaking method, but the reinforcing fiber and the thermoplastic resin powder are directly mixed or stirred and dispersed, and the fiber-reinforced thermoplastic resin sheet A similar fiber-reinforced thermoplastic resin sheet can be manufactured by a dry method including a laminating method for manufacturing a.
【0014】(2) 加 熱(予備成形) (a) 条 件 本発明の軽量繊維強化熱可塑性樹脂成形品の製造方法に
おいては、前記繊維強化熱可塑性樹脂シートを、後記成
形(本成形)の前に加熱を行なって予備成形されること
が重要であり、その予備成形を行なうための条件として
は、マトリックスである結晶性ポリプロピレンの融点以
上、好ましくは融点+20℃〜融点+80℃の温度で加
熱が行なわれる。(2) Heating (preforming) (a) Condition In the method for producing a lightweight fiber-reinforced thermoplastic resin molded product of the present invention, the fiber-reinforced thermoplastic resin sheet is prepared by the following molding (main molding). It is important to perform pre-molding by heating before heating. The conditions for pre-molding are heating at a temperature not lower than the melting point of the crystalline polypropylene as the matrix, preferably at a temperature of melting point + 20 ° C to melting point + 80 ° C. Is performed.
【0015】(b) 膨 脹 この加熱によって繊維強化熱可塑性樹脂シートは該シー
ト中の繊維と繊維を固着させている結晶性ポリプロピレ
ンを溶融させて、前記繊維にかかる応力を減少させて、
繊維強化熱可塑性樹脂シートの厚み方向に3〜10倍、
好ましくは4〜8倍に膨脹させて、密度が0.92g/
cm3 以下、好ましくは0.3〜0.75g/cm3 と
なるまで拡大させる。加熱した際の膨脹の程度が高くな
る程、最終的に得られる成形品の曲げ剛性を高くするこ
とができる。また、良好な軽量の繊維強化熱可塑性樹脂
成形品を得るためには、繊維強化熱可塑性樹脂シートを
マトリックスである熱可塑性樹脂の融点以上に加熱して
できるだけシートの板厚を厚く膨脹させた後に、所定の
板厚に成形する方が成形寸法安定性が良い。従って、本
予備成形工程ではできるだけ板厚を厚く膨脹させ、尚且
つ成形品の剛性を上げて、強度(例えば曲げ強度)をで
きるだけ高く維持するために、補強用繊維を収束した状
態よりもモノフィラメントの状態で均一に積み重ねられ
ている状態の方が望ましい。それ故、補強用繊維をモノ
フィラメントの状態で均一に積み重ねし、且つ、成形品
の剛性を上げて、強度(例えば、曲げ強度)をできるだ
け高く維持するように、補強用繊維層中に熱可塑性樹脂
が良く含浸されている必要があると同時に、膨脹させた
際に補強用繊維同志の接点を熱可塑性樹脂で接合するよ
うな状態で膨脹させる必要がある。ところが、補強用繊
維の重量比が余り高くなり過ぎると補強用繊維層中への
熱可塑性樹脂の含浸が悪くなり、補強用繊維同志の接点
を熱可塑性樹脂で接合することが不十分となるので、補
強用繊維の重量比を余り高くさせないことが望ましい。(B) Expansion Due to this heating, the fiber-reinforced thermoplastic resin sheet melts the fibers in the sheet and the crystalline polypropylene fixing the fibers to reduce the stress applied to the fibers,
3 to 10 times in the thickness direction of the fiber reinforced thermoplastic resin sheet,
It is preferably expanded 4 to 8 times to have a density of 0.92 g /
It is expanded to a value not higher than cm 3 , preferably 0.3 to 0.75 g / cm 3 . The higher the degree of expansion when heated, the higher the flexural rigidity of the finally obtained molded product. Further, in order to obtain a good lightweight fiber-reinforced thermoplastic resin molded product, after heating the fiber-reinforced thermoplastic resin sheet to a temperature equal to or higher than the melting point of the thermoplastic resin which is the matrix, and after expanding the sheet thickness as thick as possible, Molding to a predetermined plate thickness gives better molding dimensional stability. Therefore, in this preforming step, in order to expand the plate thickness as thick as possible and to increase the rigidity of the molded product and maintain the strength (for example, bending strength) as high as possible, the monofilament of the reinforcing fiber is more than the converged state. It is desirable that they are evenly stacked in a state. Therefore, the reinforcing fibers are uniformly stacked in a monofilament state, and the rigidity of the molded article is increased to maintain the strength (for example, bending strength) as high as possible. At the same time, it is necessary that the reinforcing fibers are well impregnated with each other, and at the same time, the contact points of the reinforcing fibers are expanded by being joined with a thermoplastic resin. However, if the weight ratio of the reinforcing fibers is too high, impregnation of the reinforcing fiber layer with the thermoplastic resin becomes poor, and it becomes insufficient to bond the contact points of the reinforcing fibers with the thermoplastic resin. It is desirable not to increase the weight ratio of the reinforcing fibers so much.
【0016】(3) 成 形(本成形) (a) 本成形 前記加熱(予備成形)により繊維にかかる応力を減少さ
せて、繊維強化熱可塑性樹脂シートの厚み方向に膨脹拡
大させた繊維強化熱可塑性樹脂シートを、所定の形状に
成形して最終成形品を製造するのであるが、最終成形品
の密度が0.8g/cm3 以下となるような所定の厚み
の金型で行なう以外は通常のシート成形方法と同様にし
て行なうことができる。 (b) 金 型 本発明における本成形に際しては、最終成形品の密度が
0.92g/cm以下、好ましくは0.3〜0.75g
/cm3 となるように、金型のキャビティのクリアラン
スを調整することにより、元の熱可塑性樹脂シートの板
厚より厚く、しかも膨脹後の板厚よりも薄く賦形して成
形する。(3) Forming (main forming) (a) Main forming The fiber-reinforced thermoplastic resin sheet expanded and expanded in the thickness direction of the fiber-reinforced thermoplastic resin sheet by reducing the stress applied to the fiber by the heating (preforming). A plastic resin sheet is molded into a predetermined shape to produce a final molded product. Usually, except that a mold having a predetermined thickness is used so that the final molded product has a density of 0.8 g / cm 3 or less. It can be carried out in the same manner as the sheet forming method. (b) Mold In the present molding, the final molded product has a density of 0.92 g / cm or less, preferably 0.3 to 0.75 g.
By adjusting the clearance of the cavity of the mold so as to be / cm 3 , the shape is formed to be thicker than the original thermoplastic resin sheet and thinner than the expanded sheet thickness.
【0017】[II] 繊維強化熱可塑性樹脂成形品 上記繊維強化熱可塑性樹脂シートを予備成形した後、本
成形を行なうことによって、密度が0.92g/cm3
以下の軽量で、しかも高剛性の繊維強化熱可塑性樹脂成
形品が得られる。本発明の繊維強化熱可塑性樹脂成形品
の製造方法によって得られる繊維強化熱可塑性樹脂成形
品は、加熱前の繊維強化熱可塑性樹脂シートの板厚より
厚くなることによって、材料としての弾性率は低下する
が、成形品としての剛性はむしろ増加する。これは成形
品の板状物としての剛性は弾性率と板厚の3乗に比例す
るためで、例え材料としての弾性率が低下しても板厚が
増加すれば、その分、板状物としての剛性が向上するこ
とを意味するので、成形品全体としては剛性が増化す
る。このようにして得られた軽量で、しかも高剛性の繊
維強化熱可塑性樹脂シート成形品(パネル状物)は、主
たる用途として自動車の内装材として期待することがで
きる。現在、このような自動車の内装材として、フェノ
ール樹脂系合成木板などよりなる軽量材料が使用されて
いるが、上記本発明方法によって得られる軽量で、しか
も高剛性の繊維強化熱可塑性樹脂シート成形品(パネル
状物)は、このような軽量材料よりも密度が低く、かつ
高剛性の材料を提供することができる。[II] Fiber-Reinforced Thermoplastic Resin Molded Product The fiber-reinforced thermoplastic resin sheet is preformed and then main-formed to give a density of 0.92 g / cm 3.
The following lightweight and highly rigid fiber-reinforced thermoplastic resin molded products can be obtained. The fiber-reinforced thermoplastic resin molded product obtained by the method for producing a fiber-reinforced thermoplastic resin molded product of the present invention is thicker than the plate thickness of the fiber-reinforced thermoplastic resin sheet before heating, so that the elastic modulus as a material decreases. However, the rigidity of the molded product rather increases. This is because the rigidity of the molded product as a plate-shaped product is proportional to the elastic modulus and the cube of the plate thickness. Even if the elastic modulus as a material decreases, if the plate thickness increases It means that the rigidity of the molded product as a whole is improved, and therefore the rigidity of the molded product as a whole is increased. The lightweight and highly rigid fiber-reinforced thermoplastic resin sheet molded product (panel-shaped product) thus obtained can be expected as an interior material for automobiles as a main application. Currently, a lightweight material such as a phenolic resin-based synthetic wood board is used as an interior material for such an automobile. The lightweight and highly rigid fiber-reinforced thermoplastic resin sheet molded product obtained by the method of the present invention is used. The (panel-shaped material) can provide a material having a lower density and higher rigidity than such a lightweight material.
【0018】[0018]
【実施例】以下に実施例及び比較例を挙げて、本発明を
更に具体的に説明する。なお、これら実施例及び比較例
における使用原材料及び評価方法については、次に示す
使用原材料を使用し、次に示す評価方法により測定し
た。 (1)使用原材料 ガラス繊維 :日本電気硝子社製チョップドストラ
ンドを使用した。 結晶性ポリプロピレン樹脂パウダー:三菱油化社製ホモ
ポリプロピレンを使用した。 (2)評価方法 密 度 :水中置換法により測定 曲げ強度 :JIS−K7203により測定 曲げ弾性率 :JIS−K7203により測定 面剛性(Eh3):曲げ弾性率に肉厚の3乗を掛けた積
を示すEXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below. Regarding the raw materials used and the evaluation methods in these Examples and Comparative Examples, the following raw materials were used and the evaluation methods shown below were used. (1) Raw materials used Glass fibers: Chopped strands manufactured by Nippon Electric Glass Co., Ltd. were used. Crystalline polypropylene resin powder: Homopolypropylene manufactured by Mitsubishi Yuka Co., Ltd. was used. (2) Evaluation method Density: Measured by the water displacement method Bending strength: Measured by JIS-K7203 Bending elastic modulus: Measured by JIS-K7203 Surface rigidity (Eh 3 ): Product of bending elastic modulus times cube of wall thickness Indicates
【0019】実施例1 (1)不織布材料の製造 直径4mmφの球状ペレットを液体窒素中に浸漬して冷
凍した後、機械的粉砕を行なって、その粉砕パウダーを
篩により150〜1,000μmまでに分級した結晶性
ポリプロピレン樹脂パウダー(メルトフローレート70
g/10分のホモポリマー)と、直径10μmφ、長さ
18mmのガラス繊維とを用いて、抄造法によりガラス
繊維含有量40重量%と結晶性ポリプロピレン樹脂含有
量60重量%の組成の目付け量が2,650g/m2の
不織布材料を製造した。 (2)繊維強化熱可塑性樹脂シートの製造 この不織布材料1枚を用いて、プレス成形により板厚
2.26mmの繊維強化熱可塑性樹脂シート(密度1.
173g/cm3)を製造した。プレス成形の条件は、
予熱を210℃、無負荷で10分間行ない、次ぎに、圧
力20kgf/cm2で5分間加圧し、続いて50℃に
設定された冷却プレスに移して繊維強化熱可塑性樹脂シ
ートを成形した。 (3)予備成形 この繊維強化熱可塑性樹脂シートを遠赤外線ヒーター加
熱炉に入れ、表面温度が210℃になるまで加熱したと
ころ、板厚が約10mmくらいまで膨脹した。 (4)本成形 続いて70℃に温度調節したプレス成形機に、キャビテ
ィが3mm厚になるスペーサーを取り付け、この加熱膨
脹した繊維強化熱可塑性樹脂シートを挿入し、面圧10
kgf/cm2でプレス成形し板厚2.91mmのシー
ト状成形品を得た。このシート状成形品の物性を表1に
示す。[0019] Example 1 (1) after the spherical pellets prepared diameter 4 mm phi-woven material was frozen by immersing in liquid nitrogen, and subjected to mechanical grinding, the grinding powder by sieve until 150~1,000μm Crystalline polypropylene resin powder (melt flow rate 70
g / 10 min homopolymer) and glass fibers having a diameter of 10 μm φ and a length of 18 mm, and a basis weight of a composition having a glass fiber content of 40% by weight and a crystalline polypropylene resin content of 60% by weight by a papermaking method. Of 2,650 g / m 2 of non-woven material was produced. (2) Production of Fiber Reinforced Thermoplastic Resin Sheet Using one piece of this nonwoven fabric material, a fiber reinforced thermoplastic resin sheet having a plate thickness of 2.26 mm (density 1.
173 g / cm 3 ) was produced. The press molding conditions are
Preheating was performed at 210 ° C. for 10 minutes with no load, and then pressure was applied at a pressure of 20 kgf / cm 2 for 5 minutes, and then transferred to a cooling press set at 50 ° C. to form a fiber-reinforced thermoplastic resin sheet. (3) Preforming This fiber-reinforced thermoplastic resin sheet was placed in a far-infrared heater heating furnace and heated until the surface temperature reached 210 ° C., and the plate thickness expanded to about 10 mm. (4) Main Molding Subsequently, a spacer having a cavity thickness of 3 mm was attached to a press molding machine whose temperature was adjusted to 70 ° C., and the heat-expanded fiber-reinforced thermoplastic resin sheet was inserted to obtain a surface pressure of 10
Press molding was performed at kgf / cm 2 to obtain a sheet-shaped molded product having a plate thickness of 2.91 mm. The physical properties of this sheet-shaped molded product are shown in Table 1.
【0020】実施例2 実施例1の「(1)不織布材料の製造」及び「(2)繊
維強化熱可塑性樹脂シートの製造」と同様の方法にて繊
維強化熱可塑性樹脂シートを成形し、該シートを遠赤外
線ヒーター加熱炉に入れ、表面温度が210℃になるま
で加熱したところ、板厚が約9mmくらいまで膨脹し
た。続いて70℃に温度調節したプレス成形機にキャビ
ティが4mm厚になるスペーサーを取り付け、この加熱
膨脹した繊維強化熱可塑性樹脂シートを挿入して、面圧
10kgf/cm2にてプレス成形し、板厚3.69m
mのシート状成形品を得た。このシート状成形品の物性
を表1に示す。Example 2 A fiber-reinforced thermoplastic resin sheet was molded by the same method as in “(1) Production of non-woven fabric material” and “(2) Production of fiber-reinforced thermoplastic resin sheet” in Example 1, and When the sheet was placed in a far infrared heater heating furnace and heated until the surface temperature reached 210 ° C., the sheet thickness expanded to about 9 mm. Subsequently, a spacer having a cavity thickness of 4 mm was attached to a press molding machine whose temperature was adjusted to 70 ° C., the heat-expanded fiber reinforced thermoplastic resin sheet was inserted, and press molding was performed at a surface pressure of 10 kgf / cm 2 to obtain a plate. Thickness 3.69m
A sheet-shaped molded product of m was obtained. The physical properties of this sheet-shaped molded product are shown in Table 1.
【0021】実施例3 実施例1の「(1)不織布材料の製造」及び「(2)繊
維強化熱可塑性樹脂シートの製造」と同様の方法にて繊
維強化熱可塑性樹脂シートを成形し、該シートを遠赤外
線ヒーター加熱炉、表面温度が210℃になるまで加熱
したところ、板厚が約9mmくらいまで膨脹した。続い
て70℃に温度調節したプレス成形機にキャビティが5
mm厚になるスペーサーを取り付け、この加熱膨脹した
繊維強化熱可塑性樹脂シートを挿入して、面圧10kg
f/cm2にてプレス成形し、板厚4.76mmのシー
ト状成形品を得た。このシート状成形品の物性を表1に
示す。Example 3 A fiber reinforced thermoplastic resin sheet was molded by the same method as in “(1) Production of non-woven fabric material” and “(2) Production of fiber reinforced thermoplastic resin sheet” in Example 1, and When the sheet was heated in a far infrared heater heating furnace until the surface temperature reached 210 ° C., the sheet thickness expanded to about 9 mm. Then, the cavity was adjusted to 5 in a press molding machine whose temperature was adjusted to 70 ° C.
A spacer with a thickness of mm is attached, and this heat-expanded fiber-reinforced thermoplastic resin sheet is inserted, and a surface pressure of 10 kg
Press molding was performed at f / cm 2 to obtain a sheet-shaped molded product having a plate thickness of 4.76 mm. The physical properties of this sheet-shaped molded product are shown in Table 1.
【0022】実施例4 実施例1の「(1)不織布材料の製造」及び「(2)繊
維強化熱可塑性樹脂シートの製造」と同様の方法にて繊
維強化熱可塑性樹脂シートを成形し、該シートを遠赤外
線ヒーター加熱炉に入れ、表面温度が210℃になるま
で加熱したところ、板厚が約9mmくらいまで膨脹し
た。続いて70℃に温度調節したプレス成形機にキャビ
ティが7.6mm厚になるスペーサーを取り付け、この
加熱膨脹した繊維強化熱可塑性樹脂シートを挿入して、
面圧10kgf/cm2にてプレス成形し、板厚7.3
5mmのシート状成形品を得た。このシート状成形品の
物性を表1に示す。Example 4 A fiber reinforced thermoplastic resin sheet was molded by the same method as in “(1) Production of nonwoven fabric material” and “(2) Production of fiber reinforced thermoplastic resin sheet” in Example 1, and When the sheet was placed in a far infrared heater heating furnace and heated until the surface temperature reached 210 ° C., the sheet thickness expanded to about 9 mm. Subsequently, a spacer having a cavity of 7.6 mm in thickness was attached to a press molding machine whose temperature was adjusted to 70 ° C., and the heat-expanded fiber-reinforced thermoplastic resin sheet was inserted,
Press-formed at a surface pressure of 10 kgf / cm 2 and a plate thickness of 7.3.
A 5 mm sheet-shaped molded product was obtained. The physical properties of this sheet-shaped molded product are shown in Table 1.
【0023】実施例5 (1)不織布材料の製造 150〜1,000μmまでに分級した結晶性ポリプロ
ピレン樹脂重合パウダー(メルトフローレート70g/
10分のホモポリマー)と、直径10μmφ、長さ13
mmのガラス繊維とを用いて、抄造法によりガラス繊維
含有量50重量%と結晶性ポリプロピレン樹脂含有量5
0重量%の組成の目付け量が1,810g/m2の不織
布材料を製造した。 (2)繊維強化熱可塑性樹脂シートの製造 この不織布材料1枚を用いて、プレス成形により板厚
1.5mmの繊維強化熱可塑性樹脂シート(密度1.2
1g/cm3)を製造した。プレス成形の条件は、予熱
を220℃、無負荷で5分間行ない、次ぎに、圧力10
kgf/cm2で5分間加圧し、続いて80℃に設定さ
れた冷却プレスに移して繊維強化熱可塑性樹脂シートを
成形した。 (3)予備成形 この繊維強化熱可塑性樹脂シートを遠赤外線ヒーター加
熱炉に入れ、表面温度が205℃になるまで加熱したと
ころ、板厚が約10mmくらいまで膨脹した。 (4)本成形 続いて50℃に温度調節したプレス成形機に、キャビテ
ィが4.5mm厚になるスペーサーを取り付け、この加
熱膨脹した繊維強化熱可塑性樹脂シートを挿入し、面圧
5kgf/cm2でプレス成形し板厚4.22mmのシ
ート状成形品を得た。このシート状成形品の物性を表1
に示す。Example 5 (1) Manufacture of non-woven fabric material A crystalline polypropylene resin polymer powder classified to 150 to 1,000 μm (melt flow rate 70 g /
10 minutes homopolymer), diameter 10 μm φ , length 13
mm glass fiber and a glass fiber content of 50% by weight and a crystalline polypropylene resin content of 5 by a papermaking method.
A non-woven fabric material having a compositional weight of 0 wt% and a basis weight of 1,810 g / m 2 was produced. (2) Production of Fiber Reinforced Thermoplastic Resin Sheet Using one piece of this nonwoven fabric material, a fiber reinforced thermoplastic resin sheet (density 1.2) having a plate thickness of 1.5 mm was formed by press molding.
1 g / cm 3 ) was produced. The conditions for press molding include preheating at 220 ° C. and no load for 5 minutes, and then at a pressure of 10
It was pressurized at kgf / cm 2 for 5 minutes and then transferred to a cooling press set at 80 ° C. to form a fiber reinforced thermoplastic resin sheet. (3) Preforming This fiber-reinforced thermoplastic resin sheet was placed in a far-infrared heater heating furnace and heated until the surface temperature reached 205 ° C., and the sheet thickness expanded to about 10 mm. (4) Main molding Subsequently, a spacer having a cavity thickness of 4.5 mm was attached to a press molding machine whose temperature was adjusted to 50 ° C., the heat-expanded fiber-reinforced thermoplastic resin sheet was inserted, and the surface pressure was 5 kgf / cm 2. Was press-molded with to obtain a sheet-shaped molded product having a plate thickness of 4.22 mm. The physical properties of this sheet-shaped molded product are shown in Table 1.
Shown in.
【0024】実施例6 (1)不織布材料の製造 直径3mmφの角状ペレットを液体窒素中に浸漬して冷
凍した後、機械的粉砕を行なって、その粉砕パウダーを
篩により150〜1,300μmまでに分級した結晶性
ポリプロピレン樹脂パウダー(メルトフローレート75
g/10分のホモポリマー)と、直径10μmφ、長さ
25mmのガラス繊維とを用いて、抄造法によりガラス
繊維含有量40重量%と結晶性ポリプロピレン樹脂含有
量60重量%の組成の目付け量が1,345g/m2の
不織布材料を製造した。 (2)繊維強化熱可塑性樹脂シートの製造 この不織布材料2枚を用いて、プレス成形により板厚
2.25mmの繊維強化熱可塑性樹脂シート(密度1.
196g/cm3)を製造した。プレス成形の条件は、
予熱を200℃、無負荷で5分間行ない、次ぎに、圧力
40kgf/cm2で5分間加圧し、続いて60℃に設
定された冷却プレスに移して繊維強化熱可塑性樹脂シー
トを成形した。 (3)予備成形 この繊維強化熱可塑性樹脂シートを遠赤外線ヒーター加
熱炉に入れ、表面温度が215℃になるまで加熱したと
ころ、板厚が約15mmくらいまで膨脹した。 (4)本成形 続いて90℃に温度調節したプレス成形機に、キャビテ
ィが5.2mm厚になるスペーサーを取り付け、この加
熱膨脹した繊維強化熱可塑性樹脂シートを挿入し、面圧
5kgf/cm2でプレス成形し板厚5.03mmのシ
ート状成形品を得た。このシート状成形品の物性を表1
に示す。[0024] Example 6 (1) after the angular pellets prepared diameter 3 mm phi-woven material was frozen by immersing in liquid nitrogen, and subjected to mechanical grinding, 150~1,300Myuemu the pulverized powder by sieve Crystalline polypropylene resin powder (melt flow rate 75
g / 10 min homopolymer) and glass fiber having a diameter of 10 μm φ and a length of 25 mm, and a basis weight of a composition having a glass fiber content of 40% by weight and a crystalline polypropylene resin content of 60% by weight by a papermaking method. Produced a non-woven material of 1,345 g / m 2 . (2) Production of Fiber Reinforced Thermoplastic Resin Sheet Using these two nonwoven fabric materials, a fiber reinforced thermoplastic resin sheet having a plate thickness of 2.25 mm (density 1.
196 g / cm 3 ) was produced. The press molding conditions are
Preheating was carried out at 200 ° C. for 5 minutes with no load, then, pressure was applied at a pressure of 40 kgf / cm 2 for 5 minutes, and then transferred to a cooling press set at 60 ° C. to form a fiber reinforced thermoplastic resin sheet. (3) Preforming This fiber-reinforced thermoplastic resin sheet was placed in a far-infrared heater heating furnace and heated until the surface temperature reached 215 ° C., and the sheet thickness expanded to about 15 mm. (4) Main molding Subsequently, a spacer having a cavity thickness of 5.2 mm was attached to a press molding machine whose temperature was adjusted to 90 ° C., the heat-expanded fiber-reinforced thermoplastic resin sheet was inserted, and the surface pressure was 5 kgf / cm 2. Was press-molded to obtain a sheet-shaped molded product having a plate thickness of 5.03 mm. The physical properties of this sheet-shaped molded product are shown in Table 1.
Shown in.
【0025】実施例7 (1)不織布材料の製造 100〜1,000μmまでに分級した結晶性ポリプロ
ピレン樹脂パウダー(メルトフローレート100g/1
0分のホモポリマー)と、直径10μmφ、長さ13m
mのガラス繊維とを用いて、抄造法によりガラス繊維含
有量60重量%とポリプロピレン樹脂含有量40重量%
の組成の目付け量が1,480g/m2の不織布材料を
製造した。 (2)繊維強化熱可塑性樹脂シートの製造 この不織布材料2枚を用いて、プレス成形により板厚
2.37mmの繊維強化熱可塑性樹脂シート(密度1.
250g/cm3)を製造した。プレス成形の条件は、
予熱を220℃、無負荷で7分間行ない、次ぎに、圧力
40kgf/cm2で5分間加圧し、続いて100℃に
設定された冷却プレスに移して繊維強化熱可塑性樹脂シ
ートを成形した。 (3)予備成形 この繊維強化熱可塑性樹脂シートを遠赤外線ヒーター加
熱炉に入れ、表面温度が200℃になるまで加熱したと
ころ、板厚が約17mmくらいまで膨脹した。 (4)本成形 続いて90℃に温度調節したプレス成形機に、キャビテ
ィが3.5mm厚になるスペーサーを取り付け、この加
熱膨脹した繊維強化熱可塑性樹脂シートを挿入し、面圧
5kgf/cm2でプレス成形し板厚3.38mmのシ
ート状成形品を得た。このシート状成形品の物性を表1
に示す。Example 7 (1) Production of non-woven fabric material A crystalline polypropylene resin powder classified to 100 to 1,000 μm (melt flow rate 100 g / 1
0 minute homopolymer), diameter 10 μm φ , length 13 m
glass fiber content of 60% by weight and polypropylene resin content of 40% by weight by a papermaking method using m glass fiber
A non-woven fabric material having a basis weight of 1,480 g / m 2 was produced. (2) Production of Fiber Reinforced Thermoplastic Resin Sheet Using these two nonwoven fabric materials, a fiber reinforced thermoplastic resin sheet having a plate thickness of 2.37 mm (density 1.
250 g / cm 3 ) was produced. The press molding conditions are
Preheating was carried out at 220 ° C. for 7 minutes with no load, then, pressure was applied for 5 minutes at a pressure of 40 kgf / cm 2 , and then transferred to a cooling press set at 100 ° C. to form a fiber-reinforced thermoplastic resin sheet. (3) Preforming This fiber-reinforced thermoplastic resin sheet was placed in a far-infrared heater heating furnace and heated until the surface temperature reached 200 ° C., and the sheet thickness expanded to about 17 mm. (4) Main molding Subsequently, a spacer having a thickness of 3.5 mm is attached to a press molding machine whose temperature is adjusted to 90 ° C., the heat-expanded fiber-reinforced thermoplastic resin sheet is inserted, and the surface pressure is 5 kgf / cm 2. Was press-molded to obtain a sheet-shaped molded product having a plate thickness of 3.38 mm. The physical properties of this sheet-shaped molded product are shown in Table 1.
Shown in.
【0026】[0026]
【表1】[Table 1]
【0027】比較例1 (1)不織布材料の製造 直径4mmφの丸状ペレットを液体窒素中に浸漬して冷
凍した後、機械的粉砕を行なって、その粉砕パウダーを
篩により150〜1,000μmまでに分級した結晶性
ポリプロピレン樹脂パウダー(メルトフローレート25
g/10分のホモポリマー)と、直径10μmφ、長さ
13mmのガラス繊維とを用いて、抄造法によりガラス
繊維含有量40重量%と結晶性ポリプロピレン樹脂含有
量60重量%の組成の目付け量が1,370g/m2の
不織布材料を製造した。 (2)繊維強化熱可塑性樹脂シートの製造 この不織布材料1枚を用いて、プレス成形により板厚
1.15mmの繊維強化熱可塑性樹脂シート(密度1.
188g/cm3)を製造した。プレス成形の条件は、
予熱を210℃、無負荷で5分間行ない、次ぎに、圧力
20kgf/cm2で5分間加圧し、続いて110℃に
設定された冷却プレスに移して繊維強化熱可塑性樹脂シ
ートを成形した。 (3)予備成形 この繊維強化熱可塑性樹脂シートを遠赤外線ヒーター加
熱炉に入れ、表面温度が210℃になるまで加熱したと
ころ、板厚が約9mmくらいまで膨脹した。 (4)本成形 続いて70℃に温度調節したプレス成形機に、キャビテ
ィが1.5mm厚になるスペーサーを取り付け、この加
熱膨脹した繊維強化熱可塑性樹脂シートを挿入し、面圧
5kgf/cm2でプレス成形し板厚1.37mmのシ
ート状成形品を得た。このシート状成形品の物性を表2
に示す。[0027] Comparative Example 1 (1) After a round pellet manufacturing diameter 4 mm phi-woven material was frozen by immersing in liquid nitrogen, and subjected to mechanical grinding, 150~1,000Myuemu the pulverized powder by sieve Crystalline polypropylene resin powder (melt flow rate 25
g / 10 min homopolymer) and glass fiber having a diameter of 10 μm φ and a length of 13 mm, and a basis weight of a composition having a glass fiber content of 40% by weight and a crystalline polypropylene resin content of 60% by weight by a papermaking method. Produced a non-woven material of 1,370 g / m 2 . (2) Production of Fiber Reinforced Thermoplastic Resin Sheet Using one piece of this nonwoven fabric material, a fiber reinforced thermoplastic resin sheet having a plate thickness of 1.15 mm (density 1.
188 g / cm 3 ) was produced. The press molding conditions are
Preheating was carried out at 210 ° C. for 5 minutes with no load, then, pressure was applied at a pressure of 20 kgf / cm 2 for 5 minutes, and then transferred to a cooling press set at 110 ° C. to form a fiber-reinforced thermoplastic resin sheet. (3) Preforming This fiber-reinforced thermoplastic resin sheet was placed in a far-infrared heater heating furnace and heated until the surface temperature reached 210 ° C, and the sheet thickness expanded to about 9 mm. (4) Main molding Subsequently, a spacer having a cavity thickness of 1.5 mm was attached to a press molding machine whose temperature was adjusted to 70 ° C., the heat-expanded fiber reinforced thermoplastic resin sheet was inserted, and the surface pressure was 5 kgf / cm 2. Was press-molded to obtain a sheet-shaped molded product having a plate thickness of 1.37 mm. Table 2 shows the physical properties of this sheet-shaped molded product.
Shown in.
【0028】比較例2 比較例1の「(1)不織布材料の製造」及び「(2)繊
維強化熱可塑性樹脂シートの製造」と同様の方法にて繊
維強化熱可塑性樹脂シートを成形し、該シートを遠赤外
線ヒーター加熱炉に入れ、表面温度が210℃になるま
で加熱したところ、板厚が約9mmくらいまで膨脹し
た。続いて70℃に温度調節したプレス成形機にキャビ
ティが2mm厚になるスペーサーを取り付け、この加熱
膨脹した繊維強化熱可塑性樹脂シートを挿入して、面圧
10kgf/cm2にてプレス成形し、板厚1.91m
mのシート状成形品を得た。このシート状成形品の物性
を表2に示す。Comparative Example 2 A fiber reinforced thermoplastic resin sheet was formed by the same method as in “(1) Production of non-woven fabric material” and “(2) Production of fiber reinforced thermoplastic resin sheet” of Comparative Example 1. When the sheet was placed in a far infrared heater heating furnace and heated until the surface temperature reached 210 ° C., the sheet thickness expanded to about 9 mm. Subsequently, a spacer having a cavity thickness of 2 mm was attached to a press molding machine whose temperature was adjusted to 70 ° C., the heat-expanded fiber-reinforced thermoplastic resin sheet was inserted, and press molding was performed at a surface pressure of 10 kgf / cm 2 to obtain a plate. Thickness 1.91m
A sheet-shaped molded product of m was obtained. Table 2 shows the physical properties of this sheet-shaped molded product.
【0029】比較例3 比較例1の「(1)不織布材料の製造」及び「(2)繊
維強化熱可塑性樹脂シートの製造」と同様の方法にて繊
維強化熱可塑性樹脂シートを成形し、該シートを遠赤外
線ヒーター加熱炉に入れ、表面温度が210℃になるま
で加熱したところ、板厚が約9mmくらいまで膨脹し
た。続いて70℃に温度調節したプレス成形機にキャビ
ティが2.5mm厚になるスペーサーを取り付け、この
加熱膨脹した繊維強化熱可塑性樹脂シートを挿入して、
面圧10kgf/cm2にてプレス成形し、板厚2.1
1mmのシート状成形品を得た。このシート状成形品の
物性を表2に示す。Comparative Example 3 A fiber-reinforced thermoplastic resin sheet was molded by the same method as in “(1) Production of non-woven fabric material” and “(2) Production of fiber-reinforced thermoplastic resin sheet” of Comparative Example 1. When the sheet was placed in a far infrared heater heating furnace and heated until the surface temperature reached 210 ° C., the sheet thickness expanded to about 9 mm. Subsequently, a spacer having a cavity thickness of 2.5 mm was attached to a press molding machine whose temperature was adjusted to 70 ° C., and the heat-expanded fiber-reinforced thermoplastic resin sheet was inserted,
Press formed with a surface pressure of 10 kgf / cm 2 , and a plate thickness of 2.1.
A 1 mm sheet-shaped molded product was obtained. Table 2 shows the physical properties of this sheet-shaped molded product.
【0030】比較例4 比較例1の「(1)不織布材料の製造」及び「(2)繊
維強化熱可塑性樹脂シートの製造」と同様の方法にて繊
維強化熱可塑性樹脂シートを成形し、該シートを遠赤外
線ヒーター加熱炉に入れ、表面温度が210℃になるま
で加熱したところ、板厚が約9mmくらいまで膨脹し
た。続いて70℃に温度調節したプレス成形機にキャビ
ティが2.5mm厚になるスペーサーを取り付け、この
加熱膨脹した繊維強化熱可塑性樹脂シートを挿入して、
面圧10kgf/cm2にてプレス成形し、板厚3.9
8mmのシート状成形品を得た。このシート状成形品の
物性を表2に示す。Comparative Example 4 A fiber-reinforced thermoplastic resin sheet was molded by the same method as in “(1) Production of non-woven fabric material” and “(2) Production of fiber-reinforced thermoplastic resin sheet” of Comparative Example 1. When the sheet was placed in a far infrared heater heating furnace and heated until the surface temperature reached 210 ° C., the sheet thickness expanded to about 9 mm. Subsequently, a spacer having a cavity thickness of 2.5 mm was attached to a press molding machine whose temperature was adjusted to 70 ° C., and the heat-expanded fiber-reinforced thermoplastic resin sheet was inserted,
Press-formed at a surface pressure of 10 kgf / cm 2 and a plate thickness of 3.9
An 8 mm sheet-shaped molded product was obtained. Table 2 shows the physical properties of this sheet-shaped molded product.
【0031】[0031]
【表2】 [Table 2]
【0032】比較例5 自動車の内装材料として市販される木質系ポリプロピレ
ンシートの物性値を表3に示す。Comparative Example 5 Table 3 shows the physical properties of a wood-based polypropylene sheet commercially available as an interior material for automobiles.
【0033】比較例6 自動車の内装材料として市販されるフェノール樹脂系合
成木板の物性値を表3に示す。Comparative Example 6 Table 3 shows the physical property values of a phenolic resin-based synthetic wooden board which is commercially available as an automobile interior material.
【0034】比較例7 ホットフロースタンピング成形法(プレス成形機上に設
置した状態の金型に、射出成形機から樹脂を射出し、次
いで金型を閉じて成形する方法)を用いて、結晶性ポリ
プロピレン樹脂にタルクを40重量%含有させたドアト
リム成形品を成形した。その成形品の物性値を表3に示
す。Comparative Example 7 Crystallinity was obtained by using the hot flow stamping molding method (a method of injecting a resin from an injection molding machine into a mold installed on a press molding machine, and then closing the mold for molding). A door trim molded product containing polypropylene resin containing 40% by weight of talc was molded. Table 3 shows the physical properties of the molded product.
【0035】[0035]
【表3】 [Table 3]
【0036】比較例8 特開昭60−179234号公報に記載の繊維強化プラ
スチック材料の成形品の物性値を表4及び表5に示す。Comparative Example 8 Physical properties of a molded article of the fiber reinforced plastic material described in JP-A-60-179234 are shown in Tables 4 and 5.
【0037】[0037]
【表4】 [Table 4]
【0038】[0038]
【表5】 [Table 5]
【0039】そして、これら実施例及び比較例から、実
施例により得られた本発明方法による繊維強化熱可塑性
樹脂シートの板状膨脹成形品が、比較例により得られた
繊維強化熱可塑性樹脂シートの板状膨脹成形品と比較し
て、軽量で尚且つ高剛性であることを明確に立証するた
め、これら実施例及び比較例における成形品の密度と曲
げ弾性率の相関関係を図2に表わす。図2にて明らかに
されるように、本発明の繊維強化熱可塑性樹脂シートの
板状膨脹成形品の密度と曲げ弾性率の相関によるライン
(ブロック点1〜8)は、比較例1〜4によるライン
(プロット点10〜13)、比較例5〜7によるライ
ン(ブロック点14〜17)及び比較例8によるライ
ン及び(プロット点18〜26)に対して、同程度
の曲げ弾性率を有する場合の密度が低くなっていること
が明らかにされている。すなわち同一形状の板状成形品
であれば、より軽量の成形品になることが立証されてい
る。From these Examples and Comparative Examples, the plate-shaped expansion-molded articles of the fiber-reinforced thermoplastic resin sheet according to the method of the present invention obtained by the Examples are the same as those of the fiber-reinforced thermoplastic resin sheets obtained by the Comparative Examples. In order to clearly prove that the molded product is lightweight and highly rigid as compared with the plate-shaped expansion molded product, the correlation between the density and the bending elastic modulus of the molded product in these Examples and Comparative Examples is shown in FIG. As shown in FIG. 2, the lines (block points 1 to 8) according to the correlation between the density and the bending elastic modulus of the plate-shaped expansion-molded product of the fiber-reinforced thermoplastic resin sheet of the present invention are the comparative examples 1 to 4. And the lines according to Comparative Examples 5 to 7 (block points 14 to 17) and the lines according to Comparative Example 8 and (plot points 18 to 26) have substantially the same flexural modulus. It has been shown that the density in the case is lower. That is, it has been proved that a plate-shaped molded product having the same shape can be a lighter molded product.
【0040】[0040]
【発明の効果】本発明の軽量繊維強化熱可塑性樹脂成形
品の製造方法によって得られる繊維強化熱可塑性樹脂成
形品は、従来の自動車の内装材であるフェノール樹脂系
合成木板などに比べて、密度が低く軽量であり、しかも
高剛性の繊維強化熱可塑性樹脂シート状成形品(パネル
状物)であることから、自動車の内装材などに適してい
る。The fiber-reinforced thermoplastic resin molded product obtained by the method for producing a lightweight fiber-reinforced thermoplastic resin molded product of the present invention has a higher density than that of a conventional phenol resin-based synthetic wood board, which is an interior material for automobiles. It is a low- and light-weight, high-rigidity fiber-reinforced thermoplastic resin sheet-shaped molded product (panel-shaped product), and is therefore suitable as an interior material for automobiles.
【0041】[0041]
【図1】図1は本発明実施例における軽量繊維強化熱可
塑性樹脂成形品の製造方法に用いられる繊維強化熱可塑
性樹脂シートを抄造法を用いた湿式法によってスタンパ
ブルシートを製造する工程の概念図である。FIG. 1 is a concept of a process for producing a stampable sheet by a wet method using a papermaking method for a fiber-reinforced thermoplastic resin sheet used in a method for producing a lightweight fiber-reinforced thermoplastic resin molded article in an example of the present invention. It is a figure.
【図2】図2は本発明実施例及び比較例における成形品
の密度と曲げ弾性率の相関関係を表わす図である。FIG. 2 is a diagram showing a correlation between the density and the flexural modulus of a molded product in Examples of the present invention and Comparative Examples.
1 補強用繊維 2 熱可塑性樹脂粉末 3 分散槽 4 ポンプ 5 メッシュ状の電動ベルトコンベアー 6 ヘッドボックス 7 ウエットボックス 8 不織布材料 9 熱風乾燥炉 10 ダブルベルトコンベアー式の連続スチールプレス 11 繊維強化熱可塑性樹脂シート 12 カッター 13 マット状繊維強化熱可塑性樹脂シート 14 リール 1 Fiber for Reinforcement 2 Thermoplastic Resin Powder 3 Dispersion Tank 4 Pump 5 Mesh Electric Belt Conveyor 6 Head Box 7 Wet Box 8 Nonwoven Material 9 Hot Air Drying Furnace 10 Double Belt Conveyor Type Continuous Steel Press 11 Fiber Reinforced Thermoplastic Resin Sheet 12 Cutter 13 Matte Fiber Reinforced Thermoplastic Resin Sheet 14 Reel
───────────────────────────────────────────────────── フロントページの続き (72)発明者 的 場 哲 愛知県東海市東海町5−3 新日本製鐵株 式会社 名古屋製鐵所内 (72)発明者 木 村 隆 夫 三重県四日市市東邦町1番地 三菱油化株 式会社 四日市総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoshi Satoshi Tokai-shi, Aichi Prefecture 5-3 Shinkai Nippon Steel Co., Ltd. Nagoya Steel Works (72) Inventor Takao Kimura Toho-cho, Yokkaichi-shi, Mie No. 1 Mitsubishi Petrochemical Co., Ltd. Yokkaichi Research Institute
Claims (1)
樹脂マトリックス中に30〜70重量%の割合で分散さ
せてなる繊維強化熱可塑性樹脂シートを、該熱可塑性樹
脂の融点以上に加熱し、前記繊維にかかる応力を減少さ
せることによって、該シートの厚み方向に3〜8倍膨脹
拡大させた後、該シートを金型に移動して圧縮成形する
密度が0.92g/cm3 以下の軽量繊維強化熱可塑性
樹脂成形品の製造方法において、前記マトリックスの熱
可塑性樹脂にメルトフローレートが50g/10分以上
の結晶性ポリプロピレンを用いることを特徴とする軽量
繊維強化熱可塑性樹脂成形品の製造方法。1. A fiber-reinforced thermoplastic resin sheet obtained by dispersing reinforcing fibers having a length of 6 to 50 mm in a thermoplastic resin matrix in a proportion of 30 to 70% by weight is heated to a temperature not lower than the melting point of the thermoplastic resin. Then, by reducing the stress applied to the fibers, the sheet is expanded and expanded 3 to 8 times in the thickness direction of the sheet, and then the sheet is moved to a mold and compression-molded so that the density is 0.92 g / cm 3 or less. In the method for producing a lightweight fiber-reinforced thermoplastic resin molded article, a lightweight fiber-reinforced thermoplastic resin molded article characterized in that crystalline polypropylene having a melt flow rate of 50 g / 10 min or more is used as the thermoplastic resin of the matrix. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3202005A JPH0739107B2 (en) | 1991-08-12 | 1991-08-12 | Method for producing lightweight fiber reinforced thermoplastic resin molded article |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3202005A JPH0739107B2 (en) | 1991-08-12 | 1991-08-12 | Method for producing lightweight fiber reinforced thermoplastic resin molded article |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0542609A JPH0542609A (en) | 1993-02-23 |
JPH0739107B2 true JPH0739107B2 (en) | 1995-05-01 |
Family
ID=16450351
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3202005A Expired - Lifetime JPH0739107B2 (en) | 1991-08-12 | 1991-08-12 | Method for producing lightweight fiber reinforced thermoplastic resin molded article |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0739107B2 (en) |
-
1991
- 1991-08-12 JP JP3202005A patent/JPH0739107B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0542609A (en) | 1993-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4940629A (en) | Fiber reinforced thermoplastic integral skin foams and manufacture thereof | |
JPH04163109A (en) | Manufacture of fiber-reinforced thermoplastic resin molding material | |
CA1157605A (en) | Manufactured articles based on thermoplastic polymers reinforced with glass fibers | |
US20170144388A1 (en) | Moulded Product for Automotive Panels | |
CN111038042A (en) | Ultra-light high-strength high-sound-absorption fiber reinforced thermoplastic foaming composite board and preparation method thereof | |
EP0548696B1 (en) | Process for the production of fiber-reinforced polypropylene resin sheets | |
CN101735545B (en) | High rigidity light composite board for automobile roof and preparation method thereof | |
JP2797922B2 (en) | Wood-based thermoplastic molding plate | |
PL185405B1 (en) | Thermoplastic moulding, method of making same and application thereof | |
JP3032584B2 (en) | Method for improving appearance of fiber-reinforced thermoplastic resin molded product | |
EP1770115A1 (en) | Fibre-reinforced sheet-like semi-finished product | |
Bigg | Manufacturing methods for long fiber reinforced polypropylene sheets and laminates | |
JPH0739107B2 (en) | Method for producing lightweight fiber reinforced thermoplastic resin molded article | |
KR102009811B1 (en) | Composite material preform board and method for preparing the same | |
JPH03264314A (en) | Manufacture of fiber reinforced thermoplastic resin molded body | |
EP2298541A1 (en) | Moulded automotive part | |
JP3182217B2 (en) | Method for producing fiber-reinforced foamed resin structure | |
JPH04241931A (en) | Manufacture of composite molded product | |
JPH04223160A (en) | Improvement of external appearance of fiber reinforced thermoplastic resin molded product | |
JPH0649363B2 (en) | Method for producing fiber molding for thermoforming | |
JPH05154840A (en) | Fiber reinforced thermoplastic resin composite material | |
JP3654723B2 (en) | Molded sound absorbing material and method for producing the same | |
Bigg | Processing‐property relationships for pet sheet composites | |
JPH0971663A (en) | Stampable sheet formed by screening method and high strength lightweight stampable sheet formed product by using the same | |
JPH03130118A (en) | Manufacture of fiber reinforced thermoplastic resin molded item |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19951024 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080501 Year of fee payment: 13 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080501 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090501 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090501 Year of fee payment: 14 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090501 Year of fee payment: 14 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090501 Year of fee payment: 14 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090501 Year of fee payment: 14 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090501 Year of fee payment: 14 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100501 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110501 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 17 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120501 Year of fee payment: 17 |