JPH0738306A - High frequency filter - Google Patents

High frequency filter

Info

Publication number
JPH0738306A
JPH0738306A JP17813993A JP17813993A JPH0738306A JP H0738306 A JPH0738306 A JP H0738306A JP 17813993 A JP17813993 A JP 17813993A JP 17813993 A JP17813993 A JP 17813993A JP H0738306 A JPH0738306 A JP H0738306A
Authority
JP
Japan
Prior art keywords
circuit
frequency
terminal
filter
high frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17813993A
Other languages
Japanese (ja)
Other versions
JP3178566B2 (en
Inventor
Tsuneo Tokumitsu
恒雄 徳満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17813993A priority Critical patent/JP3178566B2/en
Publication of JPH0738306A publication Critical patent/JPH0738306A/en
Application granted granted Critical
Publication of JP3178566B2 publication Critical patent/JP3178566B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Filters And Equalizers (AREA)

Abstract

PURPOSE:To improve the frequency selection characteristic, and also, to miniaturize this high frequency filter. CONSTITUTION:This high frequency filter is provided with a first multi-terminal pair circuit 1 (called a minute transmission line periodic structure) constituted by connecting plural pieces of minute electric length transmission lines having about 1/10 wavelength or below in a mesh-like or a linear (cascade-like) or shape of combination of both shapes, and a second multi-terminal pair circuit 2 having the same constitution as that of the circuit 1, and between both terminal pairs and between plural sets of terminals, a circuit consisting of an inductance or a capacitor is connected, and each one terminal of the circuits 1 and 2 is constituted as an input terminal or an output terminal. This filter becomes a characteristic being near an LC parallel resonance circuit in a low frequency band, and loss in a passing area being comparatively lower than its antiresonance frequency becomes small, and can be made roughly flat. On the other hand, in a high frequency band, a capacity value can be increased together with a capacity value by frequency dependency of an equivalent capacity of a filter input/output terminal, therefore, the attenuation quantity of an obstructing area can be enlarged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集積回路や多層基板への
組み込みに適する高周波フィルタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency filter suitable for being incorporated in an integrated circuit or a multilayer substrate.

【0002】[0002]

【従来の技術】フィルタは一般に低域通過フィルタを基
本としているので、以下、低域通過フィルタを例として
説明する。低域通過フィルタは送受信装置において不要
波を除去するために重要な回路の一つである。図7
(a)および(b)は従来のマイクロ波集積回路におけ
る低域通過フィルタの構成例である。図7(a)は分布
定数線路を用いて構成したもので、31および32は入
出力端子、33,35および37は低インピーダンス伝
送線路、34および36は高インピーダンス伝送線路で
ある。1/4波長伝送線路を縦続接続して構成され、高
低インピーダンスで順次インピーダンス変換していくこ
とにより、低域通過フィルタ特性を実現している。この
等価回路は図7(b)で表される。図7(b)は低域通
過フィルタの一般的表現であり、集中定数インダクタ
(L)およびキャパシタ(C)を用いた集中定数低域通
過フィルタとして実現されている。さらに場合に応じ
て、キャパシタを先端開放伝送線路(オープンスタブ)
にしたり、インダクタを高インピーダンス伝送線路にす
ることにより、細かく性能が調整される。ここで、図7
(a)と(b)において概略対応する要素は同じ番号を
付している。
2. Description of the Related Art Since a filter is generally based on a low pass filter, a low pass filter will be described below as an example. The low-pass filter is one of the important circuits for removing unnecessary waves in the transmitter / receiver. Figure 7
(A) And (b) is a structural example of the low pass filter in the conventional microwave integrated circuit. FIG. 7A shows a configuration using distributed constant lines, 31 and 32 are input / output terminals, 33, 35 and 37 are low impedance transmission lines, and 34 and 36 are high impedance transmission lines. It is configured by connecting ¼ wavelength transmission lines in cascade, and realizes low-pass filter characteristics by sequentially performing impedance conversion with high and low impedances. This equivalent circuit is shown in FIG. FIG. 7B is a general expression of a low pass filter, which is realized as a lumped constant low pass filter using a lumped constant inductor (L) and a capacitor (C). Depending on the case, a capacitor may be used as an open transmission line (open stub).
Or by using a high impedance transmission line as the inductor, the performance is finely adjusted. Here, FIG.
Elements that roughly correspond to each other in (a) and (b) have the same numbers.

【0003】図8は並列共振回路(一般には帯域阻止フ
ィルタ)を利用した低域通過フィルタの例で、簡易かつ
小型で、特定の周波数では図7のフィルタよりも大きな
減衰を実現できるものである。41および42は入出力
端子である。43はインダクタ(L)、44はキャパシ
タ(C)でこれらの反共振周波数f0 付近で非常に大き
な減衰量を呈する。45および46は並列容量(Cs )
で、周波数が高くなるにしたがってインピーダンスが小
さくなる。その結果、図9に示すように、反共振周波数
0 以下では信号が通過しやすく、f0 以上では信号通
過量が抑圧されることになり、低域通過フィルタとな
る。
FIG. 8 shows an example of a low-pass filter using a parallel resonant circuit (generally, a band elimination filter), which is simple and small in size, and can realize greater attenuation than a filter of FIG. 7 at a specific frequency. . 41 and 42 are input / output terminals. Reference numeral 43 is an inductor (L), and 44 is a capacitor (C), which exhibits a very large attenuation amount in the vicinity of these anti-resonance frequencies f 0 . 45 and 46 are parallel capacitors (Cs)
Therefore, the impedance becomes smaller as the frequency becomes higher. As a result, as shown in FIG. 9, the anti-resonance frequency f 0 tends to pass signals in the following, will be the signal throughput is suppressed at f 0 above, a low-pass filter.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、マイク
ロ波集積回路、特にモノリシックマイクロ波集積回路に
上記図7の低域通過フィルタを適用した場合、幾つかの
問題点があった。図7(a)は全長が1/4波長の数倍
の回路長となり、また幅広の低インピーダンス線路を必
要とし、周波数に反比例して占有面積が大きくなるとい
う欠点があった。そのため、ミリ波より低い周波数帯で
は実用上適用困難であった。
However, when the low pass filter shown in FIG. 7 is applied to a microwave integrated circuit, particularly a monolithic microwave integrated circuit, there are some problems. FIG. 7A has a drawback that the total length is several times as long as a quarter wavelength, a wide low impedance line is required, and the occupied area becomes large in inverse proportion to the frequency. Therefore, it was practically difficult to apply in a frequency band lower than the millimeter wave.

【0005】図7(b)ではインダクタを形成する金属
導体の幅が一般的に10ないし20ミクロンと狭いため
インダクタの損失の影響が大きく、通過帯域内で周波数
増加と共に損失が増加する、また、阻止域減衰性能の向
上を目的として段数を増加するとこの傾向が顕著にな
り、遮断周波数設計値(1/π√LC)に近づくにつれ
て許容できない通過損失を呈するという欠点があった。
In FIG. 7 (b), the width of the metal conductor forming the inductor is generally as narrow as 10 to 20 microns, so that the influence of the loss of the inductor is large, and the loss increases with the increase of frequency in the pass band. This tendency becomes remarkable when the number of stages is increased for the purpose of improving the stopband attenuation performance, and there is a drawback that unacceptable passage loss is exhibited as the cutoff frequency design value (1 / π√LC) is approached.

【0006】図8の低域通過フィルタでは、並列容量
(Cs )が大きい程阻止域減衰量を大きくできる反面、
該並列容量の影響により、インダクタ(L)とキャパシ
タ(C)で決まるノッチ周波数(1/2π√LC)より
もずっと低い通過周波数帯域しか得られなかった。これ
は固定の並列容量を使用していることによる。つまり、
図7、図8の低域通過フィルタはモノリシック集積回路
においては形状が大きい、または周波数選択性が低いと
いう欠点があった。本発明はこれらの欠点を解決し、周
波数選択性に優れた小型高周波フィルタを提供すること
にある。
In the low pass filter of FIG. 8, the larger the parallel capacitance (Cs) is, the larger the stop band attenuation amount can be.
Due to the influence of the parallel capacitance, a pass frequency band much lower than the notch frequency (1 / 2π√LC) determined by the inductor (L) and the capacitor (C) was obtained. This is due to the use of fixed parallel capacitance. That is,
The low-pass filters of FIGS. 7 and 8 have a drawback that they are large in shape or have low frequency selectivity in a monolithic integrated circuit. The present invention solves these drawbacks and provides a small high-frequency filter having excellent frequency selectivity.

【0007】[0007]

【課題を解決するための手段とその作用】この発明の高
周波フィルタは、10分の一波長程度、またはそれ以下
の長さを有する微小電気長伝送線路複数個を網目状また
は線状または両形状の組合わせの形状に接続された第1
の多端子対回路と、該第1の多端子対回路と同様の構成
を有する第2の多端子対回路とを有し、該両端子対間で
複数組の端子間にインダクタ又はキャパシタより成る回
路を接続し、第1の多端子対回路の一端子を入力端子
(又は出力端子)とし、第2の多端子対回路の一端子を
出力端子(又は入力端子)としたことを特徴とする。
The high frequency filter of the present invention comprises a plurality of minute electrical length transmission lines each having a length of about one-tenth wavelength or less, in a mesh shape, a linear shape or both shapes. First connected to a combination of shapes
A multi-terminal pair circuit and a second multi-terminal pair circuit having the same configuration as the first multi-terminal pair circuit, and an inductor or a capacitor is provided between a plurality of pairs of terminals between the pair of terminals. A circuit is connected, and one terminal of the first multi-terminal pair circuit is used as an input terminal (or an output terminal), and one terminal of the second multi-terminal pair circuit is used as an output terminal (or an input terminal). .

【0008】本発明では、第1、第2多端子対回路が波
長に対して十分に短い微小伝送線路複数個を網目状また
は線状(カスケード状)または両形状の組合せの形状に
接続した構造(以下周期構造と言う)をなしており、そ
の特性は周波数が高くなるに従って、点(集中定数)か
ら分布定数に移行する。また、多端子対回路間で複数組
の端子間に接続するインダクタおよびキャパシタの組み
合わせにより低域通過フィルタ、帯域通過フィルタ等が
実現できる。一部の端子間にインダクタL、を接続し、
他の端子間にキャパシタC、を接続した構成では低域通
過フィルタとなる。
According to the present invention, the first and second multi-terminal pair circuits have a structure in which a plurality of minute transmission lines that are sufficiently short with respect to the wavelength are connected in a mesh shape, a linear shape (cascade shape), or a combination of both shapes. (Hereinafter referred to as a periodic structure), and its characteristics shift from a point (lumped constant) to a distributed constant as the frequency increases. Further, a low pass filter, a band pass filter, etc. can be realized by combining inductors and capacitors connected between a plurality of sets of terminals in a multi-terminal pair circuit. Connect inductor L, between some terminals,
A configuration in which the capacitor C is connected between the other terminals serves as a low pass filter.

【0009】この低域通過フィルタを例に作用を説明す
る。LC反共振周波数よりも低い周波数では該伝送線路
周期構造を点と見做すことができるので、単純な並列接
続LC共振回路となり、通過帯域ではロスが小さく、比
較的平坦な特性にすることができる。LC反共振周波数
では入出力端子間のインピーダンスが非常に大きく(無
限大)なるので、この付近では信号が大幅に減衰し、L
C反共振周波数よりも高い周波数領域では、周期構造の
効果により実効的に対地間に周波数特性を有する容量が
生じ、かつ、該容量値(=a/[1−bω2 ];a,b
は定数で、1>bω2)が周波数ωの増加に伴って急速
に増加する等の効果を生じるので、阻止域において従来
の図7または図8の低域通過フィルタ以上に信号の通過
を抑圧することができる。
The operation will be described by taking this low-pass filter as an example. Since the transmission line periodic structure can be regarded as a point at a frequency lower than the LC anti-resonance frequency, a simple parallel-connected LC resonance circuit is obtained, and a loss in the pass band is small and a relatively flat characteristic can be obtained. it can. At the LC anti-resonance frequency, the impedance between the input and output terminals becomes very large (infinity), so the signal is greatly attenuated in this vicinity, and L
In the frequency region higher than the C anti-resonance frequency, a capacitance having a frequency characteristic is effectively generated between the ground due to the effect of the periodic structure, and the capacitance value (= a / [1-bω 2 ]; a, b
Is a constant, and 1> bω 2 ) rapidly increases as the frequency ω increases. Therefore, in the stop band, the signal pass is suppressed more than in the conventional low pass filter of FIG. 7 or 8. can do.

【0010】本発明では、周波数増加に伴って減衰域の
信号抑圧効果が増大することから、通過帯域を広く保ち
つつ阻止域減衰量を大きくできるので周波数選択性の良
い小型フィルタとなり、従来例の欠点を克服することが
できる。端子間をインダクタ・キャパシタ直列回路で接
続した帯域通過フィルタの場合にも該容量の周波数依存
性が保持される。
In the present invention, since the signal suppression effect in the attenuation band increases as the frequency increases, the stop band attenuation amount can be increased while keeping the pass band wide, resulting in a small filter with good frequency selectivity. The drawbacks can be overcome. In the case of a bandpass filter in which terminals are connected by an inductor-capacitor series circuit, the frequency dependence of the capacitance is maintained.

【0011】[0011]

【実施例】図1は、本発明低域通過フィルタの第1の実
施例の構成を示す図である。図において、10および1
1は入出力端子、1および2は微小伝送線路を田の字形
に組み合わせた周期構造を有する4端子対回路(端子
名:A;B;C;D;およびa;b;c;d)である。
ここで、微小伝送線路の特性インピーダンスをZ、物理
長をI、電気長2π×I/λg (λg は波長)をθとす
る。微小伝送線路とは、物理長I≪λg (波長)または
電気長θ≪πを意味するが、ここではI≒λg /10又
はI<λg /10とする。3および4はそれぞれ端子A
−a間、端子C−c間に接続されるキャパシタ(Cp
)、5および6はそれぞれ端子B−b間、端子D−d
間に接続されるインダクタ(Lp )である。
1 is a diagram showing the configuration of a first embodiment of a low-pass filter according to the present invention. In the figure, 10 and 1
Reference numeral 1 is an input / output terminal, and 1 and 2 are 4-terminal pair circuits (terminal names: A; B; C; D; and a; b; c; d) having a periodic structure in which minute transmission lines are combined in a square shape. is there.
Here, the characteristic impedance of the minute transmission line is Z, the physical length is I, and the electrical length 2π × I / λg (λg is the wavelength) is θ. The minute transmission line means a physical length I << λg (wavelength) or an electrical length θ << π, and here, I≈λg / 10 or I <λg / 10. 3 and 4 are terminals A, respectively
-A and a capacitor (Cp connected between terminals C and c)
), 5 and 6 are between terminals B-b and terminals D-d, respectively.
It is an inductor (Lp) connected in between.

【0012】本発明の回路は破線に関して対称であるか
ら、二等分定理を用いて図2に示す等価格子回路で表す
ことができる。ここで、ショートインピーダンスZs お
よびオープンインピーダンスZf はそれぞれ次の(1)
式、(2)式で表される。
Since the circuit of the present invention is symmetric with respect to the broken line, it can be represented by the equivalent lattice circuit shown in FIG. Here, the short impedance Zs and the open impedance Zf are respectively defined by the following (1)
Expression (2) is expressed.

【0013】[0013]

【数1】 ここで、ωは角周波数、k=1+3θ/ZCp ωであ
る。(1)式第1項はインダクタンス(3/4)Zθ/
ωとキャパシタンス2Cp の並列共振回路N1 、第2項
はインダクタンスLp /2とキャパシタンス2kCp の
並列共振回路N2である。(2)式はインダクタンス
(3/4)Zθ/ωとキャパシタンス6θ/Zωの並列
共振回路であり、使用周波数帯域では、2>9θ2 とす
る。低い周波数領域ではキャパシタンス6θ/Zωで近
似できる。後に具体例で説明するように、並列共振回路
2 の共振周波数は並列共振回路N1 の共振周波数に比
べて数分の一である。ここで、θ/ωは一定値であり、
微小伝送線路20を伝ぱんする電磁波の速度をvg とす
ると、 θ/ω=I/vg である。
[Equation 1] Where ω is the angular frequency, k = 1 + 3θ / ZCp ω. The first term in the equation (1) is the inductance (3/4) Zθ /
The parallel resonance circuit N 1 having ω and the capacitance 2Cp, and the second term is the parallel resonance circuit N 2 having the inductance Lp / 2 and the capacitance 2kCp. Equation (2) is a parallel resonance circuit of the inductance (3/4) Zθ / ω and the capacitance 6θ / Zω, and 2> 9θ 2 in the used frequency band. In the low frequency region, the capacitance can be approximated by 6θ / Zω. As will be described later in a specific example, the resonance frequency of the parallel resonance circuit N 2 is a fraction of the resonance frequency of the parallel resonance circuit N 1 . Where θ / ω is a constant value,
If the velocity of the electromagnetic wave propagating through the minute transmission line 20 is vg, then θ / ω = I / vg.

【0014】さらに、これをπ型等価回路に変形すると
図3となる。21は図2の並列共振回路N2 に相当する
回路、22は図3の並列共振回路N1 に相当する回路、
23は格子型からπ型等価回路に変更の結果生じるイン
ダクタ、24および25の直列共振回路は動作周波数帯
域内では並列容量として動作する。並列共振回路22の
共振周波数(並列共振回路N1 と同じ共振周波数を有す
る)よりもずっと低い周波数領域においては、図3の回
路のノッチ周波数ωn は並列共振回路21とインダクタ
23でなる並列共振回路で決まる。インダクタ23とキ
ャパシタ2kCp の並列回路のアダミッタンスYは、
Further, when this is transformed into a π type equivalent circuit, it becomes as shown in FIG. Reference numeral 21 is a circuit corresponding to the parallel resonant circuit N 2 of FIG. 2, 22 is a circuit corresponding to the parallel resonant circuit N 1 of FIG.
Reference numeral 23 is an inductor resulting from the change from the lattice type to the π type equivalent circuit, and the series resonant circuits of 24 and 25 operate as a parallel capacitance in the operating frequency band. In a frequency region much lower than the resonance frequency of the parallel resonance circuit 22 (having the same resonance frequency as the parallel resonance circuit N 1 ), the notch frequency ω n of the circuit of FIG. 3 is the parallel resonance circuit formed by the parallel resonance circuit 21 and the inductor 23. Depends on. The admittance Y of the parallel circuit of the inductor 23 and the capacitor 2 kCp is

【0015】[0015]

【数2】 であるから、これとインダクタLp /2とが共振する角
周波数ωn は1/√LpCp である。つまり、本発明実
施例のノッチ周波数ωn は、(2)式に基づいて、図1
の3から6のLp とCp との共振周波数に殆ど等しい。
通過域はこのωnより低周波側にある。
[Equation 2] Therefore, the angular frequency ωn at which this and the inductor Lp / 2 resonate is 1 / √LpCp. That is, the notch frequency ωn of the embodiment of the present invention is calculated as shown in FIG.
Are almost equal to the resonance frequencies of Lp and Cp of 3 to 6.
The passband is on the low frequency side of this ωn.

【0016】図3の両端の直列共振回路24および25
のインピーダンスZf は、(2)式より、
Series resonant circuits 24 and 25 at both ends of FIG.
The impedance Zf of the

【0017】[0017]

【数3】 であり、電気長θは周波数に比例するから、容量Cf は
周波数が増加して、9θ 2 →2に接近しつつ急速に増加
する。θ/ωは一定値であるので、Cf はθの2次函数
の逆数で表される。したがって、低域通過フィルタの通
過域周波数およびノッチ周波数付近まで並列容量がほぼ
一定となり、ノッチ周波数より高い周波数領域で該並列
容量が増加するように2端子対回路(微小伝送線路周期
構造)1,2を設計すれば、ノッチ周波数付近まで通過
域を広げ、阻止域では減衰量を大きくすることができ
る。つまり、周波数選択性を向上できる。なお、該容量
Cf はLp 、Cp とは無関係である。
[Equation 3]Since the electrical length θ is proportional to the frequency, the capacitance Cf is
Frequency increases, 9θ 2→ Rapid increase while approaching 2
To do. Since θ / ω is a constant value, Cf is a quadratic function of θ
It is represented by the reciprocal of. Therefore, the low-pass filter passes
Almost parallel capacitance up to near over frequency and notch frequency
It becomes constant, and the parallel is used in the frequency range higher than the notch frequency.
2 terminal pair circuit (small transmission line period
If you design (Structure) 1 and 2, pass near the notch frequency
You can widen the range and increase the attenuation in the stop range.
It That is, frequency selectivity can be improved. The capacity
Cf has nothing to do with Lp and Cp.

【0018】以下具体例によって動作を説明する。図1
を構成する各要素のパラメータを次のように設定する。 I=0.45mm、Z=30Ω、Lp =3nH、Cp =
0.3pF、εr =3.3 ここで、εr は微小伝送線路を形成する基板の比誘電率
である。これらの定数を使用すると図3より図4が得ら
れる。図4のパラメータ値より、本実施例における先の
説明が了解できる。図5において、実線は図4の低域通
過フィルタの周波数特性、破線は並列容量値Cf を2p
Fに固定した従来例の周波数特性である。本発明により
周波数選択性が大幅に向上していることが分る。
The operation will be described below with reference to a specific example. Figure 1
Set the parameters of each element that makes up as follows. I = 0.45 mm, Z = 30Ω, Lp = 3 nH, Cp =
0.3 pF, εr = 3.3 where εr is the relative permittivity of the substrate forming the minute transmission line. By using these constants, FIG. 3 to FIG. 4 are obtained. From the parameter values of FIG. 4, the above description of the present embodiment can be understood. In FIG. 5, the solid line indicates the frequency characteristic of the low pass filter of FIG. 4, and the broken line indicates the parallel capacitance value Cf of 2p.
It is the frequency characteristic of the conventional example fixed to F. It can be seen that the present invention significantly improves frequency selectivity.

【0019】なお、(4)式の容量Cf はインダクタL
p やキャパシタCp と無関係に決まるので、他のフィル
タを実現する場合にも発生し、利用することができる。他の実施例 図6は、本発明低域通過フィルタの第2の実施例の構成
を示す図である。図において、1および2は田の字形の
微小伝送線路周期構造を有する2端子対回路、3および
4はキャパシタ、5および6はインダクタである。これ
らは図1に記載したものと同一であるので同じ符号を付
している。7は誘電体膜、8は接地導体、9aないし9
dは該接地導体を一部除去した部分で、この部分を介し
て2端子対回路1および2の各端子が接続される。12
は誘電体基板あるいは半導体基板である。誘電体膜7は
該誘電体基板あるいは半導体基板12上に形成または貼
り合わされている。上記のインダクタ5,6およびキャ
パシタ3,4は該誘電体膜7上に形成してもよいし、該
基板12上に形成してもよい。 (a)本実施例の構成によれば、微小伝送線路周期構造
の2端子対回路が上下に形成されているのでインダクタ
LおよびキャパシタCの接続が容易である。つまり、端
子間の距離は極めて小さく、L又はCで接続する際に不
要な引き回し線を用いる必要がない。したがって、端子
間接続の部分に伝送線路特性や、ストレーC、浮遊イン
ダクタンス、寄生抵抗などを考慮する必要がなく、第1
の実施例で示した解析通りの性能を実現するのに適して
いる。 (b)また、誘電体膜7を10ミクロン程度の薄膜で実
現すれば、例えば微小伝送線路の特性インピーダンスを
30Ωとした場合、該線路幅を20ミクロンないし40
ミクロンと細く実現できるので、線路交差部寸法を波長
に対して十分に小さくできる。したがって、設計誤差を
なくすることができる。 (c)さらに、該周期構造において、信号の流れる経路
が複数並列になっているので伝送線路導体の損失による
低域通過フィルタ通過域の挿入損失を大幅に抑圧するこ
とができる。
The capacitance Cf in the equation (4) is the inductor L
Since it is determined independently of p and the capacitor Cp, it can be generated and used when other filters are realized. Other Embodiments FIG. 6 is a diagram showing the configuration of a second embodiment of the low-pass filter of the present invention. In the figure, 1 and 2 are 2-terminal pair circuits having a field-shaped minute transmission line periodic structure, 3 and 4 are capacitors, and 5 and 6 are inductors. Since these are the same as those described in FIG. 1, the same reference numerals are given. 7 is a dielectric film, 8 is a ground conductor, and 9a to 9
Reference numeral d is a portion where the ground conductor is partially removed, and the terminals of the two-terminal pair circuits 1 and 2 are connected through this portion. 12
Is a dielectric substrate or a semiconductor substrate. The dielectric film 7 is formed or stuck on the dielectric substrate or the semiconductor substrate 12. The inductors 5 and 6 and the capacitors 3 and 4 may be formed on the dielectric film 7 or may be formed on the substrate 12. (A) According to the configuration of this embodiment, since the two-terminal pair circuit having the minute transmission line periodic structure is formed on the upper and lower sides, the inductor L and the capacitor C can be easily connected. That is, the distance between the terminals is extremely small, and it is not necessary to use an unnecessary wiring line when connecting with L or C. Therefore, it is not necessary to consider the transmission line characteristics, the stray C, the stray inductance, the parasitic resistance, etc. in the terminal connection portion.
This is suitable for realizing the performance as analyzed in the embodiment. (B) Further, if the dielectric film 7 is realized by a thin film of about 10 μm, for example, when the characteristic impedance of the minute transmission line is 30Ω, the line width is 20 μm to 40 μm.
Since it can be realized as thin as a micron, the dimension of the line intersection can be made sufficiently small with respect to the wavelength. Therefore, the design error can be eliminated. (C) Further, in the periodic structure, a plurality of signal flow paths are arranged in parallel, so that the insertion loss in the low pass filter pass band due to the loss of the transmission line conductor can be significantly suppressed.

【0020】図5に示した図1の実施例の特性は伝送線
路損失分を入れて計算したものであるが、実測値もほぼ
同じである。注目すべきは、通過域でロスが小さく、フ
ラットな特性となっていること及び等価容量Cf の周波
数特性によって周波数の高い減衰域のロスが従来の特性
より増大していることである。誘電体膜7を誘電体基板
に置き換えた構成においても上記(a)〜(c)の利点
を保持できる。この場合、および上記の誘電体膜7を使
用した場合、低域通過フィルタの構成そのものが入出力
端子を誘電体基板の上下に配置する構成となっているの
で、異なる回路を2層誘電体基板の上下面に形成するこ
とができる。例えば、上面に高周波回路を形成し下面に
低周波回路を形成すれば、受信機や送信機をコンパクト
に構成することを可能にする。
The characteristic of the embodiment of FIG. 1 shown in FIG. 5 is calculated by including the transmission line loss, but the measured values are almost the same. It should be noted that the loss is small in the pass band and has a flat characteristic, and the loss in the high frequency attenuation region is larger than that of the conventional characteristic due to the frequency characteristic of the equivalent capacitance Cf. Even in the configuration in which the dielectric film 7 is replaced with a dielectric substrate, the advantages (a) to (c) can be maintained. In this case and when the above-mentioned dielectric film 7 is used, since the configuration itself of the low-pass filter is such that the input / output terminals are arranged above and below the dielectric substrate, different circuits are used for the two-layer dielectric substrate. It can be formed on the upper and lower surfaces. For example, if a high frequency circuit is formed on the upper surface and a low frequency circuit is formed on the lower surface, it is possible to make the receiver and the transmitter compact.

【0021】以上述べた実施例では、第1、第2の多端
子対回路(微小伝送線路周期構造)を田の字状に形成し
た2端子対回路としているが、しかしこの発明は、この
場合に限らず複数の微小伝送線路を任意の網目状に接続
したり、カスケード状にしたり、或いは両形状を組合せ
た形状の多端子回路を用いても同様にフィルタを構成で
きる。
In the embodiment described above, the first and second multi-terminal pair circuits (minute transmission line periodic structure) are formed into a square-shaped two-terminal pair circuit. However, the present invention is not limited to this. Not limited to this, a plurality of minute transmission lines may be connected in an arbitrary mesh form, may be formed in a cascade form, or a multi-terminal circuit having a combination of both forms may be used to similarly configure a filter.

【0022】[0022]

【発明の効果】以上説明したように本発明は、微小伝送
線路周期構造を有する第1、第2多端子対回路の端子間
にインダクタ又はキャパシタなどより成る回路を接続す
ることによって、低周波領域では、LC並列共振回路に
近い特性になり、その反共振周波数より比較的低い通過
域のロスを小さく、ほぼ平坦にすることができ、また高
周波数域では、等価容量Cf の周波数依存性によって、
容量値を周波数と共に増大させることができるので、阻
止域の減衰量を大きくすることができる。従って、周波
数選択性に優れた小形高周波フィルタを提供できる。
As described above, according to the present invention, by connecting a circuit including an inductor or a capacitor between the terminals of the first and second multi-terminal pair circuits having the minute transmission line periodic structure, the low frequency region is connected. Has a characteristic close to that of the LC parallel resonant circuit, can reduce the loss in the pass band relatively lower than the anti-resonant frequency and can be made substantially flat, and in the high frequency region, due to the frequency dependence of the equivalent capacitance Cf,
Since the capacitance value can be increased with the frequency, the attenuation amount in the stop band can be increased. Therefore, it is possible to provide a compact high frequency filter having excellent frequency selectivity.

【0023】また、周期構造の回路を上下に積み重ねた
多層構成とすることにより、更にコンパクトにできると
共に上下の端子間をL又はCよりなる回路で短距離に配
線でき、従って設計性が良くなる効果が得られる。さら
に、複数の微小伝送線路が占める面の寸法はやはり波長
に対して十分小さいので、従来の高周波フィルタに比べ
て小型に実現することができる。
Further, by forming a multilayer structure in which the circuits having the periodic structure are vertically stacked, the circuit can be made more compact and the circuit composed of L or C between the upper and lower terminals can be wired in a short distance, thus improving the designability. The effect is obtained. Furthermore, since the size of the surface occupied by the plurality of minute transmission lines is still sufficiently small with respect to the wavelength, it can be realized in a smaller size than the conventional high frequency filter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す原理的な構成図。FIG. 1 is a principle configuration diagram showing an embodiment of the present invention.

【図2】図1の実施例の格子型等価回路図。2 is a lattice type equivalent circuit diagram of the embodiment of FIG. 1. FIG.

【図3】図1の実施例のπ型等価回路図。FIG. 3 is a π-type equivalent circuit diagram of the embodiment of FIG.

【図4】図1の実施例の具体的設計例で、π型等価回路
で表示した図。
FIG. 4 is a view showing a π-type equivalent circuit in a specific design example of the embodiment of FIG.

【図5】図4の周波数特性を、図8の従来例の特性と比
較して示した図。
5 is a diagram showing the frequency characteristic of FIG. 4 in comparison with the characteristic of the conventional example of FIG.

【図6】本発明の他の実施例の構成を示す図。FIG. 6 is a diagram showing the configuration of another embodiment of the present invention.

【図7】従来の高周波帯の低域通過フィルタの構成を示
す図。
FIG. 7 is a diagram showing a configuration of a conventional high-frequency band low-pass filter.

【図8】従来の高周波帯の他の低域通過フィルタの構成
を示す図。
FIG. 8 is a diagram showing the configuration of another conventional low-pass filter in the high frequency band.

【図9】図8の従来の高周波帯の低域通過フィルタの特
性例を示す図。
9 is a diagram showing a characteristic example of the conventional high-pass low-pass filter shown in FIG. 8;

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 10分の一波長程度、またはそれ以下の
長さを有する微小電気長伝送線路複数個を網目状または
線状(カスケード状)または該両形状の組み合わせの形
状に接続してなる第1の多端子対回路と、該第1の多端
子対回路と同様の構成を有する第2の多端子対回路とを
有し、該両端子対間で複数組の端子間にインダクタ又は
キャパシタより成る回路を接続し、第1の多端子対回路
の一端子を入力端子(又は出力端子)とし、第2の多端
子対回路の一端子を出力端子(又は入力端子)としたこ
とを特徴とする高周波フィルタ。
1. A plurality of minute electrical length transmission lines having a length of about one-tenth wavelength or less are connected in a mesh shape, a linear shape (cascade shape), or a combination of these shapes. A first multi-terminal pair circuit, and a second multi-terminal pair circuit having the same configuration as the first multi-terminal pair circuit, and an inductor or a capacitor between a plurality of sets of terminals between the both terminal pairs. Characterized in that one circuit of the first multi-terminal pair circuit is used as an input terminal (or output terminal) and one circuit of the second multi-terminal pair circuit is used as an output terminal (or input terminal). And a high frequency filter.
JP17813993A 1993-07-19 1993-07-19 High frequency filter Expired - Lifetime JP3178566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17813993A JP3178566B2 (en) 1993-07-19 1993-07-19 High frequency filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17813993A JP3178566B2 (en) 1993-07-19 1993-07-19 High frequency filter

Publications (2)

Publication Number Publication Date
JPH0738306A true JPH0738306A (en) 1995-02-07
JP3178566B2 JP3178566B2 (en) 2001-06-18

Family

ID=16043330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17813993A Expired - Lifetime JP3178566B2 (en) 1993-07-19 1993-07-19 High frequency filter

Country Status (1)

Country Link
JP (1) JP3178566B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101690275B1 (en) 2014-03-11 2016-12-30 김진국 LED lamp driving device free from electric shock, and operating connected to the ballast for fluorcent lamp, and the LED lamp comprising the device

Also Published As

Publication number Publication date
JP3178566B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
US4577168A (en) Notch filter
DE69932558T2 (en) Monolithic filters using thin-film devices with bulk acoustic waves and with a minimum of passive components to control the shape and width in the passband
US9154104B2 (en) Miniaturized passive low pass filter
JPS63120509A (en) Notch filter and manufacture of the same
JP5032483B2 (en) Bandpass filter
JP2001523405A (en) Elliptic filter and manufacturing method thereof
US5485131A (en) Transmission line filter for MIC and MMIC applications
WO2006134916A1 (en) Multilayer filter
WO2022152178A1 (en) Filter, multiplexer, and electronic device
JPH0216802A (en) Band elimination filter
US6597259B1 (en) Selective laminated filter structures and antenna duplexer using same
JP4627791B2 (en) Balance-unbalance conversion circuit
WO2010004534A1 (en) Bulk acoustic wave resonator using acoustic reflector layers as inductive or capacitive circuit element
JPH06350374A (en) Band pass filter
KR20010078190A (en) Thin Film Resonator Filter with Inductance
JP4251974B2 (en) High frequency filter
JPH0738306A (en) High frequency filter
JP4501729B2 (en) High frequency filter
US20050046512A1 (en) Demultiplexer
US11923827B2 (en) Bulk acoustic wave resonator stacked onto an integrated passive device
JPH08274504A (en) Filter device for high frequency
US7256666B2 (en) Band rejection filter with attenuation poles
JP2002026603A (en) Band pass filter
US10931263B2 (en) Filter circuits having a resonator-based filter and a magnetically-coupled filter
KR100501928B1 (en) Second order bandpass filter using capacitively loaded multi-layer 1/4 wavelength resonator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100413

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130413

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20140413

EXPY Cancellation because of completion of term