JPH0738192A - Light emitting element - Google Patents
Light emitting elementInfo
- Publication number
- JPH0738192A JPH0738192A JP17646493A JP17646493A JPH0738192A JP H0738192 A JPH0738192 A JP H0738192A JP 17646493 A JP17646493 A JP 17646493A JP 17646493 A JP17646493 A JP 17646493A JP H0738192 A JPH0738192 A JP H0738192A
- Authority
- JP
- Japan
- Prior art keywords
- light emitting
- active layer
- optical waveguide
- field emission
- emitting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は光記録等の光情報処理分
野、光応用計測分野、その他ディスプレイ分野等で用い
るレーザ等の発光素子に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting device such as a laser used in the field of optical information processing such as optical recording, the field of optical applied measurement, and other fields of display.
【0002】[0002]
【従来の技術】近年、光情報処理分野あるいは光応用計
測分野では、使用されるレーザ光源の短波長化、小型軽
量化が要望され、波長が400nm及び500nm台の
発光素子、特に固体(半導体)レーザ光源の研究開発が
各所で行われている。2. Description of the Related Art In recent years, in the field of optical information processing or the field of optical applied measurement, there has been a demand for a laser light source used to have a short wavelength, a small size and a light weight. Research and development of laser light sources are being carried out in various places.
【0003】従来、その短波長固体レーザ光源の一方式
として、例えば特願平1−8204に示されている様
に、発光素子の活性層とマルチ・チップ電界放射型電子
源を対向させて配置し、両者間に印加した電界によって
放射された電子ビームによって活性層を励起・発光させ
る発光素子が提案されている。その典型的な構造を図4
に示す。As a conventional short-wavelength solid-state laser light source system, for example, as shown in Japanese Patent Application No. 1-8204, the active layer of a light-emitting element and a multi-chip field emission electron source are arranged to face each other. However, there has been proposed a light emitting device that excites and emits light in the active layer by an electron beam emitted by an electric field applied between the two. Figure 4 shows its typical structure.
Shown in.
【0004】図4は、電界放射型電子ビームによる発光
部活性層の励起方法と、発光部とマルティ・ティップ電
界放射型電子源を対向させて配置する発光素子の断面構
造を示している(特願平1−8204号またはUSP51193
86)。FIG. 4 shows a method for exciting the active layer of the light emitting section by a field emission electron beam and a cross-sectional structure of a light emitting element in which the light emitting section and a multi-tip field emission electron source are arranged to face each other (special feature). Wishhei 1-8204 or USP 51193
86).
【0005】ここで、101はGaAs基板、102は
ZnSクラッド層、103はZnS活性層、104はS
iO2膜、105はSiO2膜、106は電界放射チッ
プ、107はSi基板、108は真空空間、109はM
o電極膜である。Here, 101 is a GaAs substrate, 102 is a ZnS clad layer, 103 is a ZnS active layer, and 104 is S.
io 2 film, 105 SiO 2 film, 106 field emission chip, 107 Si substrate, 108 vacuum space, 109 M
o electrode film.
【0006】このように、従来は活性層の材料としてII
−IV族化合物半導体を用い、また活性層はいわゆるスラ
ブ型光導波路構造で青色レーザ光を得ていた。As described above, as a conventional material for the active layer, II
A blue laser beam was obtained by using a group IV compound semiconductor and an active layer having a so-called slab type optical waveguide structure.
【0007】[0007]
【発明が解決しようとする課題】しかしながら上記のよ
うに、活性層の材料としてII−VI族化合物半導体を用い
る場合、格子整合をとるために高価なIII−V族のGaA
s結晶基板を用い、またMOVPE結晶成長装置等高価
な装置が必要であった。また、また活性層の構造がスラ
ブ型光導波路構造であるため、単一横モード発振が困難
という問題に加えて、II−VI族化合物半導体の屈折率が
III−V族の半導体よりも小さいために光の閉じめが困難
であり、レーザ発振の閾値が高くなるという欠点を有し
ていた。また発振波長は用いるII−VI族半導体によって
限定され、様々な発振波長を得ることはできない。However, as described above, when the II-VI group compound semiconductor is used as the material of the active layer, the expensive GaA of the III-V group is used for lattice matching.
An expensive device such as a MOVPE crystal growth device was required, using an s crystal substrate. Further, since the structure of the active layer is a slab type optical waveguide structure, in addition to the problem that single transverse mode oscillation is difficult, the refractive index of the II-VI group compound semiconductor is
Since it is smaller than the III-V group semiconductor, it is difficult to close the light, and the laser oscillation threshold value becomes high. Further, the oscillation wavelength is limited by the II-VI group semiconductor used, and various oscillation wavelengths cannot be obtained.
【0008】そこで本発明は蛍光体の分散した誘電体で
光導波路を構成することにより、単一モードでありかつ
所望の発振波長のレーザを提供することを目的とする。Therefore, an object of the present invention is to provide a laser having a single oscillation mode and a desired oscillation wavelength by forming an optical waveguide with a dielectric material in which a phosphor is dispersed.
【0009】[0009]
【課題を解決するための手段】本発明は、上記した従来
の問題点を解消するため、活性層を含んでなる発光部と
マルチ・チップ電界放射型電子源を対向させて配置し、
両者間に印加した電界によって放射された電子ビームに
よって活性層を励起・発光させる発光素子において、前
記活性層が蛍光体の分散した誘電体であり、かつ発光部
が光導波路構造であることを特徴とする発光素子を提供
するものである。In order to solve the above-mentioned conventional problems, the present invention arranges a light emitting portion including an active layer and a multi-chip field emission electron source so as to face each other,
In a light emitting device that excites and emits light in an active layer by an electron beam emitted by an electric field applied between the two, the active layer is a dielectric substance in which a phosphor is dispersed, and the light emitting portion has an optical waveguide structure. And a light emitting device.
【0010】[0010]
【作用】この技術手段による作用は次のようになる。即
ち発光部とマルチ・チップ電界放射型電子源を対向させ
て配置し、両者間に印加した電界によって放射された電
子ビームによって活性層を励起・発光させる発光素子に
おいて、前記活性層が蛍光体の分散した誘電体であり、
かつ発光部が光導波路構造である場合、電子線照射によ
って光導波路内の蛍光体から光を発し、その光が導波路
を伝搬する。発光波長は蛍光体を構成する母体及び付活
剤で決定される。例えばZnSを母体としAgを付活剤
とする蛍光体では、発光ピーク波長は約450nmの青
色、Zn2SiO2を母体としMnを付活剤とする蛍光体
では、発光ピーク波長は約525nmの緑色、そしてY
2O3を母体としEuを付活剤とする蛍光体では、発光ピ
ーク波長は約611nmの赤色である。また光導波路の
内部もしくは外部に反射鏡を設置し共振器を設置するこ
とにより、各蛍光体の発光ピーク波長もしくは、グレー
ティング等の波長選択素子で設定される波長でレーザ発
振が生じる。The function of this technical means is as follows. That is, in a light emitting device in which a light emitting section and a multi-chip field emission electron source are arranged to face each other, and the active layer is excited and emits light by an electron beam emitted by an electric field applied between the two, the active layer is a phosphor. Is a dispersed dielectric,
In addition, when the light emitting portion has an optical waveguide structure, the phosphor in the optical waveguide emits light by electron beam irradiation, and the light propagates through the waveguide. The emission wavelength is determined by the matrix and activator that constitute the phosphor. For example, a phosphor having ZnS as a base material and Ag as an activator has a blue emission peak wavelength of about 450 nm, and a phosphor having Zn 2 SiO 2 as a base material and Mn as an activator has an emission peak wavelength of about 525 nm. Green and Y
A phosphor having 2 O 3 as a matrix and Eu as an activator has a red emission peak wavelength of about 611 nm. Further, by installing a reflecting mirror inside or outside the optical waveguide and installing a resonator, laser oscillation occurs at the emission peak wavelength of each phosphor or the wavelength set by a wavelength selection element such as a grating.
【0011】[0011]
【実施例】本発明による発光素子の構成を図1に、また
断面構造を図2に示す。金属あるいはSi等の導電性基
板1に電界放射チップ(エミッタ)2が形成され、また
電子源の周辺にはSiO2等の絶縁層3を介してゲート
電極4が形成されている。そして厚み10μm程度のス
ペーサ5を介して光導波路9との間に真空空間6が形成
されている。光導波路9は石英基板12上に青色蛍光体
ZnS:Agの分散したガラス層7とSiO2層8によ
りスパッタリング方で形成され、ガラス層がコア、そし
て石英基板とSiO2層8がクラッドとして働いてい
る。また光導波路のSiO2層8の表面にはグレーティ
ング10が形成され特定の波長で発振するように設定さ
れている。光導波路9の表面は薄いAl膜11で被覆さ
れ、アノードが形成されている。石英基板12の裏面に
はAu等により電極13が形成されAl膜11と電気的
に接続されている。素子の側面にはAl2O3あるいはS
iO2等によりのパッシベーション膜14が形成され真
空が維持される。そして、エミッタ2とゲート電極の間
に電界印加装置15により数百ボルト程度の電界が印加
されエミッタ2から電子が放出され、更に電界印加装置
16によりエミッタ2とアノード11間に電極13を通
じて同様に数百ボルト程度の電界が印加され、アノード
11がエミッタから放出した電子を加速するとともに、
アノードを通過する電子を青色蛍光体が分散したガラス
層7に導く。蛍光体により発光した光は導波路内を伝搬
すると同時に、グレーティグ10により反射されるので
レーザ発振が生じる。FIG. 1 shows the structure of a light emitting device according to the present invention, and FIG. 2 shows its sectional structure. A field emission chip (emitter) 2 is formed on a conductive substrate 1 made of metal or Si, and a gate electrode 4 is formed around an electron source via an insulating layer 3 made of SiO 2 . The vacuum space 6 is formed between the optical waveguide 9 and the spacer 5 having a thickness of about 10 μm. The optical waveguide 9 is formed on the quartz substrate 12 by the glass layer 7 in which the blue phosphor ZnS: Ag is dispersed and the SiO 2 layer 8 by the sputtering method, the glass layer serves as the core, and the quartz substrate and the SiO 2 layer 8 serve as the clad. ing. A grating 10 is formed on the surface of the SiO 2 layer 8 of the optical waveguide and is set so as to oscillate at a specific wavelength. The surface of the optical waveguide 9 is covered with a thin Al film 11 to form an anode. An electrode 13 made of Au or the like is formed on the back surface of the quartz substrate 12 and is electrically connected to the Al film 11. Al 2 O 3 or S on the side surface of the device
A passivation film 14 of iO 2 or the like is formed and a vacuum is maintained. Then, an electric field of several hundreds of volts is applied between the emitter 2 and the gate electrode by the electric field applying device 15 so that electrons are emitted from the emitter 2, and the electric field applying device 16 similarly passes between the emitter 2 and the anode 11 through the electrode 13. An electric field of about several hundred volts is applied, and the anode 11 accelerates the electrons emitted from the emitter, and
The electrons passing through the anode are guided to the glass layer 7 in which the blue phosphor is dispersed. The light emitted by the phosphor propagates in the waveguide and is reflected by the grating 10 at the same time, so that laser oscillation occurs.
【0012】次に、この発光素子の製造方法について簡
単に説明する。最初、導電性Si基板1に、Si結晶の
異方性エッチングを利用する方法、金属膜の付着したガ
ラス基板にMoのコーン状堆積を利用する方法等によ
り、電界放射チップ2を形成する。電界チップ1個の大
きさは通常直径が数μm程度なので、活性層7を均一に
電子線照射・励起できるように一定の面内密度で形成す
る。そして、この電界放射チップ2の形成とは平行し
て、石英板12の表面に幅数μm、高さ数μmのZn
S:Agの分散したガラスでなる活性層7及び活性層を
被覆する石英膜によるクラッド層8で構成される光導波
路9をCVD法等で形成する。更にホログラフィック露
光法等により導波路の表面にグレーティング10を形成
する。そして次にクラッド層8の表面にAl膜を数百か
ら数千オングストローム真空蒸着する。その後、電界放
射チップ2が形成された導電性基板1と光導波路9が表
面に形成されている石英板12とをスペーサ5を間に挟
んで、真空中でIn等のハンダで接合する。この時、電
界放射チップ2と光導波路とがちょうど対向するように
接合する。そして最後に出射端面にスパッタ法等により
Al2O3膜14を堆積し、石英板裏面に電極としてAu
膜13を形成する。Next, a method of manufacturing this light emitting device will be briefly described. First, the field emission chip 2 is formed on the conductive Si substrate 1 by a method utilizing anisotropic etching of Si crystals, a method utilizing cone-shaped deposition of Mo on a glass substrate having a metal film attached thereto, and the like. Since the size of one electric field chip is usually several μm in diameter, the active layer 7 is formed with a constant in-plane density so that the active layer 7 can be uniformly irradiated and excited with an electron beam. In parallel with the formation of the field emission chip 2, Zn having a width of several μm and a height of several μm is formed on the surface of the quartz plate 12.
An optical waveguide 9 composed of an active layer 7 made of glass in which S: Ag is dispersed and a cladding layer 8 made of a quartz film covering the active layer is formed by a CVD method or the like. Further, the grating 10 is formed on the surface of the waveguide by the holographic exposure method or the like. Then, an Al film is vacuum-deposited on the surface of the clad layer 8 by several hundred to several thousand angstroms. Then, the conductive substrate 1 on which the field emission chip 2 is formed and the quartz plate 12 on the surface of which the optical waveguide 9 is formed are bonded with solder such as In in vacuum with the spacer 5 interposed therebetween. At this time, the field emission chip 2 and the optical waveguide are joined so as to face each other. Finally, an Al 2 O 3 film 14 is deposited on the emitting end surface by a sputtering method or the like, and Au is used as an electrode on the back surface of the quartz plate.
The film 13 is formed.
【0013】さて、この様にして作製された発光素子の
導電性基板1と石英板上の電極13との間に数Vから数
百Vの電圧を印加することによって青色レーザ光を得る
ことができる。また導電性基板1とゲート電極11の間
にも電圧を印加することによって更に電子を効率よく放
射させることができる。A blue laser beam can be obtained by applying a voltage of several V to several hundred V between the conductive substrate 1 of the light emitting device thus manufactured and the electrode 13 on the quartz plate. it can. Further, by applying a voltage between the conductive substrate 1 and the gate electrode 11, electrons can be emitted more efficiently.
【0014】チップ先端の電界強度は、チップ先端の曲
率半径が小さければ小さいほど、極めて大きいものとな
り、この電界の効果により電子が真空中に放出される。
放出された電子は真空空間6中を加速されながら走りA
l膜11を通過し、かつ活性層7内の蛍光体の電子を基
底状態から励起状態の電子レベルに励起する。そして励
起された電子が基底状態に遷移するときに波長約450
nmの光としてエネルギーを放出する。また光導波路9
の内部もしくは外部に共振器を形成しておけば誘導放出
により青色レーザ光が得られる。本実施例ではグレーテ
ィング10が共振器を形成している。The electric field strength at the tip of the tip becomes extremely large as the radius of curvature of the tip becomes smaller, and electrons are emitted into the vacuum by the effect of this electric field.
The emitted electrons run in the vacuum space 6 while being accelerated A
The electrons of the fluorescent material in the active layer 7 that have passed through the 1-layer 11 are excited from the ground state to the excited state electron level. When the excited electrons make a transition to the ground state, the wavelength is about 450.
Emitting energy as nm light. In addition, the optical waveguide 9
If a resonator is formed inside or outside of, a blue laser light can be obtained by stimulated emission. In this embodiment, the grating 10 forms a resonator.
【0015】また、本実施例においては、光導波路9の
一部をAl膜11で被覆したが、これは光導波路が絶縁
体であることによる電荷(励起用電子)のチャージアッ
プを防ぐためである。即ち、Al膜11とAu電極13
とを接続しておけば、光導波路あるいは活性層に注入さ
れた励起用電子がAl膜11、Au電極13を通して常
にアースへ逃げ、光導波路9あるいは活性層7中に溜る
ことはない。しかし、もしこのAl膜11がなければ電
子励起を続けるに連れて、光導波路9中に電子が溜り、
光導波路と電界放射チップ間の電圧差が徐々に減少す
る。その結果、励起電子の持つエネルギーが減少し、光
出力の減少を招く。Further, in this embodiment, a part of the optical waveguide 9 is covered with the Al film 11, but this is to prevent the charge (excitation electrons) from being charged up due to the optical waveguide being an insulator. is there. That is, the Al film 11 and the Au electrode 13
If they are connected to each other, the exciting electrons injected into the optical waveguide or the active layer will always escape to the ground through the Al film 11 and the Au electrode 13, and will not be accumulated in the optical waveguide 9 or the active layer 7. However, if this Al film 11 does not exist, electrons are accumulated in the optical waveguide 9 as the electron excitation continues,
The voltage difference between the optical waveguide and the field emission chip gradually decreases. As a result, the energy of the excited electrons is reduced, resulting in a decrease in light output.
【0016】次に、活性層を含んでなる発光部とマルチ
・チップ電界放射型電子源が同一基板に形成されている
場合の発光素子の実施例について述べる。Next, an embodiment of the light emitting device in the case where the light emitting portion including the active layer and the multi-chip field emission electron source are formed on the same substrate will be described.
【0017】本発明のによる第2の実施例の発光素子の
基板の概略構成を図3に示す。この場合、31はシリコ
ン基板、32はSiO2等の絶縁膜、33はタングステ
ン金属の電界放射チップ、34は青色蛍光体ZnS:A
gの分散したガラス層でなる活性層、35はSiO2の
クラッド層であり、それぞれコア及びクラッドとして光
導波路36を構成している。37は光導波路の表面に形
成されたグレーティング、38は光導波路の一部を被覆
しているAl膜である。39はAu等の電極である。4
0はスペーサ、41はAl2O3あるいはSiO2等のパ
ッシベーション膜、42は石英基板、43は真空であ
る。FIG. 3 shows a schematic structure of the substrate of the light emitting device of the second embodiment according to the present invention. In this case, 31 is a silicon substrate, 32 is an insulating film such as SiO 2 , 33 is a field emission chip of tungsten metal, and 34 is a blue phosphor ZnS: A.
An active layer 35 composed of a glass layer in which g is dispersed, and a cladding layer 35 made of SiO 2 constitute an optical waveguide 36 as a core and a cladding, respectively. Reference numeral 37 is a grating formed on the surface of the optical waveguide, and 38 is an Al film covering a part of the optical waveguide. 39 is an electrode such as Au. Four
Reference numeral 0 is a spacer, 41 is a passivation film such as Al 2 O 3 or SiO 2 , 42 is a quartz substrate, and 43 is a vacuum.
【0018】次に、この発光素子の製造方法について簡
単に説明する。最初、Si基板31に幅数μm、高さ数
μmのZnS:Agの分散したガラスでなる活性層34
及び活性層を被覆する石英膜によるクラッド層35で構
成される光導波路36をCVD法等で形成する。更にホ
ログラフィック露光法等により導波路の表面にグレーテ
ィング37を形成する。次にSiO2等の絶縁膜を蒸着
し、更にタングステン金属をマスク蒸着し、フォトリソ
技術とエッチング法により急峻な先端を有する電界放射
チップ33を形成する。Next, a method of manufacturing this light emitting device will be briefly described. First, an active layer 34 made of glass having ZnS: Ag dispersed therein and having a width of several μm and a height of several μm on a Si substrate 31.
An optical waveguide 36 composed of a clad layer 35 made of a quartz film covering the active layer is formed by a CVD method or the like. Further, the grating 37 is formed on the surface of the waveguide by the holographic exposure method or the like. Next, an insulating film such as SiO 2 is vapor-deposited, and then tungsten metal is vapor-deposited as a mask to form a field emission chip 33 having a sharp tip by a photolithography technique and an etching method.
【0019】さて、この様にして作製された発光素子の
陰極33と光導波路36との間に数Vから数百Vの電圧
を印加することによって青色レーザ光を得ることができ
る。この発光素子の動作原理については、第1の実施例
とほぼ同様である。Now, blue laser light can be obtained by applying a voltage of several V to several hundred V between the cathode 33 and the optical waveguide 36 of the light emitting device thus manufactured. The operating principle of this light emitting element is almost the same as that of the first embodiment.
【0020】尚、本実施例においては、光導波路の活性
層にZnS:Agを分散したガラス導波路を用いたが、
Zn2SiO2:MnやY2O3:Eu等を分散したガラス
導波路を用いることにより、緑色や赤色等のレーザ発振
が得られる。発振波長が蛍光体の種類や波長選択素子の
設定波長により自由に選択できることは自明であり、紫
外線の波長を有するレーザも可能である。In this embodiment, the glass waveguide in which ZnS: Ag is dispersed is used as the active layer of the optical waveguide.
By using a glass waveguide in which Zn 2 SiO 2 : Mn, Y 2 O 3 : Eu, etc. are dispersed, laser oscillation of green, red, etc. can be obtained. It is obvious that the oscillation wavelength can be freely selected depending on the type of phosphor and the setting wavelength of the wavelength selection element, and a laser having an ultraviolet wavelength is also possible.
【0021】[0021]
【発明の効果】本発明による発光素子は非線形効果等に
よる間接的なエネルギーの変換は行わず、熱を発しない
マルチ・チップ電界放射型電子源から放射された電子ビ
ームで活性層を直接励起する方式なので、容易に大出力
が得られる。また発光部が導波路構造であるために光の
閉じ込めが有効に行われ、その結果低閾値・低電力の発
光素子が実現可能となるものである。また本素子は集積
化にも適しており、価値の高いものである。The light emitting device according to the present invention directly excites the active layer with an electron beam emitted from a multi-chip field emission electron source that does not generate heat without indirectly converting energy due to a non-linear effect or the like. Since it is a system, a large output can be easily obtained. Further, since the light emitting portion has a waveguide structure, light is effectively confined, and as a result, a light emitting element having a low threshold and low power can be realized. Further, this device is suitable for integration and has high value.
【図1】本発明の第1の実施例における発光素子の構成
模式斜視図FIG. 1 is a schematic perspective view of the structure of a light emitting device according to a first embodiment of the invention.
【図2】本発明の第1の実施例における発光素子の断面
模式図FIG. 2 is a schematic cross-sectional view of a light emitting device in a first embodiment of the invention.
【図3】本発明の第2の実施例における発光素子の構成
模式斜視図FIG. 3 is a schematic perspective view showing the structure of a light emitting device according to a second embodiment of the invention.
【図4】従来の電界放出型電子ビームによる発光素子活
性層の励起方法と活性層とマルチチップ電界放射型電子
源を対向させて配置する発光素子の断面構造図FIG. 4 is a cross-sectional structure diagram of a conventional light emitting device in which a field emission type electron beam is used to excite a light emitting device active layer and the active layer and a multi-chip field emission electron source are arranged to face each other.
1 導電性基板 2 電界放射チップ(電子源) 3 絶縁層 4 ゲート電極 5 スペーサ 6 真空空間 7 活性層 8 クラッド層 9 光導波路 10 グレーティング 11 Al膜(アノード) 12 石英基板 13 Au電極 14 パッシベーション膜 15 電界印加装置 16 電界印加装置 31 シリコン基板 32 絶縁膜 33 電界放射チップ(陰極) 34 活性層 35 クラッド層 36 光導波路 37 グレーティング 38 Al膜 39 Au電極 40 スペーサ 41 パッシベーション膜 42 石英基板 43 真空 1 Conductive Substrate 2 Field Emission Chip (Electron Source) 3 Insulating Layer 4 Gate Electrode 5 Spacer 6 Vacuum Space 7 Active Layer 8 Clad Layer 9 Optical Waveguide 10 Grating 11 Al Film (Anode) 12 Quartz Substrate 13 Au Electrode 14 Passivation Film 15 Electric field application device 16 Electric field application device 31 Silicon substrate 32 Insulating film 33 Field emission chip (cathode) 34 Active layer 35 Clad layer 36 Optical waveguide 37 Grating 38 Al film 39 Au electrode 40 Spacer 41 Passivation film 42 Quartz substrate 43 Vacuum
Claims (8)
プ電界放射型電子源を対向させて配置し、両者間に印加
した電界によって放射された電子ビームによって活性層
を励起・発光させる発光素子において、前記活性層が蛍
光体の分散した誘電体であり、かつ発光部が光導波路構
造であることを特徴とする発光素子。1. Light emission in which a light emitting portion including an active layer and a multi-chip field emission electron source are arranged to face each other, and the active layer is excited and emits light by an electron beam emitted by an electric field applied between the two. In the element, the light emitting element is characterized in that the active layer is a dielectric material in which a phosphor is dispersed, and the light emitting portion has an optical waveguide structure.
徴とする請求項1の発光素子。2. The light emitting device according to claim 1, wherein the active layer is a core of an optical waveguide.
被覆されていることを特徴とする請求項1の発光素子。3. The light emitting device according to claim 1, wherein at least a part of the surface of the optical waveguide is covered with a metal.
搬する光を反射する端面が形成されていることを特徴と
する請求項1の発光素子。4. The light emitting device according to claim 1, wherein an end face for reflecting light generated in the active layer and carried by the active layer is formed at an end of the optical waveguide.
層にて発生する光を反射する鏡面と、波長を選択する素
子が配置されていることを特徴とする請求項1の発光素
子。5. A light emitting device according to claim 1, wherein a mirror surface for reflecting light generated in the active layer and an element for selecting a wavelength are arranged outside at least one of the optical waveguides.
搬する光を反射する回折格子が形成されていることを特
徴とする請求項1の発光素子。6. The light emitting device according to claim 1, wherein a diffraction grating that reflects the light generated in the active layer and carried by the active layer is formed in a part of the optical waveguide.
プ電界放射型電子源が同一基板に形成されていることを
特徴とする請求項1の発光素子。7. The light emitting device according to claim 1, wherein the light emitting portion including the active layer and the multi-chip field emission electron source are formed on the same substrate.
がシリコン基板に形成されていることを特徴とする請求
項1の発光素子。8. The light emitting device according to claim 1, wherein the light emitting portion and the multi-chip field emission electron source are formed on a silicon substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17646493A JPH0738192A (en) | 1993-07-16 | 1993-07-16 | Light emitting element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17646493A JPH0738192A (en) | 1993-07-16 | 1993-07-16 | Light emitting element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0738192A true JPH0738192A (en) | 1995-02-07 |
Family
ID=16014150
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17646493A Pending JPH0738192A (en) | 1993-07-16 | 1993-07-16 | Light emitting element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0738192A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005149865A (en) * | 2003-11-14 | 2005-06-09 | Nippon Hoso Kyokai <Nhk> | Field emission device, field emission substrate, drive device, and display |
-
1993
- 1993-07-16 JP JP17646493A patent/JPH0738192A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005149865A (en) * | 2003-11-14 | 2005-06-09 | Nippon Hoso Kyokai <Nhk> | Field emission device, field emission substrate, drive device, and display |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6392341B2 (en) | Resonant microcavity display with a light distribution element | |
US5804919A (en) | Resonant microcavity display | |
KR100363231B1 (en) | Resonant Microcavity Display | |
US5119386A (en) | Light emitting device | |
US5677923A (en) | Vertical cavity electron beam pumped semiconductor lasers and methods | |
US6556602B2 (en) | Electron beam pumped semiconductor laser screen and associated fabrication method | |
US6198211B1 (en) | Resonant microcavity display | |
US20040038437A1 (en) | Resonant microcavity communication device | |
RU2056665C1 (en) | Laser cathode-ray tube | |
JPH0645697A (en) | Heterostructure laser resonator and laser provided with above resonator | |
US5543638A (en) | Semiconductor light emitting device | |
JPH0738192A (en) | Light emitting element | |
JP2757596B2 (en) | Light emitting element | |
US5444731A (en) | Semiconductor laser array having a plurality of vertical cavities and providing a monolobe emission beam | |
JPH0730199A (en) | Semiconductor laser element | |
JP2009516911A (en) | Electrically pumped ND3 + doped solid state laser | |
JP3091342B2 (en) | Glass light emitting device | |
JPH05218589A (en) | Electron beam excited semiconductor light-emitting element | |
JP3117773B2 (en) | Silicon-integrated integrated light emitting device and method of manufacturing the same | |
JP2003347649A (en) | Light emitting device and its producing process | |
JP2720532B2 (en) | Blue semiconductor light emitting device | |
JPH0721902A (en) | Micro-vacuum element and manufacture thereof | |
JPH065955A (en) | Optical fiber amplifier and optical fiber laser | |
JP2524595B2 (en) | Method for manufacturing solid laser | |
JP2639394B2 (en) | Semiconductor Raman laser |