JPH0738139A - Optical receiver - Google Patents

Optical receiver

Info

Publication number
JPH0738139A
JPH0738139A JP5200366A JP20036693A JPH0738139A JP H0738139 A JPH0738139 A JP H0738139A JP 5200366 A JP5200366 A JP 5200366A JP 20036693 A JP20036693 A JP 20036693A JP H0738139 A JPH0738139 A JP H0738139A
Authority
JP
Japan
Prior art keywords
photocurrent
current
light receiving
amplifier
amplified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5200366A
Other languages
Japanese (ja)
Inventor
Koji Kamisaka
宏治 上坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP5200366A priority Critical patent/JPH0738139A/en
Publication of JPH0738139A publication Critical patent/JPH0738139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To provide an optical receiver which is simple in circuit structure and capable of amplifying a photocurrent well without distorting it. CONSTITUTION:A first photodetector 2 and a second photodetector 3 both generating a photocurrent are provided in an optical receiver, a second photocurrent i2 outputted from the second photodetector 3 is compared with a reference current iS through a current comparison amplifier, and when it is found that the second photocurrent i2 is smaller than the reference current iS, an output current is set to zero, and when the second photocurrent i2 is larger than the reference current iS, the second photocurrent i2 is amplified as much as a current gain K and then outputted. In a differential amplifier 6, a difference between a first photocurrent i1 outputted from the first photodetector 2 and an output current from the current comparison amplifier is amplified and outputted. Therefore, when a photocurrent is small, only the first photocurrent is amplified, and when a photocurrent becomes large, a difference between two photocurrents is amplified, so that an excessive current large enough to make a differential amplifier saturated is prevented from flowing into it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、音声信号や映像信号等
で変調された光を赤外線により無線で遠隔他に伝送する
光空間信号伝送装置に用いる光受信機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical receiver used in an optical space signal transmission device for wirelessly transmitting light modulated by a voice signal, a video signal, etc. by infrared rays.

【0002】[0002]

【従来の技術】一般に、赤外線空間伝送装置では、赤外
線が伝送される空間の条件や距離により受光信号強度は
非常に大きく変動し、その変動幅は数10dBにも達す
る。この光を検出する光受信機の光検出器は、一般的な
ものでも図4に示すように入射光に対して非常に微小な
光量オーダ(nW)からその1万〜10万倍のオーダ
(mW)、デシベル換算で80〜100dBにも渡っ
て、入力光量に比例した光電流を出力する。尚、図4は
両対数グラフにおいて入射光量と光電流との関係を示す
図である。
2. Description of the Related Art Generally, in an infrared space transmission device, the intensity of a received light signal fluctuates greatly depending on the condition of the space in which infrared rays are transmitted and the distance, and the fluctuation range reaches several tens of dB. As shown in FIG. 4, a photodetector of an optical receiver that detects this light is a very small amount (nW) of the incident light to the order of 10,000 to 100,000 times that of the incident light (nW) as shown in FIG. mW), and outputs a photocurrent proportional to the input light amount over 80 to 100 dB in decibel conversion. Note that FIG. 4 is a diagram showing the relationship between the incident light amount and the photocurrent in a logarithmic log graph.

【0003】しかしながら、上記した光電流を増幅する
通常の増幅器は上記した程の広範囲に渡って変化する光
電流をS/N比良く増幅することができないので、一般
的には光レベルがある程度大きくなった段階で、出力の
電流レベルまたは電流/電圧変換した電圧レベルを検知
して上記増幅器に自動利得調整(AGC)をかけ、この
増幅器が飽和して歪電流を出力しないように構成されて
いる。
However, since the above-mentioned ordinary amplifier for amplifying the photocurrent cannot amplify the photocurrent changing over a wide range as described above with a good S / N ratio, the light level is generally large to some extent. At this stage, the current level of the output or the voltage level obtained by current / voltage conversion is detected and automatic gain adjustment (AGC) is applied to the amplifier so that the amplifier does not saturate and output a distortion current. .

【0004】この種の自動利得調整装置としては、例え
ば特公昭62−34169号公報や特開平4−3671
09号公報に示すように受光素子の過大電流が増幅器を
飽和させるのを避けるために非線形抵抗素子を使用した
電流バイパスを用いたり、電流調整用のFET素子を用
いたものや、特開平5−114887号公報に示すよう
に前置増幅器の前段に可変減衰器を設けて光電流を適切
に減衰させて流入電流を制限したものや、特開平5−1
10345号公報、特開平5−91051号公報や特開
平3−266577号公報に示されるように過大な光電
流に対してはAGCをカットするなどして増幅器の利得
を入力光量に応じて自動調整するもの等が知られてい
る。
Examples of automatic gain control devices of this type include Japanese Patent Publication No. 62-34169 and Japanese Patent Laid-Open No. 3671/1992.
As disclosed in Japanese Patent Publication No. 09-09, a current bypass using a non-linear resistance element is used to prevent an excessive current of a light receiving element from saturating an amplifier, a FET using a current adjusting FET element, and Japanese Patent Laid-Open Publication No. Hei 5 (1998) -58. As disclosed in Japanese Patent No. 114887, a variable attenuator is provided in front of a preamplifier to appropriately attenuate a photocurrent to limit an inflow current;
As shown in JP-A-10345, JP-A-5-91051 and JP-A-3-2666577, the gain of the amplifier is automatically adjusted according to the amount of input light by cutting the AGC for an excessive photocurrent. It is known to do things.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述し
た従来構成の何れも入力の光電流を増幅した後、その電
流レベルを検出して入力光量が適正であるか否かを判定
し、その判定結果を制御信号として入力段に帰還してバ
イパス電流や初段増幅器の増幅率を調整するようにして
いるので、この信号検出や制御用に信号増幅器用素子以
外に様々な素子を必要とし、コストが高くなるという問
題があった。
However, in any of the above-described conventional configurations, after amplifying the input photocurrent, the current level is detected to determine whether the input light amount is appropriate, and the determination result. Is fed back to the input stage as a control signal to adjust the bypass current and the amplification factor of the first stage amplifier, so various elements other than the signal amplifier element are required for this signal detection and control, and the cost is high. There was a problem of becoming.

【0006】更には、一般に信号レベル検出のためには
整流回路を持つことから信号レベルが小なる時には制御
信号の直線性やS/N比に問題が生ずるのみならず、整
流回路の時定数により、制御に時間遅れを生じたり、増
幅器がその最良動作点で動作できない場合が生ずる等の
問題点があった。本発明は、以上のような問題点に着目
し、これを有効に解決すべく創案されたものであり、そ
の目的は簡単な回路構成で光電流の歪のない良好な増幅
ができるようにした光受信機を提供することにある。
Further, since a rectifying circuit is generally provided for detecting the signal level, when the signal level becomes small, not only a problem occurs in the linearity of the control signal and the S / N ratio, but also the time constant of the rectifying circuit causes However, there are problems such as a time delay in control and a case where the amplifier cannot operate at its best operating point. The present invention has been made in view of the above problems and was devised in order to effectively solve them, and an object thereof is to enable good amplification without distortion of photocurrent with a simple circuit configuration. It is to provide an optical receiver.

【0007】[0007]

【課題を解決するための手段】本発明は、上記問題点を
解決するために、光を受けて光電流を発生する第1及び
第2の受光素子と、前記第2の受光素子の第2の光電流
と基準電流とを比較して第2の光電流が前記基準電流を
超えた時に所定の電流利得で増幅する電流比較増幅器
と、前記第1の受光素子の第1の光電流と前記電流比較
増幅器からの出力電流との差電流を増幅する差動増幅器
とを備えるように構成したものである。
In order to solve the above problems, the present invention provides first and second light receiving elements which receive light and generate a photocurrent, and a second light receiving element of the second light receiving element. And a reference current, and a current comparison amplifier that amplifies the second photocurrent with a predetermined current gain when the second photocurrent exceeds the reference current; a first photocurrent of the first light receiving element; The differential amplifier for amplifying the difference current from the output current from the current comparison amplifier is provided.

【0008】[0008]

【作用】本発明は、以上のように構成したので、第2の
受光素子からの第2の光電流は電流比較増幅器により予
め設定された基準電流と比較され、第2の光電流が基準
電流を下回っている場合には出力電流はゼロとなるが基
準電流を上回った場合には所定の電流利得で増幅され
て、出力される。この出力電流と第1の受光素子からの
第1の光電流は差動増幅器にて差がとられて、その値が
増幅されることになる。従って、光電流が小さい範囲に
おいては一方の発光素子からの光電流のみを増幅し、光
電流が大きくなると一方の受光素子からの光電流と他方
の受光素子からの増幅後の光電流との差電流を増幅して
いるので、差動増幅器に過大電流が流入することがな
く、歪のない増幅が可能となる。
Since the present invention is configured as described above, the second photocurrent from the second light receiving element is compared with the reference current preset by the current comparison amplifier, and the second photocurrent is compared with the reference current. The output current is zero when the output current is lower than the reference current, but is amplified and output with a predetermined current gain when the output current is higher than the reference current. The difference between this output current and the first photocurrent from the first light receiving element is taken by the differential amplifier, and the value is amplified. Therefore, in the range where the photocurrent is small, only the photocurrent from one light emitting element is amplified, and when the photocurrent becomes large, the difference between the photocurrent from one light receiving element and the amplified photocurrent from the other light receiving element. Since the current is amplified, an excessive current does not flow into the differential amplifier, and distortion-free amplification is possible.

【0009】[0009]

【実施例】以下に、本発明に係る光受信機の一実施例を
添付図面に基づいて詳述する。図1は本発明に係る光受
信機の一例を示す回路構成図、図2は電流比較増幅器の
出力電流を示すグラフ、図3は差動増幅器にて増幅され
る光電流を示すグラフである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an optical receiver according to the present invention will be described in detail below with reference to the accompanying drawings. 1 is a circuit configuration diagram showing an example of an optical receiver according to the present invention, FIG. 2 is a graph showing an output current of a current comparison amplifier, and FIG. 3 is a graph showing a photocurrent amplified by a differential amplifier.

【0010】図示するようにこの光受信機1は、例えば
赤外線を受けて光電流を流すホトダイオードの如き第1
の発光素子2と第2の受光素子3を有し、これら2つの
受光素子は本実施例においては同一特性の素子が用いら
れて、同一光を受けるように並設されている。第2の受
光素子3の出力は、所定の電流利得、例えばKを有する
電流比較増幅器4の一方の入力端子へ接続されており、
他方の入力端子へは予め設定された基準電流、例えば1
0μAを流す基準電流源5が接続されている。そして、
この電流比較増幅器4は電流比較機能を有しており、上
記第2の受光素子3からの第2の光電流i2と基準電流
isとを比較し、基準電流isが大きい場合には何ら出
力はされないが、第2の光電流i2が基準電流isを超
えて大きくなった場合には上記電流利得Kが剰算された
値を出力電流i3(=K・i2)として出力するように
構成されている。この実施例においては、電流利得K
は、0<K<1の範囲で決定されており、入力電流より
も小さな値の電流を出力するようになっている。
As shown in the figure, the optical receiver 1 is a first receiver such as a photodiode which receives an infrared ray and causes a photocurrent to flow.
The light emitting element 2 and the second light receiving element 3 are used, and these two light receiving elements are the elements having the same characteristics in this embodiment, and are arranged in parallel so as to receive the same light. The output of the second light receiving element 3 is connected to one input terminal of the current comparison amplifier 4 having a predetermined current gain, for example K.
A preset reference current, for example, 1 is applied to the other input terminal.
A reference current source 5 that flows 0 μA is connected. And
The current comparison amplifier 4 has a current comparison function, compares the second photocurrent i2 from the second light receiving element 3 with the reference current is, and outputs no output when the reference current is is large. However, when the second photocurrent i2 becomes larger than the reference current is, the value obtained by adding the current gain K is output as the output current i3 (= K · i2). There is. In this embodiment, the current gain K
Is determined within the range of 0 <K <1, and a current having a value smaller than the input current is output.

【0011】この電流比較増幅器4の出力は、電流増幅
度がAの差動増幅器6の−端子へ接続される一方、この
+端子へは、上記第1の受光素子2の出力が接続されて
おり、この+端子へ上記第1の受光素子2からの第1の
光電流i1を入力するようになっている。従って、この
差動増幅器6においては第1の光電流i1と上記電流比
較増幅器4からの出力電流i3との差をとってこの差電
流をA倍(A>1)に増幅するようになっている。
The output of the current comparison amplifier 4 is connected to the-terminal of the differential amplifier 6 having a current amplification degree of A, while the output of the first light receiving element 2 is connected to the + terminal. Therefore, the first photocurrent i1 from the first light receiving element 2 is input to the + terminal. Therefore, in the differential amplifier 6, the difference between the first photocurrent i1 and the output current i3 from the current comparison amplifier 4 is taken and this difference current is amplified A times (A> 1). There is.

【0012】そして、この差動増幅器6の出力は、後段
にある通常の処理回路7へ接続されることになる。尚、
本実施例においては第1及び第2の受光素子2、3は、
同一特性の素子が用いられることから、第1及び第2の
光電流i1、i2は略同じ値を示すことになる。
The output of the differential amplifier 6 is connected to the normal processing circuit 7 in the subsequent stage. still,
In this embodiment, the first and second light receiving elements 2 and 3 are
Since the elements having the same characteristics are used, the first and second photocurrents i1 and i2 have substantially the same value.

【0013】次に、以上のように構成された本実施例の
動作について説明する。まず、例えば差動増幅器6が飽
和しない最大入力電流を100μAと設定し、基準電流
isを10μAに設定したとする。また、第1及び第2
の受光素子2、3として図3中の直線X1に示すような
入射光と光電流との関係を有する素子を用いるものとす
る。入射光量が微小な範囲、例えば10ルクス(Lu
x)から103 ルクスまで変化する間は、第2の受光素
子3からの第2の光電流i2の値は基準電流isの値、
10μAよりも小さいので、電流比較増幅器4の出力電
流i3はゼロとなる。
Next, the operation of this embodiment configured as described above will be described. First, for example, it is assumed that the maximum input current at which the differential amplifier 6 does not saturate is set to 100 μA and the reference current is is set to 10 μA. Also, the first and second
As the light receiving elements 2 and 3, elements having a relationship between incident light and photocurrent as shown by a straight line X1 in FIG. 3 are used. A range where the amount of incident light is very small, for example, 10 lux (Lu
x) to 10 3 lux, the value of the second photocurrent i2 from the second light receiving element 3 is the value of the reference current is,
Since it is smaller than 10 μA, the output current i3 of the current comparison amplifier 4 becomes zero.

【0014】従って、差動増幅器6においては、この+
端子に入力される第1の受光素子2からの第1の光電流
i1のみをA倍に増幅した値、A・i1の出力電流i4
が処理回路7に向けて出力されることになる。すなわち
入射光量は10〜103 ルクスの間は直線X1にて規定
される電流値が差動増幅器6にて増幅されることにな
る。これに対して、更に入射光が強くなって入射光量が
103 ルクスを越えると、第2の受光素子3の第2の光
電流i2は基準電流is(10μA)よりも大きくなる
ので、電圧比較増幅器4は第2の光電流をK倍した値i
2・Kの出力電流i3を出力することになる。
Therefore, in the differential amplifier 6, this +
A value obtained by amplifying only the first photocurrent i1 from the first light receiving element 2 input to the terminal by A times, the output current i4 of A · i1
Will be output to the processing circuit 7. That is, the current value defined by the straight line X1 is amplified by the differential amplifier 6 when the amount of incident light is 10 to 10 3 lux. On the other hand, when the incident light becomes stronger and the amount of incident light exceeds 10 3 lux, the second photocurrent i2 of the second light receiving element 3 becomes larger than the reference current is (10 μA). The amplifier 4 has a value i obtained by multiplying the second photocurrent by K.
The output current i3 of 2 · K is output.

【0015】その結果、差動増幅器6においては、第1
の光電流i1から先の出力電流i3(=i2・K)が差
し引かれた差電流が増幅されることになり、その出力電
流i4の値はA・(i1−i2・K)となる。この結
果、図3に示すように光電流が10μAを越えることに
なる入射光が103 ルクス以上の範囲では、破線X2に
示すような特性に見かけ上変化し、差電流(i1−i2
・K)が増幅されることになる。このように、光電流が
ある程度以上増加すると、特性が図3中において右方向
へシフトされるように動作して光電流の増加が抑制さ
れ、その結果、大幅な入射光量の増加に対しても差動増
幅器6が飽和することもなく、歪出力の発生を抑制する
ことが可能となる。このように、従来装置にて用いてい
た自動利得調整回路を不要にでき、これを使用すること
なく簡単な回路構成で、入射光量の大幅な増加に対して
も、増幅器が飽和して歪が発生することをなくすことが
できる。
As a result, in the differential amplifier 6, the first
The difference current obtained by subtracting the previous output current i3 (= i2 · K) from the photocurrent i1 is amplified, and the value of the output current i4 becomes A · (i1−i2 · K). As a result, as shown in FIG. 3, in the range of the incident light whose photocurrent exceeds 10 μA is 10 3 lux or more, the characteristics shown by the broken line X2 apparently change, and the difference current (i1-i2
・ K) will be amplified. As described above, when the photocurrent increases to some extent or more, the characteristics are shifted to the right in FIG. 3 to suppress the increase of the photocurrent, and as a result, even when the incident light amount is significantly increased. It is possible to suppress the generation of distortion output without the differential amplifier 6 being saturated. In this way, the automatic gain adjustment circuit used in the conventional device can be dispensed with, and the simple circuit configuration without using it causes the amplifier to saturate and the distortion even when the incident light amount is greatly increased. It can be eliminated.

【0016】従って、従来の光受信機と比較して構造が
簡単化できることから大幅なコスト削減を図ることがで
きるのみならず、IC化も容易に行うことができる。ま
た、自動利得調整回路を不要にできることから、この時
定数に起因する利得調整の時間遅れもなくすことがで
き、迅速な制御が可能となる。そして、上述のような構
成により、従来構成では実現が難しい広範囲、例えば8
0dB以上もの範囲に渡って利得調整が可能となる。
Therefore, since the structure can be simplified as compared with the conventional optical receiver, not only a great cost reduction can be achieved but also an IC can be easily formed. Further, since the automatic gain adjustment circuit can be dispensed with, the time delay of the gain adjustment due to this time constant can be eliminated, and quick control can be performed. With the above-described configuration, a wide range, for example, 8
It is possible to adjust the gain over a range of 0 dB or more.

【0017】尚、上記実施例にあっては、第1及び第2
の受光素子2、3を別個に設けた場合について説明した
が、これらを例えば同一基板上に並設するようにすれ
ば、温度に依存する素子の暗電流特性が揃っているので
温度による悪影響を軽減することができ、一層良好な特
性を得ることができる。また、上記実施例にあっては電
流比較増幅器4の電流利得Kを1より小さく設定した
が、これに限定されず、例えば上記実施例にあっては第
1及び第2の受光素子2、3は同一のものを使用したこ
とから受光面積は略同一であるが、多分割受光素子を用
いて例えば第2の受光素子の受光面積が第1の受光素子
の受光面積よりも小さくなった場合には、上記電流利得
Kを1よりも大きな値に設定する。
In the above embodiment, the first and second
The case where the light receiving elements 2 and 3 are separately provided has been described, but if these are arranged side by side on the same substrate, for example, the dark current characteristics of the elements depending on the temperature are uniform, so that the adverse effect due to the temperature is not affected. It is possible to reduce the amount, and it is possible to obtain better characteristics. Further, although the current gain K of the current comparison amplifier 4 is set to be smaller than 1 in the above embodiment, the present invention is not limited to this. For example, in the above embodiment, the first and second light receiving elements 2 and 3 are provided. Since the same light receiving area is used, the multi-divided light receiving element is used. For example, when the light receiving area of the second light receiving element is smaller than the light receiving area of the first light receiving element. Sets the current gain K to a value greater than 1.

【0018】[0018]

【発明の効果】以上説明したように、本発明の光受信機
によれば次のように優れた作用効果を発揮することがで
きる。2つの受光素子を用いて光電流がある程度増加し
たならば、これらの差電流を増幅するようにしたので、
従来用いていた自動利得調整回路を用いることなく簡単
な回路構成により、広範囲に渡って歪を生ずることなく
増幅を行うことができる。また、自動利得調整回路を構
成する各種の素子が不要になるので、コストを大幅に削
減することができるのみならず、回路素子の時定数によ
る制御遅れもなくすことができる。
As described above, according to the optical receiver of the present invention, the following excellent operational effects can be exhibited. If the photocurrent is increased to some extent by using two light receiving elements, the difference current between them is amplified.
Amplification can be performed over a wide range without causing distortion with a simple circuit configuration without using an automatic gain adjustment circuit that has been used conventionally. Further, since various elements forming the automatic gain adjustment circuit are not required, not only the cost can be significantly reduced but also the control delay due to the time constant of the circuit element can be eliminated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る光受信機の一例を示す回路構成図
である。
FIG. 1 is a circuit configuration diagram showing an example of an optical receiver according to the present invention.

【図2】電流比較増幅器の出力電流を示すグラフであ
る。
FIG. 2 is a graph showing an output current of a current comparison amplifier.

【図3】差動増幅器にて増幅される光電流を示すグラフ
である。
FIG. 3 is a graph showing a photocurrent amplified by a differential amplifier.

【図4】受光素子の一般的な特性を示すグラフである。FIG. 4 is a graph showing general characteristics of a light receiving element.

【符号の説明】[Explanation of symbols]

1…光受信機、2…第1の受光素子、3…第2の受光素
子、4…電流比較増幅器、5…基準電流源、6…差動増
幅器、i1…第1の光電流、i2…第2の光電流、i
3,i4…出力電流、is…基準電流。
DESCRIPTION OF SYMBOLS 1 ... Optical receiver, 2 ... 1st light receiving element, 3 ... 2nd light receiving element, 4 ... Current comparison amplifier, 5 ... Reference current source, 6 ... Differential amplifier, i1 ... 1st photocurrent, i2 ... Second photocurrent, i
3, i4 ... Output current, is ... Reference current.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/14 10/04 10/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location H04B 10/14 10/04 10/06

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光を受けて光電流を発生する第1及び第
2の受光素子と、前記第2の受光素子の第2の光電流と
基準電流とを比較して第2の光電流が前記基準電流を超
えた時に所定の電流利得で増幅する電流比較増幅器と、
前記第1の受光素子の第1の光電流と前記電流比較増幅
器からの出力電流との差電流を増幅する差動増幅器とを
備えるように構成したことを特徴とする光受信機。
1. The first and second light receiving elements that receive light to generate a photocurrent, and a second photocurrent of the second light receiving element and a reference current are compared to determine a second photocurrent. A current comparison amplifier that amplifies with a predetermined current gain when the reference current is exceeded,
An optical receiver comprising a differential amplifier for amplifying a difference current between a first photocurrent of the first light receiving element and an output current from the current comparison amplifier.
JP5200366A 1993-07-20 1993-07-20 Optical receiver Pending JPH0738139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5200366A JPH0738139A (en) 1993-07-20 1993-07-20 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200366A JPH0738139A (en) 1993-07-20 1993-07-20 Optical receiver

Publications (1)

Publication Number Publication Date
JPH0738139A true JPH0738139A (en) 1995-02-07

Family

ID=16423115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200366A Pending JPH0738139A (en) 1993-07-20 1993-07-20 Optical receiver

Country Status (1)

Country Link
JP (1) JPH0738139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430911C (en) * 2003-03-12 2008-11-05 三星电子株式会社 Bus interface technology
JP2009094291A (en) * 2007-10-09 2009-04-30 Panasonic Corp Optical semiconductor device, and infrared data communication apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430911C (en) * 2003-03-12 2008-11-05 三星电子株式会社 Bus interface technology
US7557790B2 (en) * 2003-03-12 2009-07-07 Samsung Electronics Co., Ltd. Bus interface technology
JP2009094291A (en) * 2007-10-09 2009-04-30 Panasonic Corp Optical semiconductor device, and infrared data communication apparatus

Similar Documents

Publication Publication Date Title
US6847263B2 (en) Optical receiver with wide dynamic range transimpedance amplifier
US6198571B1 (en) Computerized intelligent optical amplifier for multi-channel optical networks
JPH08307362A (en) Photodetector
JPH02113640A (en) Automatic gain controller
US6654215B2 (en) Photodetector circuit with avalanche photodiode
JP3863613B2 (en) Device for detecting a signal carried by a modulated light wave
JP2005093834A (en) Bias voltage control circuit and light receiving method of avalanche photodiode
JPH0738139A (en) Optical receiver
JPH04252923A (en) Photo detecting circuit
JPH02209029A (en) Automatic gain controller
JPH0255428A (en) Microwave agc circuit
JPH03296309A (en) Optical reception circuit
JPH1169333A (en) Reception amplifier for catv
JP2953799B2 (en) Optical receiving circuit
JP3039568B2 (en) Optical receiving circuit
JP2508962B2 (en) Optical reception signal level control device
JPH05114887A (en) Light receiving device
JPH07177099A (en) Optical reception equipment
JPH0993203A (en) Optical receiver
JPH02155321A (en) Optical receiver
JP3299576B2 (en) Optical space communication device
JPS6337705A (en) Light reception circuit
JPH07123048A (en) Optical receiver
JPH01321707A (en) Optical reception circuit
JP3518559B2 (en) Light reception signal detection circuit and light reception signal processing device