JPH0737911B2 - Heat flow measuring device for opening and heat flow measuring method - Google Patents

Heat flow measuring device for opening and heat flow measuring method

Info

Publication number
JPH0737911B2
JPH0737911B2 JP310592A JP310592A JPH0737911B2 JP H0737911 B2 JPH0737911 B2 JP H0737911B2 JP 310592 A JP310592 A JP 310592A JP 310592 A JP310592 A JP 310592A JP H0737911 B2 JPH0737911 B2 JP H0737911B2
Authority
JP
Japan
Prior art keywords
heat
amount
plate glass
opening
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP310592A
Other languages
Japanese (ja)
Other versions
JPH05187931A (en
Inventor
真志 渡部
仁 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tachikawa Corp
Original Assignee
Tachikawa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tachikawa Corp filed Critical Tachikawa Corp
Priority to JP310592A priority Critical patent/JPH0737911B2/en
Publication of JPH05187931A publication Critical patent/JPH05187931A/en
Publication of JPH0737911B2 publication Critical patent/JPH0737911B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は家屋やビルの日射を受
けている窓等の開口部から室内へ流入する熱量を計測す
ることと、冬の夜間等に屋外へ失われる熱量を計測する
ことを可能とするための計測装置及びその計測方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the amount of heat that flows into a room through the openings such as windows of houses and buildings that receive solar radiation, and the amount of heat that is lost outdoors during nights in winter. The present invention relates to a measuring device and a measuring method for enabling the above.

【0002】[0002]

【従来の技術】家屋やビルの日射を受けている窓等の開
口部に吸収された熱量のうち室内へ流入する熱量を定量
化するために従来では窓から室内へ流入する熱量を室内
側から計測すべく種々の試みが行われている。
2. Description of the Related Art In order to quantify the amount of heat that flows into a room out of the amount of heat that is absorbed by the openings of windows that receive sunlight from a house or building, conventionally, the amount of heat that flows into a room from a window Various attempts have been made to measure.

【0003】また、冬の夜間等における開口部から屋外
への損失熱量はJISの試験方法等に準じて測定された
熱貫流率に内・外温度差を乗じるという方法が広く普及
しているが、現実の開口部においてその時々の外気風速
や天空の様子(雲量)等を反映した損失熱量を評価して
いる状態にはない。
For the amount of heat loss from the opening to the outside at night in winter, a method of multiplying the heat transmission coefficient measured according to the JIS test method by the temperature difference between the inside and outside is widely used. , It is not in a state of evaluating the amount of heat loss that reflects the outdoor air velocity and the state of the sky (cloud amount) at the actual opening.

【0004】[0004]

【発明が解決しようとする課題】ところが、窓の内側に
は通常ブラインド等の附帯物が備えられ、このような附
帯物の材質・形状や窓硝子により、窓から室内への熱流
の挙動は複雑化している。従って、現実の開口部にあっ
て外部風速や天空等の影響を反映した正確な熱流を計測
することが困難であった。
However, an accessory such as a blind is usually provided inside the window, and the behavior of the heat flow from the window to the room is complicated depending on the material and shape of such an accessory and the window glass. It has become. Therefore, it is difficult to accurately measure the heat flow in the actual opening, which reflects the influence of the external wind speed and the sky.

【0005】この発明の目的は、昼間の窓等の開口部に
吸収された日射熱量の中から室内へ放出される熱量を正
確に計測し、さらに冬の夜間等において室内から窓等の
開口部を通して屋外へ損失する熱量をも正確に計測し得
る計測装置及び計測方法とを提供するにある。
An object of the present invention is to accurately measure the amount of heat released into a room from the amount of solar radiation absorbed in the opening such as a window in the daytime, and further to measure the amount of heat released from the room into the opening such as a window during the nighttime in winter. There is provided a measuring device and a measuring method capable of accurately measuring the amount of heat that is lost to the outside through.

【0006】[0006]

【課題を解決するための手段】第一の発明では、開口部
を構成する第一の板硝子の外気側表面温度を測定する第
一の温度測定装置と、前記第一の板硝子と外気側表面の
長波長域の放射特性が実用上等しい第二の板硝子と、前
記第二の板硝子の外気側表面温度を測定する第二の温度
測定装置と、前記第二の板硝子を加熱する加熱装置と該
加熱装置への供給熱量を計測する電力計測装置と、前記
第一の温度測定装置の出力温度と第二の温度測定装置の
出力温度とに基づいて前記第一及び第二の板硝子の温度
を同一温度とするように前記加熱装置を駆動する温度調
節装置及び電力調節器と、前記第二の板硝子の前面への
直射日光を遮る日射遮蔽板と、前記第二の板硝子の裏面
に密着させた前記加熱装置の後面から放出される熱量を
計測する面熱流計と、日射熱量を計測する日射計とから
熱流計測装置を構成した。
In the first invention, a first temperature measuring device for measuring the outside air side surface temperature of a first plate glass forming an opening, and the first plate glass and the outside air side surface are provided. A second plate glass whose emission characteristics in the long wavelength region are practically equal, a second temperature measuring device for measuring the outside air side surface temperature of the second plate glass, a heating device for heating the second plate glass, and the heating. A power measuring device that measures the amount of heat supplied to the device, and the same temperature as the temperature of the first and second plate glass based on the output temperature of the first temperature measuring device and the output temperature of the second temperature measuring device. And a temperature controller and a power controller to drive the heating device, a solar radiation shield plate that blocks direct sunlight to the front surface of the second plate glass, and the heating closely attached to the back surface of the second plate glass. A surface heat flow meter that measures the amount of heat released from the rear surface of the device Constituted the heat flow measuring device and a solar radiation meter for measuring the solar radiation heat.

【0007】また、第二の発明では建築物の開口部を構
成する第一の板硝子の外気側表面温度を測定し、前記第
一の板硝子と外気側表面の長波長域の放射特性が実用上
等しい第二の板硝子を直射日光から遮蔽した状態でその
外気側表面温度を測定し、前記第一の板硝子の外気側表
面温度と前記第二の板硝子の外気側表面温度とが同一と
なるように該第二の板硝子を加熱してその供給熱量を第
一の熱量として計測し、前記第二の板硝子の裏面の加熱
装置の後面から放出される熱量を第二の熱量として計測
し、直射日光を遮蔽した前記第二の板硝子が吸収する日
射熱量を第三の熱量として日射計で計測し、第二の板硝
子に供給された前記第一の熱量と第三の熱量の総和から
前記第二の熱量を減算して前記第二の板硝子から外部へ
放出される対流及び長波長放射熱量を第四の熱量として
算出し、前記開口部へ外方から入射する日射熱量と開口
部から室内へ透過する日射熱量と前記開口部より外方へ
反射される日射熱量とをそれぞれ日射計で計測して、外
方より開口部へ入射する日射熱量から室内へ透過する日
射熱量と開口部より外方へ反射される日射熱量を減算し
て開口部の吸収熱量を第五の熱量として算出し、前記第
五の熱量から前記第四の熱量を減算して開口部から室内
へ放出される対流及び長波長放射熱量を算出し、これに
開口部から室内へ透過する日射熱量の計測値を加算する
ことにより、室内が開口部から取得する総合取得熱量を
算出するようにした。
In the second invention, the outside air side surface temperature of the first plate glass forming the opening of the building is measured, and the radiation characteristics in the long wavelength region of the first plate glass and the outside air side surface are practically used. Measure the outside air side surface temperature of the same second plate glass in a state of being shielded from direct sunlight, so that the outside air side surface temperature of the first plate glass and the outside air side surface temperature of the second plate glass become the same. The second plate glass is heated and its supplied heat amount is measured as the first heat amount, and the heat amount emitted from the rear surface of the heating device on the back surface of the second plate glass is measured as the second heat amount, and direct sunlight is measured. Measured with a pyranometer as the third amount of solar heat absorbed by the shielded second plate glass, the second heat amount from the sum of the first heat amount and the third heat amount supplied to the second plate glass. Convection that is released from the second plate glass by subtracting The long-wavelength radiant heat quantity is calculated as the fourth heat quantity, and the solar heat quantity incident from the outside to the opening, the solar heat quantity transmitted from the opening to the room, and the solar heat quantity reflected from the opening to the outside are respectively calculated. Measured with a pyranometer and subtracting the amount of solar radiation that penetrates the room and the amount of solar radiation that is reflected from the outside from the amount of solar radiation that enters the opening from the outside And calculate the convection and long-wavelength radiant heat released from the opening to the room by subtracting the fourth heat from the fifth heat and measuring the amount of solar heat transmitted through the opening to the room. By adding the values, the total amount of heat acquired from the interior of the room is calculated.

【0008】さらに、第三の発明では建築物の開口部を
構成する第一の板硝子の外気側表面温度を測定し、前記
第一の板硝子と外気側表面の長波長域の放射特性が実用
上等しい第二の板硝子の外気側表面温度を測定し、前記
第一の板硝子と前記第二の板硝子とが同一温度となるよ
うに該第二の板硝子を加熱してその供給熱量を第一の熱
量として計測し、前記第二の板硝子の後面から放出され
る熱量を第二の熱量として計測し、前記第二の板硝子に
供給された前記第一の熱量から前記第二の熱量を減算し
て前記第二の板硝子から外部へ放出される熱量を求める
ことにより建築物の開口部から屋外へ損失する対流及び
長波長放射熱量を等価的に算出するようにした。
Further, in the third invention, the outside air side surface temperature of the first plate glass forming the opening of the building is measured, and the radiation characteristics in the long wavelength region of the first plate glass and the outside air side surface are practically used. The outside air side surface temperature of the same second plate glass is measured, and the second plate glass is heated so that the first plate glass and the second plate glass have the same temperature, and the supplied heat amount is the first heat amount. As the second amount of heat released from the rear surface of the second plate glass, the second heat amount is subtracted from the first heat amount supplied to the second plate glass By calculating the amount of heat released from the second sheet glass to the outside, convection and long-wave radiation heat lost from the opening of the building to the outside can be calculated equivalently.

【0009】[0009]

【作用】第一及び第二の発明では、日射のある昼間にお
いて第一の板硝子の外気側表面温度と、直射日光から遮
蔽した第二の板硝子の外気側表面温度とが同一温度とな
るように第二の板硝子を加熱する供給熱量と、第二の板
硝子の加熱装置後面から放出される熱量と、直射日光を
遮蔽した前記第二の板硝子に吸収される日射熱量とから
第二の板硝子から外気側へ放出される外気側放出熱量が
算出され、前記開口部へ外方より入射する日射熱量と室
内へ透過する日射熱量と開口部より外方へ反射される日
射熱量とをそれぞれ日射計で計測して開口部へ入射する
日射熱量から室内へ透過する日射熱量と外方へ反射され
る日射熱量を減算することにより開口部の吸収日射熱量
が算出され、その吸収熱量から前記外気側放出熱量を減
算して開口部から室内側へ放出される対流及び長波長放
射熱量が定量的に算出される。
In the first and second aspects of the present invention, the outside air surface temperature of the first plate glass and the outside air surface temperature of the second plate glass shielded from direct sunlight are made to be the same temperature in the daytime with sunlight. The amount of heat supplied to heat the second plate glass, the amount of heat released from the rear surface of the heating device for the second plate glass, and the amount of solar heat absorbed by the second plate glass that shields direct sunlight from the outside air from the second plate glass. The amount of heat released to the outside air side is calculated, and the amount of solar heat entering the opening from the outside, the amount of solar heat transmitting to the room, and the amount of solar heat reflected from the opening to the outside are measured with a pyranometer. Then, the absorbed solar heat quantity of the opening is calculated by subtracting the solar heat quantity that penetrates the room and the solar heat quantity that is reflected to the outside from the solar heat quantity that enters the opening, and the outside heat release heat quantity is calculated from the absorbed heat quantity. Subtract from the opening Convection and long wavelength radiation heat is emitted to the inside are calculated quantitatively.

【0010】第三の発明では、冬の夜間において第一の
板硝子の外気側表面温度と、第二の板硝子の外気側表面
温度とが同一温度となるように第二の板硝子を加熱する
供給熱量と、第二の板硝子の加熱装置後面から放出され
る熱量とから第二の板硝子から外気側へ放出される外気
側放出熱量を算出することにより、前記開口部から屋外
へ放出される熱量が定量的に算出される。
According to the third aspect of the present invention, the amount of heat supplied for heating the second plate glass so that the outside air side surface temperature of the first plate glass and the outside air side surface temperature of the second plate glass become the same temperature at night in winter. And the amount of heat released from the rear surface of the heating device of the second plate glass and the amount of heat released to the outside air from the second plate glass to the outside air side, the amount of heat released to the outside from the opening is quantified. Is calculated.

【0011】[0011]

【実施例】以下、この発明を具体化した一実施例を図1
〜図3に従って説明する。図3に示すように、この実施
例は室内への熱流を測定しようとする被測定室1の窓2
に設置される板硝子3に対し計測装置のセンサ部4を並
行して配設し、そのセンサ部4の計測データに基づいて
窓2に吸収された熱量から被測定室1外へ放出される熱
量を求めることにより窓2から被測定室1内へ放出され
る熱流を求めるようにしたものである。そのセンサ部4
を図1に従って説明すると、外表面に設けられる板硝子
は1枚の中央部板硝子5aとその周囲に位置する4枚の
周辺部板硝子5b〜5eとから構成され、各板硝子5a
〜5eは断熱材6を介して配設されて相互の熱伝導を防
止する構成となっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment embodying the present invention will now be described with reference to FIG.
~ It demonstrates according to FIG. As shown in FIG. 3, in this embodiment, the window 2 of the chamber 1 to be measured for measuring the heat flow into the room is measured.
The sensor unit 4 of the measuring device is arranged in parallel with the plate glass 3 installed in the room, and the amount of heat absorbed from the window 2 based on the measurement data of the sensor unit 4 is released to the outside of the chamber 1 to be measured. The heat flow radiated from the window 2 into the chamber 1 to be measured is obtained by calculating The sensor section 4
Referring to FIG. 1, the plate glass provided on the outer surface is composed of one central plate glass 5a and four peripheral plate glasses 5b to 5e located around the central plate glass 5a.
5e are arranged via the heat insulating material 6 to prevent mutual heat conduction.

【0012】各板硝子5a〜5eには熱電対プローブ7
a〜7eがそれぞれ設けられてその表面温度を測定可能
となっており、その出力信号は後記温度調節器11a,
11bに出力される。各板硝子5a〜5eの後部には同
板硝子5a〜5eと同様に区画された面状電気ヒータ8
a〜8eがそれぞれ密接して配設され、各板硝子5a〜
5eをそれぞれ独立して加熱可能となっている。
A thermocouple probe 7 is attached to each plate glass 5a to 5e.
a to 7e are respectively provided and the surface temperature thereof can be measured, and the output signal is a temperature controller 11a, which will be described later.
It is output to 11b. At the rear of each plate glass 5a to 5e, a planar electric heater 8 partitioned in the same manner as the plate glasses 5a to 5e is provided.
a to 8e are closely arranged, and each plate glass 5a to
5e can be independently heated.

【0013】前記面状電気ヒータ8a〜8eの後部には
公知の面熱流計(図示しない)が配設され、その後部に
はケース9に充填された断熱材10が配設され、面熱流
計は前記中央部板硝子5aから断熱材10に流出する熱
量を検出可能となっている。そして、ケース9の前面に
前記板硝子5a〜5eが配設され、前記面状電気ヒータ
8a〜8eと面熱流計がケース9内に配設されている。
A known surface heat flow meter (not shown) is arranged at the rear of the surface electric heaters 8a to 8e, and a heat insulating material 10 filled in a case 9 is arranged at the rear of the surface heat flow meter. Can detect the amount of heat flowing from the central plate glass 5a to the heat insulating material 10. The plate glasses 5a to 5e are arranged on the front surface of the case 9, and the planar electric heaters 8a to 8e and the surface heat flow meter are arranged in the case 9.

【0014】上記のようなセンサ部4の電気的構成を図
2に従って説明すると、前記中央部板硝子5aに取着さ
れた熱電対プローブ7aの出力信号は温度調節器11a
に出力され、周辺部板硝子5b〜5eに取着された熱電
対プローブ7b〜7eの出力信号は温度調節器11bに
出力される。また、被測定室1の板硝子3にも熱電対プ
ローブ12が取着され、その出力信号は温度調節器11
cに出力され、同温度調節器11cはその温度信号を前
記温度調節器11a,11bに出力するようになってい
る。
The electrical configuration of the sensor unit 4 as described above will be described with reference to FIG. 2. The output signal of the thermocouple probe 7a attached to the central plate glass 5a is the temperature controller 11a.
The output signals of the thermocouple probes 7b to 7e attached to the peripheral plate glasses 5b to 5e are output to the temperature controller 11b. Also, the thermocouple probe 12 is attached to the plate glass 3 of the chamber 1 to be measured, and the output signal thereof is the temperature controller 11
The temperature controller 11c outputs the temperature signal to the temperature controllers 11a and 11b.

【0015】前記温度調節器11a,11bには電力調
節器13a,13bが接続され、電力調節器13aはデ
ジタルパワーメータ14を介して中央部板硝子5a後部
の面状電気ヒータ5aに接続され、電力調節器13bは
周辺部板硝子5b〜5e後部の面状電気ヒータ8eに接
続されている。そして、温度調節器11aは中央部板硝
子5aから検出した温度信号と温度調節器11cから入
力された温度信号とを比較して中央部板硝子5aの温度
の方が低い場合には電力調節器13aで中央部板硝子5
aを面状電気ヒータ5aで加熱する。このとき、デジタ
ルパワーメータ14で面状電気ヒータ5aに供給される
熱量が測定される。また、温度調節器11bは周辺部板
硝子5b〜5eから検出した温度信号と温度調節器11
cから入力された温度信号とを比較して周辺部板硝子5
b〜5eの温度の方が低い場合には電力調節器13bで
周辺部板硝子5b〜5eを加熱するようになっている。
Electric power controllers 13a and 13b are connected to the temperature controllers 11a and 11b, and the electric power controller 13a is connected to a planar electric heater 5a at the rear of the central plate glass 5a through a digital power meter 14 to generate electric power. The controller 13b is connected to the sheet-like electric heater 8e at the rear of the peripheral plate glasses 5b to 5e. Then, the temperature controller 11a compares the temperature signal detected from the central plate glass 5a with the temperature signal input from the temperature controller 11c, and when the temperature of the central plate glass 5a is lower, the power controller 13a operates. Central plate glass 5
A is heated by the planar electric heater 5a. At this time, the amount of heat supplied to the planar electric heater 5a is measured by the digital power meter 14. In addition, the temperature controller 11b detects the temperature signals detected from the peripheral plate glasses 5b to 5e and the temperature controller 11b.
The peripheral plate glass 5 is compared with the temperature signal input from c.
When the temperature of b to 5e is lower, the peripheral plate glass 5b to 5e is heated by the power controller 13b.

【0016】そして、上記のように構成されたセンサ部
4と、図3に示すようにセンサ部4の板硝子5a〜5b
を直射日光から遮るための日射遮蔽板15と、日射熱量
を測定するための日射計(図示しない)とから熱流計測
装置が構成される。
Then, the sensor unit 4 having the above-described structure, and the plate glass 5a-5b of the sensor unit 4 as shown in FIG.
A heat flow measuring device is composed of a solar radiation shield plate 15 for shielding the solar radiation from direct sunlight and a pyranometer (not shown) for measuring the amount of solar heat.

【0017】さて、上記のような熱流計測装置により被
計測室1の窓2に昼間吸収される日射熱量のうち室内側
へ流入する対流及び放射熱量を求めるには、図3に示す
ように日光に晒された被測定室1の窓2に対しセンサ部
4を並設し、センサ部4は日射遮蔽板15で直射日光の
日射熱量を遮り、その状態においてセンサ部4の板硝子
5a〜5eの温度と被測定室1の板硝子3との温度が等
しくなるように同センサ部4を動作させる。すなわち、
日射遮蔽板15で直射日光から遮られた板硝子5a〜5
eの温度は窓2の板硝子3より低い温度となるため、温
度調節器11a〜11cにより板硝子5a〜5eと板硝
子3の温度差を検出して両者が一致するように各板硝子
5a〜5eを各面状電気ヒータ8a〜8eで加熱する。
このとき、中央部板硝子5aは同一温度に加熱される周
辺部板硝子5b〜5eで取り囲まれて熱的に安定した状
態に維持される。そして、この状態でデジタルパワーメ
ータ14により中央部板硝子5aに供給される熱量Qu
を求め、面熱流計で中央部板硝子5aからケース9内の
断熱材10に放出される熱量Qc を求める。
Now, in order to obtain the convection and radiant heat quantity flowing into the indoor side out of the solar heat quantity absorbed in the window 2 of the measurement room 1 during the day by the heat flow measuring apparatus as described above, as shown in FIG. The sensor unit 4 is arranged in parallel to the window 2 of the measured room 1 exposed to the sun, and the sensor unit 4 blocks the amount of direct sunlight from the sunlight, and in that state, the glass plates 5a to 5e of the sensor unit 4 are exposed. The sensor unit 4 is operated so that the temperature and the temperature of the plate glass 3 of the measurement chamber 1 become equal. That is,
Plate glasses 5a to 5 shielded from direct sunlight by the solar shading plate 15
Since the temperature of e is lower than that of the plate glass 3 of the window 2, the temperature controllers 11a to 11c detect the temperature difference between the plate glasses 5a to 5e and the plate glass 3 so that the plate glasses 5a to 5e are matched with each other. It is heated by the planar electric heaters 8a to 8e.
At this time, the central plate glass 5a is surrounded by the peripheral plate glasses 5b to 5e that are heated to the same temperature, and is maintained in a thermally stable state. In this state, the heat quantity Qu supplied to the central plate glass 5a by the digital power meter 14
Then, the heat quantity Qc radiated from the central plate glass 5a to the heat insulating material 10 in the case 9 is calculated by a surface heat flow meter.

【0018】また、日射遮蔽板15で直射日光が遮られ
た位置で日射計により熱量を測定すると、直射日光以外
の日射すなわち天空よりの日射の板硝子5aでの吸収熱
量Qdsと地面から反射された日射の板硝子5aでの吸収
熱量Qrgとの総熱量が求められる。
When the amount of heat was measured by a pyranometer at a position where the direct sunlight was shielded by the solar shading plate 15, the amount of heat absorbed Qds by the plate glass 5a of the solar radiation other than the direct sunlight, that is, the solar radiation from the sky was reflected from the ground. The total amount of heat, which is the amount of absorbed heat Qrg in the plate glass 5a of solar radiation, is obtained.

【0019】ここで、センサ部4の各板硝子5a〜5e
の温度が平衡状態となると板硝子5aに供給される熱量
と、板硝子5aから外気側へ放出される対流及び長波長
放射熱量の合計値Qa0とケース9内へ放出される熱量Q
c の和とは一致するため、前記各熱量Qu ,Qc ,Qd
s,Qrg,Qa0には次の関係が成立する。
Here, each plate glass 5a to 5e of the sensor unit 4
When the temperature of the plate is in an equilibrium state, the heat quantity supplied to the plate glass 5a, the total value Qa0 of the convection and long-wavelength radiant heat quantity emitted from the plate glass 5a to the outside air side, and the heat quantity Q released into the case 9
Since they match the sum of c, the heat quantities Qu, Qc, Qd
The following relation holds for s, Qrg, and Qa0.

【0020】[0020]

【数1】Qu +Qds+Qrg=Qa0+Qc 従って、## EQU1 ## Qu + Qds + Qrg = Qa0 + Qc Therefore,

【0021】[0021]

【数2】Qa0=Qu +Qds+Qrg−Qc となって、上記のように求められた各熱量Qu ,Qc ,
Qds,Qrgに基づいてQa0が求められる。
[Equation 2] Qa0 = Qu + Qds + Qrg−Qc, and the respective heat quantities Qu, Qc, obtained as described above,
Qa0 is obtained based on Qds and Qrg.

【0022】一方、被測定室1の窓2に入射する全日射
熱量Iと、板硝子3及びブラインドBから窓外へ反射さ
れる日射熱量Iρs と、板硝子3及びブラインドBを透
過して被測定室1内へ入射する日射熱量Iτs とを日射
計で測定する。ここで、窓2(板硝子3及びブラインド
B等の日除け材)に吸収される熱量Iasと前記各熱量
I,Iρs ,Iτs との間には次の関係が成立する。
On the other hand, the total amount of solar heat I incident on the window 2 of the chamber 1 to be measured, the amount of solar heat I ρs reflected from the plate glass 3 and the blind B to the outside of the window, and the amount of solar heat transmitted through the plate glass 3 and the blind B are measured. The amount of solar heat I τ entering the inside of 1 is measured with a pyranometer. Here, the following relationship is established between the amount of heat Ias absorbed by the window 2 (the plate glass 3 and the shade A such as the blind B) and the amounts of heat I, Iρs, and Iτs.

【0023】[0023]

【数3】Ias=I−Iρs −Iτs 従って、上記のように求められた各熱量I,Iρs ,I
τs に基づいて熱量Iasが求められる。
## EQU3 ## Ias = I-I.rho.s-I.tau.s Therefore, the respective heat quantities I, I.rho.s, I obtained as described above.
The heat quantity Ias is obtained based on τs.

【0024】一方、窓2に吸収される熱量Iasは室外へ
放出される熱量Qa0と室内へ放出される対流及び長波長
放射熱量Qs となるため、
On the other hand, the amount of heat Ias absorbed by the window 2 is the amount of heat Qa0 released to the outside of the room and the amount of convection and long-wave radiation heat Qs released to the inside of the room.

【0025】[0025]

【数4】Ias=Qa0+Qs となり、よって、[Equation 4] Ias = Qa0 + Qs, so that

【0026】[0026]

【数5】Qs =Ias−Qa0 となり、上記のように求められた熱量Ias,Qa0に基づ
いて窓2から被測定室1内へ放出される熱量Qs が定量
的に求められる。なお、前記各熱量は全て単位面積当た
りの熱量とする。
## EQU5 ## Qs = Ias-Qa0, and the quantity of heat Qs radiated from the window 2 into the measurement chamber 1 is quantitatively calculated based on the quantities of heat Ias and Qa0 calculated as described above. It should be noted that all of the above heat amounts are heat amounts per unit area.

【0027】以上のようにこの熱量計測装置によれば、
センサ部4で板硝子5aから外部へ放出される熱量Qa0
を求めることにより被測定室1の窓2から室外へ放出さ
れる熱量を等価的に求め、その熱量Qa0に基づいて被測
定室1の窓2から室内へ放出される対流及び長波長放射
熱量Qs を定量化することができる。この熱量Qs に室
内への透過日射量Iτs を加算したものが窓2から室内
側が取得する総合取得熱量(対流及び長波長放射と短波
長放射)となる。
As described above, according to this calorimeter,
Heat quantity Qa0 radiated from the plate glass 5a to the outside by the sensor unit 4
The amount of heat radiated from the window 2 of the measurement chamber 1 to the outside is calculated equivalently, and the amount of convection and long-wave radiant heat Qs radiated from the window 2 of the measurement chamber 1 to the room is calculated based on the heat amount Qa0. Can be quantified. The sum of the heat quantity Qs and the amount of transmitted solar radiation Iτs into the room is the total acquired heat quantity (convection and long-wavelength radiation and short-wavelength radiation) obtained from the window 2 on the indoor side.

【0028】また、空調負荷計算において用いられる日
射遮蔽係数は3mm厚の透明板硝子だけで構成される窓の
日射による室内側総合取得熱量に対する日除け付き窓の
日射による室内側総合取得熱量の割合であるので、この
ような仕様の窓に対し上記熱量計測装置を並設し、双方
の室内側取得熱量をもとめれば、定義に従って日射遮蔽
係数を求めることができる。
The solar radiation shielding coefficient used in the calculation of the air conditioning load is the ratio of the total indoor calorie obtained by the solar radiation of the window with the shade to the total indoor calorie obtained by the solar radiation of the window composed only of the transparent plate glass having a thickness of 3 mm. Therefore, if the above-mentioned calorific value measuring devices are installed in parallel for windows of such specifications and the indoor side acquired calorific value of both is obtained, the solar radiation shielding coefficient can be obtained according to the definition.

【0029】さらに、前述のような熱流計測装置により
冬の夜間等において被計測室1の窓2から屋外へ流出す
る対流及び長波長放射熱量を求めるには、図3に示すよ
うに被測定室1の窓2に対しセンサ部4を並設し、この
状態においてセンサ部4の板硝子5a〜5eの温度と被
測定室1の板硝子3との温度が等しくなるように同セン
サ部4を動作させる。すなわち、屋外の冷風や天空等へ
の放射冷却に曝された板硝子5a〜5eの温度は窓2の
板硝子3より低い温度となるため、温度調節器11a〜
11cにより板硝子5a〜5eと板硝子3の温度差を検
出して両者が一致するように各板硝子5a〜5eを各面
状電気ヒータ8a〜8eで加熱する。このとき、中央部
板硝子5aは同一温度に加熱される周辺部板硝子5b〜
5eで取り囲まれて熱的に安定した状態に維持される。
そして、この状態でデジタルパワーメータ14により中
央部板硝子5aに供給される熱量Qu を求め、面熱流計
で中央部板硝子5aからケース9内の断熱材10に放出
される熱量Qc を求める。
Furthermore, in order to obtain the convection and long-wavelength radiant heat that flow out from the window 2 of the chamber 1 to be measured by the heat flow measuring device as described above at night in winter, as shown in FIG. 1. The sensor unit 4 is installed side by side with respect to the window 2 of No. 1 and in this state, the sensor unit 4 is operated so that the temperature of the plate glass 5a to 5e of the sensor unit 4 becomes equal to the temperature of the plate glass 3 of the chamber 1 to be measured. . That is, since the temperature of the plate glass 5a to 5e exposed to the outdoor cold air or the radiation cooling to the sky is lower than that of the plate glass 3 of the window 2, the temperature controllers 11a to 11e.
11c detects the temperature difference between the plate glasses 5a to 5e and the plate glass 3 and heats the plate glasses 5a to 5e by the sheet-shaped electric heaters 8a to 8e so that they match each other. At this time, the central plate glass 5a is heated to the same temperature as the peripheral plate glass 5b.
It is surrounded by 5e and maintained in a thermally stable state.
Then, in this state, the amount of heat Qu supplied to the central plate glass 5a is obtained by the digital power meter 14, and the amount of heat Qc released from the central plate glass 5a to the heat insulating material 10 in the case 9 is obtained by a surface heat flow meter.

【0030】ここで、センサ部4の各板硝子5a〜5e
の温度が平衡状態となると板硝子5aに供給される熱量
と、板硝子5aから外気側へ放出される対流及び長波長
放射熱量の合計値Qa0とケース9内へ放出される熱量Q
c の和とは一致するため、前記各熱量Qu ,Qc ,Qa0
には次の関係が成立する。
Here, each plate glass 5a to 5e of the sensor unit 4
When the temperature of the plate is in an equilibrium state, the heat quantity supplied to the plate glass 5a, the total value Qa0 of the convection and long-wavelength radiant heat quantity emitted from the plate glass 5a to the outside air side, and the heat quantity Q released into the case 9
Since they match the sum of c, the heat quantities Qu, Qc, Qa0
The following relationships are established for.

【0031】[0031]

【数6】Qu =Qa0+Qc 従って、[Equation 6] Qu = Qa0 + Qc Therefore,

【0032】[0032]

【数7】Qa0=Qu −Qc となって、上記のように求められた各熱量Qu ,Qc に
基づいてQa0が求められる。なお、前記各熱量は全て単
位面積当たりの熱量とする。
## EQU7 ## Qa0 = Qu-Qc, and Qa0 is calculated based on the heat quantities Qu and Qc calculated as described above. It should be noted that all of the above heat amounts are heat amounts per unit area.

【0033】以上のようにこの熱量計測装置によれば、
センサ部4で板硝子5aから外部へ放出される熱量Qa0
を求めることにより被測定室1の窓2から屋外へ放出さ
れる熱量を等価的に定量化することができる。
As described above, according to this calorimeter,
Heat quantity Qa0 radiated from the plate glass 5a to the outside by the sensor unit 4
It is possible to equivalently quantify the amount of heat released from the window 2 of the measurement chamber 1 to the outside.

【0034】また、このように算出された屋外への放出
熱量をその時の室内気温と外気温との差で除してやれ
ば、その現実の開口部のその状況下での熱貫流率を求め
ることができる。
Further, if the amount of heat released to the outside thus calculated is divided by the difference between the indoor temperature and the outdoor temperature at that time, the heat transmission coefficient of the actual opening under that condition can be obtained. it can.

【0035】[0035]

【発明の効果】以上詳述したように、この発明は窓等の
開口部に吸収された熱量の中から室内へ放出される熱量
を正確に計測し得るとともに、冬の夜間等の開口部から
の熱損失が問題となる状況下において、窓等の開口部を
通して室内側から屋外へ流出(損失)する熱量を正確に
計測し得る計測装置及び計測方法を提供することができ
る優れた効果を発揮する。
As described above in detail, according to the present invention, the amount of heat released to the room can be accurately measured from the amount of heat absorbed in the opening such as the window, and the opening can be obtained from the opening such as at night in winter. In a situation in which the heat loss of the product becomes a problem, it is possible to provide a measuring device and a measuring method capable of accurately measuring the amount of heat flowing out (loss) from the indoor side to the outdoor through an opening such as a window. To do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を具体化した一実施例のセンサ部を示す
分解斜視図である。
FIG. 1 is an exploded perspective view showing a sensor unit according to an embodiment of the present invention.

【図2】一実施例の電気的構成を示すブロック図であ
る。
FIG. 2 is a block diagram showing an electrical configuration of one embodiment.

【図3】一実施例の熱流測定状態を示す説明図である。FIG. 3 is an explanatory diagram showing a heat flow measurement state of an example.

【符号の説明】[Explanation of symbols]

2 開口部(窓) 3 第一の板硝子 5 第二の板硝子 7 第二の温度測定装置(熱電対プローブ) 8 加熱装置(面状電気ヒータ) 14 電力計測装置(デジタルパワーメータ) 11 温度調節装置 12 第一の温度測定装置(熱電対プローブ) 15 日射遮蔽板 2 Opening part (window) 3 First plate glass 5 Second plate glass 7 Second temperature measuring device (thermocouple probe) 8 Heating device (planar electric heater) 14 Electric power measuring device (digital power meter) 11 Temperature adjusting device 12 First temperature measuring device (thermocouple probe) 15 Solar shading plate

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 開口部(2)を構成する第一の板硝子
(3)の外気側表面温度を測定する第一の温度測定装置
(12)と、 前記第一の板硝子(3)と外気側表面の長波長域の放射
特性が実用上等しい第二の板硝子(5)と、 前記第二の板硝子(5)の外気側表面温度を測定する第
二の温度測定装置(7)と、 前記第二の板硝子(5)を加熱する加熱装置(8)と該
加熱装置(8)への供給熱量を計測する電力計測装置
(14)と、 前記第一の温度測定装置(12)の出力温度と第二の温
度測定装置(7)の出力温度とに基づいて前記第一及び
第二の板硝子(3,5)の温度を同一温度とするように
前記加熱装置(8)を駆動する温度調節装置(11)及
び電力調節器(13)と、 前記第二の板硝子(5)の前面への直射日光を遮る日射
遮蔽板(15)と、 前記第二の板硝子(5)の裏面に密着させた前記加熱装
置(8)の後面から放出される熱量を計測する面熱流計
と、 日射熱量を計測する日射計と、から構成したことを特徴
とする開口部の熱流計測装置。
1. A first temperature measuring device (12) for measuring a surface temperature of an outside air side of a first plate glass (3) constituting an opening (2), and the first plate glass (3) and the outside air side. A second plate glass (5) having substantially the same radiation characteristics in the long wavelength range on the surface; a second temperature measuring device (7) for measuring the outside air side surface temperature of the second plate glass (5); A heating device (8) for heating the second plate glass (5), a power measuring device (14) for measuring the amount of heat supplied to the heating device (8), and an output temperature of the first temperature measuring device (12). A temperature adjusting device for driving the heating device (8) so that the temperatures of the first and second plate glasses (3, 5) are the same temperature based on the output temperature of the second temperature measuring device (7). (11) and a power controller (13), and a solar shading for blocking direct sunlight to the front surface of the second plate glass (5). (15), a surface heat flow meter that measures the amount of heat released from the rear surface of the heating device (8) that is in close contact with the back surface of the second plate glass (5), and a pyranometer that measures the amount of solar radiation heat. A heat flow measuring device for an opening characterized by being configured.
【請求項2】 建築物の開口部を構成する第一の板硝子
の外気側表面温度を測定し、 前記第一の板硝子と外気側表面の長波長域の放射特性が
実用上等しい第二の板硝子を直射日光から遮蔽した状態
でその外気側表面温度を測定し、 前記第一の板硝子の外気側表面温度と前記第二の板硝子
の外気側表面温度とが同一となるように該第二の板硝子
を加熱してその供給熱量を第一の熱量として計測し、 前記第二の板硝子の裏面の加熱装置の後面から放出され
る熱量を第二の熱量として計測し、 直射日光を遮蔽した前記第二の板硝子が吸収する日射熱
量を第三の熱量として日射計で計測し、 第二の板硝子に供給された前記第一の熱量と第三の熱量
の総和から前記第二の熱量を減算して前記第二の板硝子
から外部へ放出される対流及び長波長放射熱量を第四の
熱量として算出し、 前記開口部へ外方から入射する日射熱量と開口部から室
内へ透過する日射熱量と前記開口部より外方へ反射され
る日射熱量とをそれぞれ日射計で計測して、外方より開
口部へ入射する日射熱量から室内へ透過する日射熱量と
開口部より外方へ反射される日射熱量を減算して開口部
の吸収熱量を第五の熱量として算出し、 前記第五の熱量から前記第四の熱量を減算して開口部か
ら室内へ放出される対流及び長波長放射熱量を算出し、
これに開口部から室内へ透過する日射熱量の計測値を加
算することにより、室内が開口部から取得する総合取得
熱量を算出することを特徴とする開口部の熱流計測方
法。
2. A second plate glass that measures the surface temperature of the first plate glass forming the opening of the building on the outside air side, and the radiation characteristics of the first plate glass and the outside air side surface in the long wavelength region are practically equal. The outside air side surface temperature is measured in a state of being shielded from direct sunlight, and the outside air side surface temperature of the first plate glass and the outside air side surface temperature of the second plate glass are the same so that the second plate glass is the same. The amount of heat supplied is measured as the first amount of heat by heating the second plate glass, and the amount of heat released from the rear surface of the heating device on the back surface of the second plate glass is measured as the second amount of heat. The solar radiation amount absorbed by the plate glass is measured by a pyranometer as a third heat amount, and the second heat amount is subtracted from the sum of the first heat amount and the third heat amount supplied to the second plate glass, Convection and long-wavelength radiant heat released from the second plate glass Calculated as a fourth amount of heat, the amount of solar heat entering the opening from the outside, the amount of solar heat transmitted from the opening to the room, and the amount of solar heat reflected from the opening to the outside are measured with a pyranometer. The amount of absorbed heat of the opening is calculated as the fifth amount of heat by subtracting the amount of solar heat that is transmitted to the room from the amount of solar heat that is incident on the opening from the outside and the amount of solar heat that is reflected to the outside from the opening. Calculate the convection and long-wavelength radiation heat released from the opening to the room by subtracting the fourth heat from the fifth heat,
A method for measuring heat flow in an opening, characterized in that the total acquired heat quantity acquired from the opening in the room is calculated by adding the measured value of the amount of solar heat transmitted from the opening to the room.
【請求項3】 建築物の開口部を構成する第一の板硝子
の外気側表面温度を測定し、 前記第一の板硝子と外気側表面の長波長域の放射特性が
実用上等しい第二の板硝子の外気側表面温度を測定し、 前記第一の板硝子と前記第二の板硝子とが同一温度とな
るように該第二の板硝子を加熱してその供給熱量を第一
の熱量として計測し、 前記第二の板硝子の後面から放出される熱量を第二の熱
量として計測し、 前記第二の板硝子に供給された前記第一の熱量から前記
第二の熱量を減算して前記第二の板硝子から外部へ放出
される熱量を求めることにより建築物の開口部から屋外
へ損失する対流及び長波長放射熱量を等価的に算出する
ことを特徴とする開口部の熱流計測方法。
3. A second plate glass which measures the outside air side surface temperature of a first plate glass forming an opening of a building and has practically the same radiation characteristics in the long wavelength region of the first plate glass and the outside air side surface. Measuring the outside air side surface temperature of the first plate glass and the second plate glass is heated so that the second plate glass has the same temperature, and the supply heat amount thereof is measured as a first heat amount, Measure the amount of heat released from the rear surface of the second sheet glass as the second amount of heat, from the second sheet glass by subtracting the second amount of heat from the first amount of heat supplied to the second sheet glass A method for measuring the heat flow in an opening, which is characterized by equivalently calculating the convection loss and the long-wavelength radiation heat loss from the opening of the building to the outside by determining the amount of heat released to the outside.
JP310592A 1992-01-10 1992-01-10 Heat flow measuring device for opening and heat flow measuring method Expired - Lifetime JPH0737911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP310592A JPH0737911B2 (en) 1992-01-10 1992-01-10 Heat flow measuring device for opening and heat flow measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP310592A JPH0737911B2 (en) 1992-01-10 1992-01-10 Heat flow measuring device for opening and heat flow measuring method

Publications (2)

Publication Number Publication Date
JPH05187931A JPH05187931A (en) 1993-07-27
JPH0737911B2 true JPH0737911B2 (en) 1995-04-26

Family

ID=11548072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP310592A Expired - Lifetime JPH0737911B2 (en) 1992-01-10 1992-01-10 Heat flow measuring device for opening and heat flow measuring method

Country Status (1)

Country Link
JP (1) JPH0737911B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101414062B1 (en) * 2013-05-21 2014-07-09 주식회사 트러스트엔지니어링 Caloric Collection System
CN105043598A (en) * 2015-06-29 2015-11-11 安徽汉威电子有限公司 Novel heat meter convenient to read
JP6881738B2 (en) * 2017-02-03 2021-06-02 株式会社新潟テクノ Thermal Current Characteristics Measurement Method and Insulation Performance Evaluation Method
CN106841289B (en) * 2017-03-30 2023-06-20 广州市建筑材料工业研究所有限公司 Device and method for detecting heat insulation performance of sun-shading product by utilizing sunlight
CN107389226B (en) * 2017-07-19 2023-07-25 中国科学院西北生态环境资源研究院 Frozen soil region heat pipe working condition data detection device based on heat flux density
JP7221658B2 (en) * 2018-11-12 2023-02-14 日本板硝子株式会社 Evaluation method of glass body
KR102365742B1 (en) * 2020-06-23 2022-02-22 한국에너지기술연구원 Apparatus and method for simplified measuring shgc

Also Published As

Publication number Publication date
JPH05187931A (en) 1993-07-27

Similar Documents

Publication Publication Date Title
Levinson et al. Methods and instrumentation to measure the effective solar reflectance of fluorescent cool surfaces
US7044637B2 (en) Temperature measuring apparatus
Krenzinger et al. Accurate outdoor glass thermographic thermometry applied to solar energy devices
Marinoski et al. Development of a calorimeter for determination of the solar factor of architectural glass and fenestrations
US20120235041A1 (en) Absolute cavity pyrgeometer
JPH0737911B2 (en) Heat flow measuring device for opening and heat flow measuring method
Larsen et al. Determining the infrared reflectance of specular surfaces by using thermographic analysis
Bianco et al. Thermal and optical properties of a thermotropic glass pane: laboratory and in-field characterization
Alvarez et al. A test method to evaluate the thermal performance of window glazings
CN117146906B (en) Comprehensive performance detection system and method for building enclosure structure
McCluney The death of the shading coefficient
Yahoda et al. Heat Transfer Analysis of a Between-Panes Venetian Blind Using Effective Longwave Radiative Properties.
Vavilov How accurate is the IR thermographic evaluation of heat losses from buildings?
Suehrcke et al. The dynamic response of instruments measuring instantaneous solar radiation
Savage et al. Infrared calibration of net radiometers and infrared thermometers
Cooper et al. A method of measuring sky temperature
KR102086330B1 (en) System for measuring thermal property of greenhouse material
Feng et al. Design and development of a low-cost glazing measurement system
Bizoňová et al. Methods of Preliminary Estimation of Total Solar Energy Transmittance (TSET) on a Sun Protected Window with Climatic Chamber and Hot Box Apparatus
KR102255698B1 (en) System for measuring thermal property of greenhouse material
US20140100906A1 (en) Methods for characterizing performance of an energy-efficient film in fenestration assemblies
Adesanya Determining the Emissivity of Roofing Samples: Asphalt, Ceramic and Coated Cedar
WO1994018531A1 (en) Apparatus and method for determining the quantity of an incident flux of electromagnetic radiation
JP3163093B2 (en) Outdoor infrared radiation measurement method and its radiometer
JPH0476059B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 17

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 17