JPH0737776A - Scanning type aligner - Google Patents

Scanning type aligner

Info

Publication number
JPH0737776A
JPH0737776A JP5177736A JP17773693A JPH0737776A JP H0737776 A JPH0737776 A JP H0737776A JP 5177736 A JP5177736 A JP 5177736A JP 17773693 A JP17773693 A JP 17773693A JP H0737776 A JPH0737776 A JP H0737776A
Authority
JP
Japan
Prior art keywords
exposure
illuminance
scanning direction
photoelectric conversion
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5177736A
Other languages
Japanese (ja)
Inventor
Osamu Tanitsu
修 谷津
Koji Mori
孝司 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP5177736A priority Critical patent/JPH0737776A/en
Publication of JPH0737776A publication Critical patent/JPH0737776A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging

Abstract

PURPOSE:To measure illuminance irrgularity on a wafer in a short time with high precision in an aligner of a slit scan exposure method. CONSTITUTION:A wafer is scanned in-X direction to a rectangular exposure region 14 of a width D2 through a wafer stage, and a reticle is scanned to an illumination region corresponding to an exposure region 14 to transfer and expose a pattern of a reticle on a wafer one by one. An illuminance sensor with a photosensitive surface 25a of a width D1 (>D2) in a scanning direction is attached onto a wafer stage and the photosensitive surface 25a is moved in Y direction to the exposure region 14 by driving a wafer stage to measure illuminance irregularity in Y direction of the exposure region 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体素子又は
液晶表示素子等をフォトリソグラフィ工程で製造する際
に、所謂スリットスキャン露光方式でマスクパターンを
逐次ウエハ上に転写露光する走査型露光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning type exposure apparatus for sequentially exposing a mask pattern onto a wafer by a so-called slit scan exposure method when a semiconductor element, a liquid crystal display element or the like is manufactured by a photolithography process. .

【0002】[0002]

【従来の技術】半導体素子、液晶表示素子又は薄膜磁気
ヘッド等をフォトリソグラフィ工程で製造する際に、フ
ォトマスク又はレチクル(以下、「レチクル」と総称す
る)のパターンを感光材が塗布されたウエハ(又はガラ
スプレート等)上に転写する投影露光装置が使用されて
いる。従来の投影露光装置としては、ウエハの各ショッ
ト領域を順次投影光学系の露光フィールド内に移動させ
て、各ショット領域に順次レチクルのパターン像を一括
露光するというステップ・アンド・リピート方式の縮小
投影型露光装置(ステッパー)が多く使用されていた。
2. Description of the Related Art A wafer to which a photomask or reticle (hereinafter referred to as "reticle") pattern is coated with a photosensitive material when a semiconductor element, a liquid crystal display element, a thin film magnetic head, or the like is manufactured by a photolithography process. (Or a glass plate or the like) is used as a projection exposure apparatus. A conventional projection exposure apparatus is a step-and-repeat reduction projection in which each shot area on the wafer is sequentially moved into the exposure field of the projection optical system to sequentially expose the pattern images of the reticle to each shot area collectively. The mold exposure device (stepper) was often used.

【0003】図8(a)は従来のステッパーを示し、こ
の図8(a)において、平行光束を供給する光源系1か
らの露光光はフライアイレンズよりなるオプティカル・
インテグレータ2に入射する。オプティカル・インテグ
レータ2により形成される多数の光源像からの光束は、
コンデンサーレンズ3及びミラー4を経てレチクル5を
重畳的にほぼ均一な照度で照明する。レチクル5上のパ
ターンの縮小像は投影光学系6を介してウエハ7のショ
ット領域上に投影露光される。ウエハ7はウエハステー
ジ8上に保持され、ウエハステージ8は、投影光学系6
の光軸に垂直なXY平面内でウエハ7の位置決めを行う
XYステージ、及び投影光学系6の光軸に平行な方向で
のウエハ7の位置を調整するZステージ等より構成され
ている。また、ウエハステージ8上には受光素子9が取
り付けられ、図8(b)に示すように、受光素子9の受
光面9aは微小な円形となっている。
FIG. 8 (a) shows a conventional stepper. In FIG. 8 (a), the exposure light from a light source system 1 for supplying a parallel light flux is an optical beam consisting of a fly-eye lens.
It is incident on the integrator 2. Light fluxes from a large number of light source images formed by the optical integrator 2 are
The reticle 5 is superposedly illuminated with substantially uniform illuminance through the condenser lens 3 and the mirror 4. The reduced image of the pattern on the reticle 5 is projected and exposed on the shot area of the wafer 7 via the projection optical system 6. The wafer 7 is held on the wafer stage 8, and the wafer stage 8 holds the projection optical system 6
The XY stage for positioning the wafer 7 in the XY plane perpendicular to the optical axis of, and the Z stage for adjusting the position of the wafer 7 in the direction parallel to the optical axis of the projection optical system 6 and the like. Further, a light receiving element 9 is attached on the wafer stage 8, and the light receiving surface 9a of the light receiving element 9 has a minute circular shape as shown in FIG. 8B.

【0004】図9は、図8(a)のステッパーの光学系
の展開光路図であり、この図9に示すように、光源系1
は、露光光を発生する超高圧水銀ランプ11、その露光
光を集光する楕円鏡12、及び楕円鏡12で集光された
光束を略々平行光束に変換するインプットレンズ13よ
り構成されている。また、オプティカル・インテグレー
タ2による2次光源像の形成面は、レチクル5のパター
ン形成面及びウエハ7の露光面に対してフーリエ変換面
(瞳面)の関係となっている。
FIG. 9 is a developed optical path diagram of the optical system of the stepper shown in FIG. 8A. As shown in FIG.
Is composed of an ultra-high pressure mercury lamp 11 that generates exposure light, an elliptical mirror 12 that condenses the exposure light, and an input lens 13 that converts the light beam condensed by the elliptic mirror 12 into substantially parallel light beams. . The surface on which the secondary light source image is formed by the optical integrator 2 has a Fourier transform surface (pupil surface) with respect to the pattern formation surface of the reticle 5 and the exposure surface of the wafer 7.

【0005】斯かる従来のステッパーにおいて、レチク
ル5のパターン像をウエハ7上に良好な状態で露光する
ためには、図8(a)の投影光学系6の円形の露光フィ
ールド10内(又はウエハ7の露光面上)での露光光の
照度むらをできるだけ小さくする必要がある。そのため
には、先ずその露光フィールド10内での照度むらを正
確に測定する必要があり、従来は以下のようにしてウエ
ハ7の露光面上での照度むらを測定していた。
In such a conventional stepper, in order to expose the pattern image of the reticle 5 on the wafer 7 in a good condition, the circular exposure field 10 (or the wafer) of the projection optical system 6 of FIG. It is necessary to minimize the illuminance unevenness of the exposure light on the exposure surface 7). For that purpose, it is first necessary to accurately measure the uneven illuminance in the exposure field 10, and conventionally, the uneven illuminance on the exposed surface of the wafer 7 is measured as follows.

【0006】即ち、従来はウエハステージ8をX方向及
びY方向に駆動することにより、投影光学系6の露光フ
ィールド10の全面を受光素子9の受光面9aで走査し
て、受光素子9の光電変換信号のばらつきを測定してい
た。これにより、図10(a)に示すように、投影光学
系6の露光フィールド10が、ほぼ受光素子9の受光面
9aを単位として2次元的に分割され、2次元的に分割
された各点での照度が測定されていた。この場合、それ
ら多数の照度の計測結果の内で、照度の最大値をI
MAX 、照度の最小値をIMIN とすると、照度むらUは次
式で与えられる。 U=(IMAX-IMIN)/(IMAX+IMIN) (1)
That is, conventionally, the entire surface of the exposure field 10 of the projection optical system 6 is scanned by the light-receiving surface 9a of the light-receiving element 9 by driving the wafer stage 8 in the X-direction and the Y-direction, and the photoelectric conversion of the light-receiving element 9 is performed. The variation of the converted signal was measured. As a result, as shown in FIG. 10A, the exposure field 10 of the projection optical system 6 is two-dimensionally divided with the light-receiving surface 9a of the light-receiving element 9 as a unit, and the two-dimensionally divided points. The illuminance at was being measured. In this case, the maximum value of the illuminance is I
Irradiance unevenness U is given by the following equation, where MAX is the minimum value of the illuminance and I MIN . U = (I MAX -I MIN) / (I MAX + I MIN) (1)

【0007】[0007]

【発明が解決しようとする課題】最近、半導体素子等の
1個のチップパターンが大型化する傾向にあり、投影露
光装置においては、レチクル上のより大きな面積のパタ
ーンをウエハ上に露光するための大面積化が求められて
いる。また、半導体素子等のパターンが微細化するのに
応じて、投影光学系の解像度を向上することも求められ
ているが、投影光学系の解像度を向上し、且つ投影光学
系の露光フィールドを大きくすることは設計上及び製造
上困難であるという問題がある。特に、投影光学系とし
て、反射屈折系を使用するような場合には、無収差の露
光フィールドの形状が円弧状の領域となることもある。
Recently, there is a tendency that one chip pattern such as a semiconductor element becomes large in size, and in a projection exposure apparatus, a pattern of a larger area on a reticle is exposed on a wafer. Larger area is required. Further, it is also required to improve the resolution of the projection optical system in accordance with the miniaturization of the pattern of the semiconductor element or the like, but the resolution of the projection optical system is improved and the exposure field of the projection optical system is increased. However, there is a problem in that it is difficult to design and manufacture. In particular, when a catadioptric system is used as the projection optical system, the aberration-free exposure field may have an arcuate region.

【0008】斯かる転写対象パターンの大面積化及び投
影光学系の露光フィールドの制限に応えるために、例え
ば細長い矩形、円弧状又は6角形等の照明領域(これを
「スリット状の照明領域」という)に対してレチクルを
走査し、その照明領域と共役な露光領域に対してレチク
ルの走査と同期してウエハを走査することにより、レチ
クル上のパターンの像を逐次ウエハ上に露光する所謂ス
リットスキャン露光方式の投影露光装置が注目されてい
る。
In order to increase the area of the pattern to be transferred and to limit the exposure field of the projection optical system, for example, an illumination area such as an elongated rectangle, an arc or a hexagon (this is called a "slit illumination area"). ) Is scanned, and the wafer is scanned in synchronization with the scanning of the reticle to the exposure area that is conjugate with the illumination area, so that the image of the pattern on the reticle is sequentially exposed on the wafer. An exposure type projection exposure apparatus is drawing attention.

【0009】斯かるスリットスキャン露光方式の投影露
光装置では、ウエハ7上での静止状態での露光領域は、
図10(b)に示すように例えば細長い矩形の露光領域
14となり、この露光領域14に対して短辺方向(これ
を「走査方向」という)にウエハ7が走査される。この
ようなスリットスキャン露光方式の投影露光装置で、従
来の照度むらの測定方法を適用すると、その露光領域1
4内で微小な円形の受光面9aが走査方向及びこの走査
方向に垂直な非走査方向に移動して、各点での照度が順
次計測されることになる。しかしながら、この場合次の
ような不都合が生じる。
In such a slit scan exposure type projection exposure apparatus, the exposure area in a stationary state on the wafer 7 is
As shown in FIG. 10B, for example, an elongated rectangular exposure region 14 is formed, and the wafer 7 is scanned with respect to the exposure region 14 in the short side direction (this is referred to as the “scanning direction”). When a conventional method for measuring uneven illuminance is applied to such a slit scan exposure type projection exposure apparatus, the exposure area 1
Within 4, the minute circular light receiving surface 9a moves in the scanning direction and the non-scanning direction perpendicular to this scanning direction, and the illuminance at each point is sequentially measured. However, in this case, the following inconvenience occurs.

【0010】第1に、ウエハ7上の各点にはそれぞれ露
光領域14の走査方向(短辺方向)の露光量を積分した
積算露光量が与えられるため、露光領域14での露光光
の照度むらとは、露光領域14での照度を走査方向に積
分した結果の非走査方向へのばらつきとなる。そのた
め、ウエハ7上の各点での照度を求めるためには、露光
領域14の走査方向に沿う各点での照度の測定値を積算
する必要がある。即ち、受光面9aを露光領域14の走
査方向に移動させて、多数の計測点での照度をそれぞれ
計測する必要があるため、測定時間が長いという不都合
があった。また、それら走査方向の各点での計測結果の
和を求めるための計算時間も長くなるという不都合があ
った。
First, since each point on the wafer 7 is given an integrated exposure amount obtained by integrating the exposure amount in the scanning direction (short side direction) of the exposure region 14, the illuminance of the exposure light in the exposure region 14 is given. The unevenness is a variation in the non-scanning direction as a result of integrating the illuminance in the exposure area 14 in the scanning direction. Therefore, in order to obtain the illuminance at each point on the wafer 7, it is necessary to integrate the measured values of the illuminance at each point along the scanning direction of the exposure area 14. That is, since it is necessary to move the light receiving surface 9a in the scanning direction of the exposure area 14 and measure the illuminance at each of a large number of measurement points, there is a disadvantage that the measurement time is long. In addition, the calculation time for obtaining the sum of the measurement results at each point in the scanning direction also becomes long.

【0011】第2に、スリット状の露光領域内で受光面
9aを2次元的に走査するために、ウエハステージが無
駄な動きをすることになると共に、ウエハステージの制
御が複雑化するという不都合もあった。更に、露光領域
14を受光面9aで分割した測定点の数だけ、露光光の
光源の出力パワーの変動の影響を受け易いことから、測
定誤差を生じ易いという不都合もあった。
Secondly, since the light receiving surface 9a is two-dimensionally scanned within the slit-shaped exposure area, the wafer stage moves unnecessarily and the control of the wafer stage becomes complicated. There was also. Furthermore, there is a disadvantage that a measurement error is likely to occur because the number of measurement points obtained by dividing the exposure area 14 by the light receiving surface 9a is easily affected by fluctuations in the output power of the exposure light source.

【0012】発明は斯かる点に鑑み、短い時間で且つ高
精度にウエハ上での照度むらを測定できる走査型露光装
置を提供することを目的とする。
In view of the above problems, an object of the present invention is to provide a scanning type exposure apparatus which can measure the illuminance unevenness on a wafer in a short time and with high accuracy.

【0013】[0013]

【課題を解決するための手段】本発明による走査型露光
装置は、例えば図1に示すように、照明光によるスリッ
ト状の照明領域(14R)に対してマスク(5)を所定
の方向に走査し、照明領域(14R)に対応するスリッ
ト状の露光領域(14)に対して基板(7)を所定の方
向に走査することにより、マスク(5)上のパターンを
逐次基板(7)上に露光する走査型露光装置において、
スリット状の露光領域(14)内の照明光の光量を基板
(7)の走査方向(X方向)に積分して受光する光電変
換手段(25)を、この光電変換手段の受光面(25
a)が基板(7)の露光面と同じ高さになるように設
け、光電変換手段(25)の光電変換信号よりスリット
状の露光領域(14)内の基板(7)の走査方向に垂直
な方向の照度むらを測定するようにしたものである。
A scanning type exposure apparatus according to the present invention scans a mask (5) in a predetermined direction with respect to a slit-shaped illumination region (14R) by illumination light, as shown in FIG. 1, for example. Then, by scanning the substrate (7) in a predetermined direction with respect to the slit-shaped exposure region (14) corresponding to the illumination region (14R), the pattern on the mask (5) is sequentially transferred onto the substrate (7). In the scanning type exposure device that exposes,
The photoelectric conversion means (25) that receives the light by integrating the light amount of the illumination light in the slit-shaped exposure area (14) in the scanning direction (X direction) of the substrate (7) is used as the light receiving surface (25) of this photoelectric conversion means.
a) is provided so as to be at the same height as the exposed surface of the substrate (7), and is perpendicular to the scanning direction of the substrate (7) in the slit-shaped exposure region (14) from the photoelectric conversion signal of the photoelectric conversion means (25). The illuminance unevenness in various directions is measured.

【0014】この場合、そのスリット状の露光領域(1
4)に対して基板(7)の走査方向に交差する方向(Y
方向)に光電変換手段(25)を相対的に移動させる相
対移動手段(24)を設け、例えば図3に示すように、
スリット状の露光領域(14)の基板(7)の走査方向
のエッジ部に沿って、相対移動手段(24)を介して光
電変換手段(25)を相対的に移動させて得られた光電
変換手段(25)の光電変換信号より、スリット状の露
光領域(14)内の基板(7)の走査方向に垂直な方向
の照度むらを測定するようにしても良い。
In this case, the slit-shaped exposure area (1
4) to the direction (Y) crossing the scanning direction of the substrate (7).
Direction) is provided with relative moving means (24) for relatively moving the photoelectric conversion means (25), and, for example, as shown in FIG.
Photoelectric conversion obtained by relatively moving the photoelectric conversion means (25) through the relative movement means (24) along the edge portion of the slit-shaped exposure area (14) in the scanning direction of the substrate (7). The illuminance unevenness in the direction perpendicular to the scanning direction of the substrate (7) in the slit-shaped exposure area (14) may be measured from the photoelectric conversion signal of the means (25).

【0015】[0015]

【作用】斯かる本発明のスリットスキャン露光方式の露
光装置においては、その特性上、基板(7)上で走査方
向に垂直な非走査方向(Y方向)にのみ照度むらが生じ
ると考えられる。つまり、走査露光時に光源の発光出力
の変動などがない限り、走査方向に関しては、たとえス
リット状の露光領域(14)内で照度むらが存在して
も、走査露光を行うことで基板(7)の各点での照度
(積算露光量)は積分されて同一の値になり、照度むら
は発生しない。よって、スリット状の露光領域(14)
の非走査方向(Y方向)への照度むらのみを測定すれば
良いことが分かる。
In the slit-scan exposure type exposure apparatus of the present invention, it is considered that the illuminance unevenness occurs only on the substrate (7) in the non-scanning direction (Y direction) perpendicular to the scanning direction due to its characteristics. In other words, as long as there is no fluctuation in the light emission output of the light source during scanning exposure, the substrate (7) can be scanned by performing scanning exposure even if the illuminance unevenness exists in the slit-shaped exposure region (14). The illuminance at each point (integrated exposure amount) is integrated to be the same value, and uneven illuminance does not occur. Therefore, the slit-shaped exposure area (14)
It can be seen that it is sufficient to measure only the illuminance unevenness in the non-scanning direction (Y direction).

【0016】そこで、本発明では例えばそのスリット状
の露光領域(14)の走査方向の幅より広い受光面(2
5a)を持つ光電変換素子(25)を用いて、その露光
領域(14)内の照度の走査方向への積分値を走査を行
うことなく測定する。そして、その非走査方向への照度
分布を測定するためには、例えばその受光面(25a)
を有する光電変換素子(25)を非走査方向に多数並べ
て、各光電変換素子の光電変換信号を並列に取り込むよ
うにする。
Therefore, in the present invention, for example, the light receiving surface (2) wider than the width of the slit-shaped exposure area (14) in the scanning direction is used.
Using the photoelectric conversion element (25) having 5a), the integrated value of the illuminance in the exposure area (14) in the scanning direction is measured without scanning. In order to measure the illuminance distribution in the non-scanning direction, for example, the light receiving surface (25a)
A large number of photoelectric conversion elements (25) having the above are arranged in the non-scanning direction so that the photoelectric conversion signals of the photoelectric conversion elements are taken in parallel.

【0017】その他に、1個の光電変換素子(25)で
その非走査方向への照度分布を測定するためには、相対
走査手段(24)を用いて、そのスリット状の露光領域
(14)の非走査方向に相対的に光電変換素子(25)
を移動すれば良い。また、そのスリット状の露光領域
が、例えば図5に示すよう円弧状の露光領域(14A)
である場合には、その円弧に沿って光電変換素子(2
5)を相対的に移動させてもよい。これにより極めて迅
速にスリット状の露光領域(14)の非走査方向の照度
分布(照度むら)が測定される。
In addition, in order to measure the illuminance distribution in the non-scanning direction with one photoelectric conversion element (25), the relative scanning means (24) is used, and the slit-shaped exposure area (14) is used. Photoelectric conversion element (25) relative to the non-scanning direction of
Just move. Further, the slit-shaped exposure area is, for example, an arc-shaped exposure area (14A) as shown in FIG.
, The photoelectric conversion element (2
5) may be moved relatively. As a result, the illuminance distribution (illuminance unevenness) in the non-scanning direction of the slit-shaped exposure area (14) can be measured extremely quickly.

【0018】[0018]

【実施例】以下、本発明による走査型露光装置の一実施
例につき図1〜図3を参照して説明する。図1及び図2
において図8及び図9に対応する部分には同一符号を付
してその詳細説明を省略する。図1(a)は本実施例の
スリットスキャン露光方式の投影露光装置を示し、この
図1(a)において、平行光束を供給する光源系1Aか
らの露光光は、オプティカル・インテグレータ2に入射
し、オプティカル・インテグレータ2により形成される
多数の光源像からの光束は、リレーレンズ3Aにより一
度視野絞り21の細長い矩形の開口21a上に集光され
る。矩形の開口21aの像は、リレーレンズを含むコン
デンサーレンズ系3B及びミラー4を経てレチクル5上
に投影され、レチクル5上の矩形の照明領域14Rが重
畳的にほぼ均一な照度で照明される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the scanning type exposure apparatus according to the present invention will be described below with reference to FIGS. 1 and 2
In FIG. 8, parts corresponding to those in FIGS. 8 and 9 are designated by the same reference numerals, and detailed description thereof will be omitted. FIG. 1A shows a projection exposure apparatus of the slit scan exposure type of the present embodiment. In FIG. 1A, exposure light from a light source system 1A that supplies a parallel light flux enters an optical integrator 2. The light fluxes from a large number of light source images formed by the optical integrator 2 are once condensed by the relay lens 3A onto the elongated rectangular opening 21a of the field stop 21. The image of the rectangular opening 21a is projected onto the reticle 5 via the condenser lens system 3B including a relay lens and the mirror 4, and the rectangular illumination region 14R on the reticle 5 is superposedly illuminated with substantially uniform illuminance.

【0019】本例のオプティカル・インテグレータ2
は、駆動装置22を介して照明光学系の光軸AXに垂直
な平面及び光軸AXの方向に微動することができると共
に、光軸AXの回りに微小回転することができる。ま
た、リレーレンズ3Aは、駆動装置23を介して光軸A
Xに垂直な平面及び光軸AXの方向に微動することがで
きると共に、特性の異なる他のリレーレンズと交換でき
るようになっている。
Optical integrator 2 of this example
Can be finely moved in the direction of a plane perpendicular to the optical axis AX of the illumination optical system and the optical axis AX via the driving device 22 and can be minutely rotated around the optical axis AX. In addition, the relay lens 3A is connected to the optical axis A via the drive device 23.
It is possible to make fine movements in the plane perpendicular to X and in the direction of the optical axis AX, and to replace it with another relay lens having different characteristics.

【0020】レチクル5の照明領域14R内のパターン
の縮小像は、投影光学系6を介してフォトレジストが塗
布されたウエハ7上の細長い矩形の露光領域14内に投
影露光され、ウエハ7はウエハステージ24上に保持さ
れている。投影光学系6の光軸に垂直な平面をXY平面
として、投影光学系6の光軸に平行にZ軸を取ると、ウ
エハステージ24は、ウエハ7をX方向(又は−X方
向)に走査するXステージ、ウエハ7をY方向に位置決
めするYステージ、ウエハ7をZ方向に位置決めするZ
ステージ等より構成されている。投影光学系6の投影倍
率をβとして、レチクルステージ(不図示)を介して照
明領域14Rに対してレチクル5をX方向に速度VR
走査するのと同期して、ウエハステージ24を介して露
光領域14に対してウエハ7を−X方向に速度β・VR
で走査することにより、ウエハ7上のショット領域SA
1,SA2,…にそれぞれレチクル5のパターン像が逐
次露光される。
The reduced image of the pattern in the illumination area 14R of the reticle 5 is projected and exposed through the projection optical system 6 into the elongated rectangular exposure area 14 on the wafer 7 coated with the photoresist. It is held on the stage 24. When the Z axis is parallel to the optical axis of the projection optical system 6 with the plane perpendicular to the optical axis of the projection optical system 6 being the XY plane, the wafer stage 24 scans the wafer 7 in the X direction (or −X direction). X stage, Y stage for positioning the wafer 7 in the Y direction, Z for positioning the wafer 7 in the Z direction
It is composed of stages and the like. With the projection magnification of the projection optical system 6 set to β, the reticle 5 is scanned through the reticle stage (not shown) at a velocity V R in the X direction in synchronization with scanning of the reticle 5 through the wafer stage 24. speed wafer 7 in the -X direction with respect to the exposure area 14 β · V R
By scanning at the shot area SA on the wafer 7.
1, SA2, ... Are sequentially exposed with the pattern images of the reticle 5.

【0021】また、露光領域14の照度分布を測定する
ため、本例ではウエハステージ24上のウエハ7が載置
される領域に近接する領域に、X方向に細長い矩形の受
光面25aを有する光電変換素子よりなる照度センサー
25を設ける。照度センサー25の受光面25aは、ウ
エハ7の露光面と略々同じ高さに設定され、ウエハステ
ージ24によりウエハ7及び照度センサー25をXY平
面内及びZ方向に移動できるようになっている。照度セ
ンサー25は、例えば図1(b)に示すように、フォト
マルチプライア等の円形の受光面を矩形の受光面25a
と同じ形状の開口を有する遮光板で覆うことにより形成
してもよい。
Further, in order to measure the illuminance distribution of the exposure area 14, in this example, a photoelectric conversion device having a rectangular light receiving surface 25a in the X direction is provided in an area near the area on the wafer stage 24 on which the wafer 7 is placed. An illuminance sensor 25 including a conversion element is provided. The light receiving surface 25a of the illuminance sensor 25 is set at substantially the same height as the exposure surface of the wafer 7, and the wafer stage 24 can move the wafer 7 and the illuminance sensor 25 in the XY plane and in the Z direction. The illuminance sensor 25 has, for example, as shown in FIG. 1B, a circular light-receiving surface such as a photomultiplier and a rectangular light-receiving surface 25a.
It may be formed by covering with a light shielding plate having an opening of the same shape as.

【0022】図2(a)は、図1(a)の投影露光装置
の光学系の展開光路図であり、この図2(a)に示すよ
うに、光源系1Aは、露光光としてのレーザ光を発生す
るレーザ光源26と、そのレーザ光のビーム径を拡大す
るためのレンズ27及び28よりなるビームエクスパン
ダとより構成されている。また、オプティカル・インテ
グレータ2による2次光源像の形成面は、レチクル5の
パターン形成面及びウエハ7の露光面に対してフーリエ
変換面(瞳面)の関係となっており、視野絞り21の配
置面は、レチクル5のパターン形成面及びウエハ7の露
光面に対して共役の関係となっている。なお、光源系1
Aの代わりに、図2(b)に示すように、超高圧水銀ラ
ンプ11、楕円鏡12、及びインプットレンズ13より
なる光源系1等を使用しても良い。
FIG. 2A is a development optical path diagram of an optical system of the projection exposure apparatus of FIG. 1A. As shown in FIG. 2A, the light source system 1A is a laser as exposure light. It is composed of a laser light source 26 for generating light and a beam expander including lenses 27 and 28 for expanding the beam diameter of the laser light. The surface on which the secondary light source image is formed by the optical integrator 2 has a Fourier transform surface (pupil surface) with respect to the pattern formation surface of the reticle 5 and the exposure surface of the wafer 7, and the arrangement of the field stop 21 is arranged. The surface has a conjugate relationship with the pattern formation surface of the reticle 5 and the exposure surface of the wafer 7. The light source system 1
Instead of A, as shown in FIG. 2B, a light source system 1 including an ultrahigh pressure mercury lamp 11, an elliptic mirror 12, and an input lens 13 may be used.

【0023】次に、本例において矩形の露光領域14内
の非走査方向(Y方向)の照度むらを測定する方法の一
例につき図3を参照して説明する。先ず、図3(a)に
示すように、照度センサー25の受光面25aを矩形の
露光領域14のY方向の一端側に移動させる。この場
合、受光面25aの走査方向(X方向)の幅D1は、露
光領域14の走査方向の幅D2より広く設定されてい
る。また、受光面25aの非走査方向(Y方向)の幅H
1は、露光領域14の非走査方向の幅H2よりかなり狭
く設定されている。従って、受光面25aで受光した光
量は、露光領域14の照度(露光量)を走査方向に積分
した照度に対応する光量である。
Next, an example of a method for measuring the illuminance unevenness in the non-scanning direction (Y direction) in the rectangular exposure area 14 in this example will be described with reference to FIG. First, as shown in FIG. 3A, the light receiving surface 25a of the illuminance sensor 25 is moved to one end side of the rectangular exposure region 14 in the Y direction. In this case, the width D1 of the light receiving surface 25a in the scanning direction (X direction) is set to be wider than the width D2 of the exposure region 14 in the scanning direction. Further, the width H of the light receiving surface 25a in the non-scanning direction (Y direction)
1 is set to be considerably narrower than the width H2 of the exposure area 14 in the non-scanning direction. Therefore, the amount of light received by the light receiving surface 25a is the amount of light corresponding to the illuminance obtained by integrating the illuminance (exposure amount) of the exposure area 14 in the scanning direction.

【0024】この状態で、図1のウエハステージ24を
−Y方向に駆動することにより、図3(a)において、
矩形の露光領域14の一端から他端の位置PY1まで走
査方向に垂直な非走査方向(Y方向)にその受光面25
aを1次元的に走査させる。この際に、受光面25aの
Y座標に対して、照度センサー25から出力される光電
変換信号E(Y)を記録することにより、図3(b)に
示すように、光電変換信号E(Y)の分布曲線29が得
られる。実際には分布曲線19は、Y座標に沿って離散
的な多数の計測点での計測値を連ねたものである。
In this state, by driving the wafer stage 24 of FIG. 1 in the -Y direction, as shown in FIG.
From the one end of the rectangular exposure region 14 to the position PY1 at the other end thereof, the light receiving surface 25 thereof in the non-scanning direction (Y direction) perpendicular to the scanning direction.
a is scanned one-dimensionally. At this time, by recording the photoelectric conversion signal E (Y) output from the illuminance sensor 25 with respect to the Y coordinate of the light receiving surface 25a, the photoelectric conversion signal E (Y ) Distribution curve 29 is obtained. Actually, the distribution curve 19 is a series of measurement values at a large number of discrete measurement points along the Y coordinate.

【0025】その分布曲線29の最大値である照度の最
大値をIMAX 、分布曲線29の最小値である照度の最小
値をIMIN とすると、照度むらUは以下のように表され
る。 U=(IMAX-IMIN)/(IMAX+IMIN) (2) この照度むらUの絶対値が所定の許容値を超えている場
合には、図1において、駆動装置22を介してオプティ
カル・インテグレータ2の位置又は回転角を調整するこ
とにより、その照度むらUの絶対値を所定の許容値以下
に設定する。更に、駆動装置23を介してリレーレンズ
3Aの位置を調整するか、又はリレーレンズ3Aを他の
異なる特性のリレーレンズと交換することにより、その
照度むらUの絶対値を所定の許容値以下に設定するよう
にしても良い。
When the maximum value of the illuminance which is the maximum value of the distribution curve 29 is I MAX and the minimum value of the illuminance which is the minimum value of the distribution curve 29 is I MIN , the uneven illuminance U is expressed as follows. If the absolute value of U = (I MAX -I MIN) / (I MAX + I MIN) (2) The illuminance unevenness U exceeds a predetermined allowable value, in FIG. 1, via the drive device 22 By adjusting the position or rotation angle of the optical integrator 2, the absolute value of the illuminance unevenness U is set to be equal to or less than a predetermined allowable value. Further, by adjusting the position of the relay lens 3A via the drive device 23 or by replacing the relay lens 3A with a relay lens having another characteristic, the absolute value of the illuminance unevenness U can be reduced to a predetermined allowable value or less. It may be set.

【0026】また、図3(b)の分布曲線30Aに示す
ように、測定された光電変換信号E(Y)の分布が中高
の場合には、図3(a)の曲線31Bで示すように露光
領域14の一方のエッジ部を窪ませるようにしても良
い。このためには、図1において視野絞り21の開口2
1aの一方のエッジ部の近傍を円弧状に黒く塗れば良
い。これにより、図3(b)の分布曲線30Aはほぼ平
坦になり、照度むらは小さくなる。逆に、図3(b)の
分布曲線30Bに示すように、測定された光電変換信号
E(Y)の分布が中央部で窪む場合には、図3(a)の
曲線31Aで示すように露光領域14の一方のエッジ部
を膨らませるようにしても良い。このためには、図1に
おいて視野絞り21の開口21aの一方のエッジ部の近
傍の遮光膜を円弧状に削り取れば良い。これにより、図
3(b)の分布曲線30Bはほぼ平坦になり、照度むら
は小さくなる。
As shown by the distribution curve 30A in FIG. 3B, when the measured distribution of the photoelectric conversion signal E (Y) is medium or high, as shown by the curve 31B in FIG. 3A. You may make it dent one edge part of the exposure area | region 14. To this end, the aperture 2 of the field stop 21 in FIG.
It suffices to paint the vicinity of one edge portion of 1a black in an arc shape. As a result, the distribution curve 30A in FIG. 3B becomes substantially flat and the uneven illuminance becomes small. On the contrary, as shown in the distribution curve 30B of FIG. 3B, when the measured distribution of the photoelectric conversion signal E (Y) is dented in the central portion, as shown by the curve 31A of FIG. 3A. Alternatively, one edge of the exposure area 14 may be inflated. For this purpose, the light-shielding film in the vicinity of one edge of the opening 21a of the field stop 21 in FIG. As a result, the distribution curve 30B in FIG. 3B becomes substantially flat and the illuminance unevenness is reduced.

【0027】なお、上述実施例では、露光領域14は細
長い矩形であるが、そのウエハ7上のスリット状の露光
領域の形状はどんな形状でも良いことは明らかである。
具体的に、そのスリット状の露光領域は、図4に示すよ
うに円弧状の露光領域14Aであっても良い。この場
合、円弧状の露光領域14Aの走査方向(X方向)の幅
をD2、露光領域14Aの走査方向への全体としての幅
をD3とすると、照度センサー25の受光面25aの走
査方向の幅D1は、全体としての幅D3より広く設定さ
れている。従って、受光面25aを非走査方向に露光領
域14Aの一端から位置PY1で示す他端側に移動させ
ることにより、円弧状の露光領域14Aの非走査方向の
照度分布が測定され、その結果から照度むらが測定され
る。
Although the exposure area 14 is an elongated rectangle in the above embodiment, it is obvious that the slit-shaped exposure area on the wafer 7 may have any shape.
Specifically, the slit-shaped exposure area may be an arc-shaped exposure area 14A as shown in FIG. In this case, if the width of the arc-shaped exposure area 14A in the scanning direction (X direction) is D2 and the overall width of the exposure area 14A in the scanning direction is D3, the width of the light receiving surface 25a of the illuminance sensor 25 in the scanning direction. The width D1 is set wider than the width D3 as a whole. Therefore, by moving the light-receiving surface 25a in the non-scanning direction from one end of the exposure area 14A to the other end side indicated by the position PY1, the illuminance distribution in the non-scanning direction of the arc-shaped exposure area 14A is measured, and from the result, the illuminance is measured. The unevenness is measured.

【0028】但し、図5に示すように、円弧状の露光領
域14Aの円弧の曲率半径が小さく、露光領域14Aの
全体としての走査方向への幅D3が、照度センサー25
の受光面25aの走査方向への幅D1より大きい場合
(D1<D3)は、受光面25aを円弧状の露光領域1
4Aの円弧に平行な軌跡32に沿って走査すれば良い。
即ち、受光面25aを露光領域14Aの一端から軌跡3
2に沿って次第に位置PY2からPY3まで移動させる
ことにより、円弧状の露光領域14Aの非走査方向への
照度分布が正確に測定できる。この際、照度センサー2
5の受光面25aは、円弧状の露光領域14Aに対して
非走査方向に直線的に移動する訳ではないが、円弧に沿
って移動することにより、その非走査方向の照度分布が
測定される。
However, as shown in FIG. 5, the radius of curvature of the arc of the arc-shaped exposure area 14A is small, and the width D3 of the exposure area 14A in the scanning direction as a whole is the illuminance sensor 25.
If the width D1 of the light receiving surface 25a is greater than the width D1 in the scanning direction (D1 <D3), the light receiving surface 25a is exposed in the arc-shaped exposure area 1
It suffices to scan along a locus 32 parallel to the arc of 4A.
That is, the light receiving surface 25a is moved from the end of the exposure area 14A to the locus 3
By gradually moving from position PY2 to position PY3 along 2, the illuminance distribution in the non-scanning direction of the arc-shaped exposure region 14A can be accurately measured. At this time, the illuminance sensor 2
The light receiving surface 25a of No. 5 does not move linearly in the non-scanning direction with respect to the arc-shaped exposure area 14A, but by moving along the arc, the illuminance distribution in the non-scanning direction is measured. .

【0029】なお、上述実施例では照度センサー25と
露光領域14,14Aとをほぼ非走査方向に相対的に移
動させているが、照度センサー25の受光エレメントを
非走査方向に多数配列することによりその相対移動動作
を省くことができる。図6は、そのように照度センサー
の受光エレメントの個数を増やした場合を示し、この図
6において、矩形の露光領域14を覆うように、非走査
方向であるY方向に一列に受光面25a,25b,…,
25mを配する。そして、受光面25a〜25mに接続
された互いに独立の光電変換素子より照度センサーを構
成する。この場合、受光面25a〜25mの光電変換素
子の出力信号がそのまま露光領域14の非走査方向への
照度分布を表すため、照度センサーの中心をその露光領
域14の中心に移動させた後、その照度センサーを移動
させることなく、その露光領域14の非走査方向への照
度分布(照度むら)が測定される。
Although the illuminance sensor 25 and the exposure areas 14 and 14A are relatively moved in the non-scanning direction in the above-described embodiment, by arranging a large number of light receiving elements of the illuminance sensor 25 in the non-scanning direction. The relative movement operation can be omitted. FIG. 6 shows a case where the number of light receiving elements of the illuminance sensor is increased in such a manner, and in FIG. 6, the light receiving surfaces 25a, 25a are arranged in a line in the Y direction, which is the non-scanning direction, so as to cover the rectangular exposure region 14. 25b, ...,
Arrange 25m. Then, the illuminance sensor is composed of the photoelectric conversion elements which are connected to the light receiving surfaces 25a to 25m and are independent of each other. In this case, since the output signals of the photoelectric conversion elements of the light receiving surfaces 25a to 25m directly represent the illuminance distribution of the exposure area 14 in the non-scanning direction, after moving the center of the illuminance sensor to the center of the exposure area 14, the The illuminance distribution (illuminance unevenness) in the non-scanning direction of the exposure area 14 is measured without moving the illuminance sensor.

【0030】また、図7(a)及び(b)に示すよう
に、照度センサー25の受光面25aの走査方向の幅D
1が、矩形の露光領域14の走査方向の幅D2に比べて
狭い場合は、そのままでは受光面25aで露光領域14
の照度の走査方向への積分値を正確に測定することがで
きない。そこで、この場合は、図7(a)及び(b)に
示すように、ウエハステージ上でウエハの露光面と同じ
高さの面に走査方向の幅がD2より広い開口33を有す
る遮光板を配し、その開口33の直下に適当な焦点距離
の凸レンズ34を配し、この凸レンズ34の下側の焦点
面の近傍に照度センサー25の受光面25aを配する。
これにより、露光領域14の走査方向の幅D2の光量の
積分値が受光面25aで受光され、照度センサー25に
より露光領域14の非走査方向への照度分布が正確に測
定される。
Further, as shown in FIGS. 7A and 7B, the width D of the light receiving surface 25a of the illuminance sensor 25 in the scanning direction.
If 1 is narrower than the width D2 of the rectangular exposure area 14 in the scanning direction, the exposure area 14 is left as it is on the light receiving surface 25a.
It is not possible to accurately measure the integrated value of the illuminance in the scanning direction. Therefore, in this case, as shown in FIGS. 7A and 7B, a light-shielding plate having an opening 33 having a width in the scanning direction wider than D2 is formed on the surface of the wafer stage having the same height as the exposure surface of the wafer. The convex lens 34 having an appropriate focal length is arranged immediately below the opening 33, and the light receiving surface 25a of the illuminance sensor 25 is arranged in the vicinity of the focal plane below the convex lens 34.
As a result, the integrated value of the amount of light having the width D2 in the scanning direction of the exposure area 14 is received by the light receiving surface 25a, and the illuminance sensor 25 accurately measures the illuminance distribution in the non-scanning direction of the exposure area 14.

【0031】また、上述実施例は投影露光装置に本発明
を適用したものであるが、投影光学系を使用することな
くプロキシミティ方式等で、スリットスキャン露光方式
で露光を行う場合にも本発明はそのまま適用される。こ
のように本発明は上述実施例に限定されず、本発明の要
旨を逸脱しない範囲で種々の構成を取り得る。
Further, although the present invention is applied to the projection exposure apparatus in the above-mentioned embodiment, the present invention is also applied to the case where the exposure is performed by the slit scan exposure method by the proximity method or the like without using the projection optical system. Applies as is. As described above, the present invention is not limited to the above-described embodiments, and various configurations can be taken without departing from the gist of the present invention.

【0032】[0032]

【発明の効果】本発明によれば、スリット状の露光領域
内の照明光の光量を走査方向に積分して受光する光電変
換手段が設けられているため、その光電変換手段の走査
方向への移動を行うことなく短時間で且つ高精度に基板
上での照度むらを測定できる利点がある。
According to the present invention, since the photoelectric conversion means for integrating the light amount of the illumination light in the slit-shaped exposure region in the scanning direction to receive the light is provided, the photoelectric conversion means in the scanning direction is provided. There is an advantage that the illuminance unevenness on the substrate can be measured with high accuracy in a short time without moving.

【0033】また、相対移動手段を介してその光電変換
手段をそのスリット状の露光領域に沿って非走査方向に
移動させる場合には、1個の受光素子を用いるだけでそ
の露光領域の照度むらを容易に測定できる。
Further, when the photoelectric conversion means is moved in the non-scanning direction along the slit-shaped exposure area through the relative movement means, the illuminance unevenness in the exposure area is only required by using one light receiving element. Can be easily measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明による走査型露光装置の一実施
例の要部を示す斜視図、(b)は図1(a)の照度セン
サー25を示す拡大平面図である。
1A is a perspective view showing a main part of an embodiment of a scanning exposure apparatus according to the present invention, and FIG. 1B is an enlarged plan view showing an illuminance sensor 25 of FIG. 1A.

【図2】(a)は図1(a)の光学系を示す展開光路
図、(b)は光源系の他の例を示す光路図である。
2A is a developed optical path diagram showing the optical system of FIG. 1A, and FIG. 2B is an optical path diagram showing another example of the light source system.

【図3】(a)は実施例の矩形の露光領域14に対する
照度むらの測定方法を示す説明図、(b)はその露光領
域14の非走査方向の照度分布の種々の例を示す図であ
る。
3A is an explanatory diagram showing a method for measuring uneven illuminance with respect to a rectangular exposure region 14 of the embodiment, and FIG. 3B is a diagram showing various examples of an illuminance distribution in the non-scanning direction of the exposure region 14. is there.

【図4】円弧状の露光領域14Aに対する照度むらの測
定方法の一例を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of a method for measuring uneven illuminance with respect to an arc-shaped exposure area 14A.

【図5】円弧状の露光領域14Aに対する照度むらの測
定方法の他の例を示す説明図である。
FIG. 5 is an explanatory diagram showing another example of a method for measuring uneven illuminance with respect to an arc-shaped exposure area 14A.

【図6】照度センサーの他の例を示す拡大平面図であ
る。
FIG. 6 is an enlarged plan view showing another example of the illuminance sensor.

【図7】(a)は照度センサーの更に他の例を示す拡大
平面図、(b)は図7(a)のAA線に沿う断面図であ
る。
7A is an enlarged plan view showing still another example of the illuminance sensor, and FIG. 7B is a sectional view taken along the line AA of FIG. 7A.

【図8】(a)は従来のステッパーの要部を示す斜視
図、(b)は図8(a)の受光素子9を示す拡大平面図
である。
8A is a perspective view showing a main part of a conventional stepper, and FIG. 8B is an enlarged plan view showing a light receiving element 9 of FIG. 8A.

【図9】図8の光学系を示す展開光路図である。9 is a developed optical path diagram showing the optical system of FIG.

【図10】(a)は従来のステッパーにおける照度分布
の測定方法の説明図、(b)は従来のスリットスキャン
露光方式の投影露光装置における照度分布の測定方法の
説明図である。
FIG. 10A is an explanatory diagram of an illuminance distribution measuring method in a conventional stepper, and FIG. 10B is an explanatory diagram of an illuminance distribution measuring method in a conventional slit scan exposure type projection exposure apparatus.

【符号の説明】[Explanation of symbols]

1,1A 光源系 2 オプティカル・インテグレータ 3A リレーレンズ 3B コンデンサーレンズ系 4 ミラー 5 レチクル 6 投影光学系 7 ウエハ 14 矩形の露光領域 21 視野絞り 24 ウエハステージ 25 照度センサー 1, 1A Light source system 2 Optical integrator 3A Relay lens 3B Condenser lens system 4 Mirror 5 Reticle 6 Projection optical system 7 Wafer 14 Rectangular exposure area 21 Field stop 24 Wafer stage 25 Illuminance sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 照明光によるスリット状の照明領域に対
してマスクを所定の方向に走査し、前記照明領域に対応
するスリット状の露光領域に対して基板を所定の方向に
走査することにより、前記マスク上のパターンを逐次前
記基板上に露光する走査型露光装置において、 前記スリット状の露光領域内の前記照明光の光量を前記
基板の走査方向に積分して受光する光電変換手段を、該
光電変換手段の受光面が前記基板の露光面と同じ高さに
なるように設け、 前記光電変換手段の光電変換信号より前記スリット状の
露光領域内の前記基板の走査方向に垂直な方向の照度む
らを測定するようにしたことを特徴とする走査型露光装
置。
1. A mask is scanned in a predetermined direction with respect to a slit-shaped illumination area by illumination light, and a substrate is scanned in a predetermined direction with respect to a slit-shaped exposure area corresponding to the illumination area. In a scanning exposure apparatus that sequentially exposes the pattern on the mask onto the substrate, photoelectric conversion means that receives the light amount of the illumination light in the slit-shaped exposure region by integrating the light amount in the scanning direction of the substrate, The light receiving surface of the photoelectric conversion means is provided so as to be at the same height as the exposure surface of the substrate, and the illuminance in the direction perpendicular to the scanning direction of the substrate in the slit-shaped exposure region from the photoelectric conversion signal of the photoelectric conversion means. A scanning type exposure apparatus characterized in that it measures unevenness.
【請求項2】 前記スリット状の露光領域に対して前記
基板の走査方向に交差する方向に前記光電変換手段を相
対的に移動させる相対移動手段を設け、前記スリット状
の露光領域の前記基板の走査方向のエッジ部に沿って、
前記相対移動手段を介して前記光電変換手段を相対的に
移動させて得られた前記光電変換手段の光電変換信号よ
り、前記スリット状の露光領域内の前記基板の走査方向
に垂直な方向の照度むらを測定するようにしたことを特
徴とする請求項1記載の走査型露光装置。
2. A relative movement unit that relatively moves the photoelectric conversion unit in a direction intersecting the scanning direction of the substrate with respect to the slit-shaped exposure region is provided, and the relative movement unit of the substrate in the slit-shaped exposure region is provided. Along the edge of the scanning direction,
From the photoelectric conversion signal of the photoelectric conversion means obtained by relatively moving the photoelectric conversion means via the relative movement means, the illuminance in the direction perpendicular to the scanning direction of the substrate in the slit-shaped exposure region The scanning exposure apparatus according to claim 1, wherein the unevenness is measured.
JP5177736A 1993-07-19 1993-07-19 Scanning type aligner Pending JPH0737776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5177736A JPH0737776A (en) 1993-07-19 1993-07-19 Scanning type aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5177736A JPH0737776A (en) 1993-07-19 1993-07-19 Scanning type aligner

Publications (1)

Publication Number Publication Date
JPH0737776A true JPH0737776A (en) 1995-02-07

Family

ID=16036230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5177736A Pending JPH0737776A (en) 1993-07-19 1993-07-19 Scanning type aligner

Country Status (1)

Country Link
JP (1) JPH0737776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800015A (en) * 1996-10-16 1998-09-01 Tachi-S Co., Ltd. Long slide rail device for vehicle seat
JP2009164355A (en) * 2008-01-07 2009-07-23 Canon Inc Scanning exposure apparatus and method of manufacturing device
JP2009168524A (en) * 2008-01-11 2009-07-30 Toshiba Corp Optical system, device and method for inspecting pattern, and method for manufacturing article with pattern

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800015A (en) * 1996-10-16 1998-09-01 Tachi-S Co., Ltd. Long slide rail device for vehicle seat
JP2009164355A (en) * 2008-01-07 2009-07-23 Canon Inc Scanning exposure apparatus and method of manufacturing device
JP2009168524A (en) * 2008-01-11 2009-07-30 Toshiba Corp Optical system, device and method for inspecting pattern, and method for manufacturing article with pattern

Similar Documents

Publication Publication Date Title
JP4505989B2 (en) Aberration measurement apparatus, measurement method, projection exposure apparatus including the apparatus, device manufacturing method using the method, and exposure method
US7236254B2 (en) Exposure apparatus with interferometer
US20030025890A1 (en) Exposure apparatus and exposure method capable of controlling illumination distribution
US6850327B2 (en) Inspection method and apparatus for projection optical systems
US6278514B1 (en) Exposure apparatus
KR100525067B1 (en) Method for measuring optical feature of exposure apparatus and exposure apparatus having means for measuring optical feature
JP3413160B2 (en) Illumination apparatus and scanning exposure apparatus using the same
KR20010085449A (en) Method of measuring aberration in an optical imaging system
US20100302523A1 (en) Method and apparatus for measuring wavefront, and exposure method and apparatus
JP2007180152A (en) Measuring method and apparatus, exposure apparatus, and method of manufacturing device
JP4692862B2 (en) Inspection apparatus, exposure apparatus provided with the inspection apparatus, and method for manufacturing microdevice
JP2007158225A (en) Aligner
JP4032501B2 (en) Method for measuring imaging characteristics of projection optical system and projection exposure apparatus
JP3774590B2 (en) Projection exposure apparatus and device manufacturing method using the same
US6977728B2 (en) Projection exposure apparatus and aberration measurement method
WO1999005709A1 (en) Exposure method and aligner
JPWO2002042728A1 (en) Projection optical system aberration measurement method and apparatus, and exposure method and apparatus
JP3506155B2 (en) Projection exposure equipment
JP2008172102A (en) Measuring method and exposure device
JP4835921B2 (en) Measuring method, exposure method, device manufacturing method, and mask
JPH0737776A (en) Scanning type aligner
JP2006080444A (en) Measurement apparatus, test reticle, aligner, and device manufacturing method
JPH088157A (en) Projector and exposer
JP3358109B2 (en) Projection exposure method and apparatus, and device manufacturing method
JP2007173689A (en) Optical characteristic measuring apparatus, exposure device, and device manufacturing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020802