JPH0736058B2 - Automatic focus adjustment device - Google Patents

Automatic focus adjustment device

Info

Publication number
JPH0736058B2
JPH0736058B2 JP60203029A JP20302985A JPH0736058B2 JP H0736058 B2 JPH0736058 B2 JP H0736058B2 JP 60203029 A JP60203029 A JP 60203029A JP 20302985 A JP20302985 A JP 20302985A JP H0736058 B2 JPH0736058 B2 JP H0736058B2
Authority
JP
Japan
Prior art keywords
lens
integration
focus
focusing
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60203029A
Other languages
Japanese (ja)
Other versions
JPS6262312A (en
Inventor
正道 当山
孝 網蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60203029A priority Critical patent/JPH0736058B2/en
Publication of JPS6262312A publication Critical patent/JPS6262312A/en
Publication of JPH0736058B2 publication Critical patent/JPH0736058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Description

【発明の詳細な説明】 本発明はカメラ用自動焦点調節装置、特に赤外光を被写
体に向け投射し、その反射光を受光するいわゆるアクテ
イブ自動焦点調節装置に関するものである。
The present invention relates to an automatic focus adjusting device for a camera, and more particularly to a so-called active automatic focus adjusting device that projects infrared light toward a subject and receives the reflected light.

従来、この種の装置は遠距離を測距可能とするため、受
光信号を積分して信号のS/N比を高める処理が使われて
いる。かかる構成の測距回路を、ビデオカメラや8ミリ
カメラ等の連続撮影を行うカメラに採用する場合は、フ
オーカシングレンズの駆動モータを合焦点へ向けて駆動
中に、受光信号の積分値が所定値になる迄積分を行い、
所定値になった時点で積分を停止し、合焦,非合焦を判
断し、モータを制御するというサイクルをくり返してい
る。ところで、積分時間は被写体の赤外光に対する反射
率や、被写体距離に依存して異なってくる。又この積分
時間が異なってくるとモーターを制御するサイクルも異
なるためにレンズの停止位置にばらつきを生じることに
なる。この時の合焦停止時におけるレンズのピクツキや
ハンチングをなくすために不感帯を設けこの不感帯巾
を、レンズ停止のばらつきの大きい時、即ち最も長い積
分時間に合わせて設定することが望ましい。
Conventionally, this type of device is capable of measuring a long distance, so that a process of integrating a received light signal to increase the S / N ratio of the signal is used. When the distance measuring circuit having such a configuration is used in a camera such as a video camera or an 8 mm camera that continuously shoots, the integrated value of the received light signal is increased while the driving motor of the focusing lens is driven toward the focal point. Integrate until the specified value is reached,
When a predetermined value is reached, integration is stopped, in-focus or out-of-focus is determined, and the motor control cycle is repeated. By the way, the integration time varies depending on the reflectance of the subject with respect to infrared light and the subject distance. Further, if the integration time is different, the cycle for controlling the motor is also different, so that the stop position of the lens varies. At this time, it is desirable to provide a dead zone in order to prevent the lens from picking up and hunting when the focusing is stopped, and to set this dead zone width in accordance with a large variation in stopping the lens, that is, in accordance with the longest integration time.

しかしながらこのように設定すると、反射率の高い被写
体つまり、積分時間が短いときは短い周期で早く測距結
果がでる為に停止位置のばらつきは少なくなるものの、
合焦信号も短い時間で出力される為に設定した不感帯の
入口付近にレンズが集中して停止してしまうことにな
る。本来不感帯の中央が真の合焦位置である為にこれは
望ましくない現象である。
However, with this setting, although the subject with high reflectance, that is, when the integration time is short, the result of distance measurement can be quickly obtained in a short cycle, but the variation in the stop position is reduced,
Since the focusing signal is also output in a short time, the lens concentrates near the entrance of the set dead zone and stops. This is an undesirable phenomenon because the center of the dead zone is originally the true focus position.

以下、まず図面を参照して、詳細に一例の基本的構成を
説明した後、問題点を述べる。
Hereinafter, a basic configuration of an example will be described in detail with reference to the drawings, and then problems will be described.

第1図は、アクテイブ自動焦点調節装置の構成図で、赤
外発光ダイオード(iRED)3から投光レンズ2を介し
て、約10KHzで点滅する赤外光を被写体1に向け投射
し、その反射光を受光レンズ6を介して受光素子7で光
電変換する。この受光素子7は隣接した2つの画像7aと
7bよりなっている。フオーカシングレンズ5と受光素子
7は、不図示のカム等の機械的連動部材を介して連動し
ており、合焦時は受光素子上の赤外スポツトが第2図の
様に、2つの画素の境界線上に受光されている。画素7
a,7bからの出力信号はそれぞれ直流光カツト用のハイパ
スフイルター(H.P.F.)10a,10b、赤外発光ダイオード
3の点滅に同期して検波を行う検波回路11a,11b、積分
器12a,12bに接続されている。13は加算器で画素7aから
得られる積分電圧(以下VAと称する)と、画素7bから得
られる積分電圧(以下VBと称する)を加算する。14は減
算器でVA-VB信号を生成する。
FIG. 1 is a block diagram of an active automatic focus adjustment device. Infrared light flashing at about 10 KHz is projected from an infrared light emitting diode (iRED) 3 through a light projecting lens 2 toward a subject 1 and its reflection is reflected. The light is photoelectrically converted by the light receiving element 7 via the light receiving lens 6. This light receiving element 7 has two adjacent images 7a.
It consists of 7b. The focusing lens 5 and the light receiving element 7 are interlocked via a mechanical interlocking member such as a cam (not shown). When focusing, the infrared spots on the light receiving element are two as shown in FIG. The light is received on the boundary line of the pixel. Pixel 7
Output signals from a and 7b are connected to high-pass filters (HPF) 10a and 10b for DC optical cuts, detection circuits 11a and 11b that perform detection in synchronization with blinking of the infrared light emitting diode 3, and integrators 12a and 12b. Has been done. An adder 13 adds an integrated voltage (hereinafter referred to as V A ) obtained from the pixel 7a and an integrated voltage (hereinafter referred to as V B ) obtained from the pixel 7b. A subtractor 14 generates a V A -V B signal.

15は絶対値化回路で|VA-VB|を生成する。16はVA+VB
所定の閾値VHとを比較するコンパレータ、17は|VA-VB
|と所定の閾値VDとを比較するコンパレータ、18はVA-V
Bとゼロレベルとを比較するコンパレータ、即ちAとB
の大小関係を判断するコンパレータである。19はマイク
ロプロセツサであり、3つのコンパレータからの入力に
基づき、赤外発光ダイオードの駆動回路4,モータ駆動回
路9を介して赤外発光ダイオード3とモータ8を制御す
る。
Reference numeral 15 is an absolute value conversion circuit that generates | V A -V B |. 16 is a comparator for comparing V A + V B with a predetermined threshold V H , 17 is | V A -V B
| Is a comparator that compares a predetermined threshold value V D , 18 is V A -V
A comparator that compares B and zero level, that is, A and B
Is a comparator for determining the magnitude relationship of. A microprocessor 19 controls the infrared light emitting diode 3 and the motor 8 via the infrared light emitting diode drive circuit 4 and the motor drive circuit 9 based on inputs from the three comparators.

第3図,第5図,第7図において、(a)はVA+VBの信
号波形、(b)は|VA-VB|の信号波形、(c)はモー
タ8への通電状態、(d)はフオーカシングレンズ5の
移動量を表わしている。
In FIGS. 3, 5, and 7, (a) is the signal waveform of V A + V B , (b) is the signal waveform of | V A -V B |, and (c) is the energization of the motor 8. The state, (d), represents the amount of movement of the focusing lens 5.

まず、従来例の動作を第3図〜第6図を使って説明す
る。当初、被写体に対してレンズが前ピン状態にあると
仮定する。第1回目の積分によりVA+VBがVHに達した
時、|VA-VB|>VDであるため、モータを遠(Far)方向
へ回転開始する。これにより移動量(d)のようにレン
ズが移動を始める。積分器をリセツトし、第2回目の積
分を行うが、この積分でもまだ|VA-VB|>VDであり、
この動作を続ける。4回目の積分時、第3図(b)の実
線のように、|VA-VB|≦VDとなり、合焦と判断しモー
タを停止させる。ところで、第4回目の|VA-VB|がわ
ずかにVDをこえている場合は、第3図(a)の点線のよ
うな第5回目の積分により|VA-VB|≦VDとなり、合焦
判定が行われモータが停止する。この2つの場合のレン
ズの停止位置の差は第3図の(d)のE1で表わされる。
普通のタイミングでは停止位置はこのE1の中に分布す
る。第5図はVA+VBがVHに達する積分時間(Toとする)
が、予め定められる最大値(TMAX)の場合である。この
時のレンズの停止バラツキ幅は(d)のE2で表わされ
る。ところで、停止位置巾E2内でレンズがばらついても
許容深度内に収まるように全システムの常数を設定する
ことが望ましい。しかしながら、この巾を例えば絞りの
状態が小絞りならまだしも絞りが開放の時のすべてにわ
たって許容深度内に設定することは実際困難で、例え
ば、標準的な撮影状況を想定してこれらの常数を設定す
ることになる。このE2を自動焦点調節装置の不感帯幅
(Dead Band)とよぶと、この場合の精度は±1/2E2で与
えられる。第5図にて逆にレンズが当初、被写体に対し
て後ピン状態にある場合も、同様にしてレンズの停止バ
ラツキ幅はE2であり、精度は±1/2E2の範囲に分布す
る。一方、積分時間がToMAXより小さい場合は第3図
(d)に示したように、レンズの停止バラツキ幅E1はE1
<E2となり、この場合のレンズの停止位置は第4図の様
に分布する。ここで真の合焦位置に対して近(Near)側
の分布は、レンズが当初、近(Near)側にあった場合で
あり、他の分布はレンズが当初、遠(Far)側にあった
場合である。
First, the operation of the conventional example will be described with reference to FIGS. Initially, it is assumed that the lens is in a front focus state with respect to the subject. When V A + V B reaches V H by the first integration, since | V A −V B |> V D , the motor starts rotating in the far direction. As a result, the lens starts moving as indicated by the moving amount (d). Reset the integrator and perform the second integration, but this integration is still │V A -V B │> V D ,
Continue this operation. At the time of the fourth integration, as shown by the solid line in FIG. 3 (b), | V A −V B | ≦ V D , and it is determined that focusing is achieved, and the motor is stopped. By the way, when | V A -V B | of the 4th time slightly exceeds V D , | V A -V B | ≦ by the 5th integration as shown by the dotted line in FIG. It becomes V D , the in-focus judgment is made, and the motor stops. The difference between the stop positions of the lenses in these two cases is represented by E 1 in FIG.
At normal timing, the stop positions are distributed in this E 1 . Figure 5 shows the integration time when V A + V B reaches V H (To)
Is the maximum value (T MAX ) determined in advance. The stop variation width of the lens at this time is represented by E 2 in (d). By the way, it is desirable to set the constants of the entire system so that even if the lens varies within the stop position width E 2 , it falls within the allowable depth. However, it is actually difficult to set this width within the permissible depth over the entire aperture when the aperture is small, for example, assuming these constants assuming standard shooting conditions. Will be done. When this E 2 is called the dead band of the automatic focusing device (Dead Band), the accuracy in this case is given by ± 1 / 2E 2 . On the contrary, in FIG. 5, even when the lens is initially in the rear focus state with respect to the object, the stop variation width of the lens is similarly E 2 and the accuracy is distributed in the range of ± 1 / 2E 2 . On the other hand, when the integration time is smaller than To MAX , the stop variation width E 1 of the lens is E 1 as shown in FIG. 3 (d).
<E 2 , and the lens stop positions in this case are distributed as shown in FIG. Here, the distribution on the near side with respect to the true in-focus position is the case where the lens was initially on the near side, and the other distribution is on the far side on the far side. That is the case.

即ち、従来例では積分時間の大小にかかわらず比較的広
い一定の不感帯幅を与えていた為に本来、より高精度な
測距が可能となる筈の被写体、つまり積分時間が短くな
るような高い反射率を持つ被写体に対しては、不感帯幅
に入っているとはいえ真の合焦位置からはずれたところ
でレンズが停止してしまうという不都合があった。
That is, in the conventional example, since a relatively wide and constant dead band width is given regardless of the size of the integration time, originally, a subject that should be capable of more accurate distance measurement, that is, a high integration time that is short For a subject having a reflectance, there is a disadvantage that the lens stops when it is out of the true focus position although it is within the dead zone width.

そして本発明は、特に、積分時間が短くなる様な高い反
射率を持つ被写体に対して高精度測距が可能となる自動
焦点調節装置を提供することを目的としその特徴とする
ところは、被写体に光を投光し、反射された光を受光
し、フォーカシングレンズ駆動中に積分手段によってこ
の受光出力の積分処理を行い、この積分処理による積分
値が所定範囲にあるか否かを検出することで合焦、非合
焦の判定を行う判定手段を有する自動焦点調節装置に於
て、前記判定手段によって前記積分値が前記所定範囲内
にあることが検出され合焦状態であると判定を下した後
の、前記積分手段による積分時間に依存した遅延時間後
に前記フォーカシングレンズを停止させたことにある。
The present invention has an object of providing an automatic focus adjusting device capable of performing highly accurate distance measurement particularly on a subject having a high reflectance such that the integration time is shortened. To project the light, receive the reflected light, perform integration processing of the received light output by the integrating means while driving the focusing lens, and detect whether the integrated value by this integration processing is within a predetermined range. In an automatic focus adjustment device having a determination means for determining whether the subject is in focus or not, it is determined that the integrated value is within the predetermined range by the determination means, and it is determined that the subject is in focus. After that, the focusing lens is stopped after a delay time depending on the integration time by the integration means.

即ち、実施例を示す第7図の様に、積分時間が短いとき
は、合焦判定を行ってから所定時間(TD)遅らせた後、
モータを停止させている。
That is, as shown in FIG. 7 showing the embodiment, when the integration time is short, a predetermined time (T D ) is delayed after the focus determination and then
The motor is stopped.

そしてこの遅延により、第4図の2つの分布は第8図の
ように1つに重なり、精度は±1/2E1となり、従来の±1
/2E2に比して大幅に改善される。
Due to this delay, the two distributions in Fig. 4 overlap as shown in Fig. 8 and the accuracy becomes ± 1 / 2E 1 , which is ± 1 of the conventional value.
Significant improvement over / 2E 2 .

今、レンズ5の移動速度をυ,VA+VBがVHに達する積分
時間をTx、この時のレンズ停止バラツキ幅をExとする
と、 であるから、 となる。
Now, if the moving speed of the lens 5 is υ, the integration time for V A + V B to reach V H is Tx, and the lens stop variation width at this time is Ex, Therefore, Becomes

又、改善度 となる。Also, the degree of improvement Becomes

例えば、従来例でTMAX=30msec,E2=0.05mmであった場
合、積分時間の短い被写体に対してもレンズ停止バラツ
キ幅は0.05mmであったが、本実施例ではTx=5msecの
時、TD=12.5msecとすることにより、レンズ停止バラツ
キ幅は0.0083mmと大幅に改善される。
For example, when T MAX = 30 msec and E 2 = 0.05 mm in the conventional example, the lens stop variation width was 0.05 mm even for a subject having a short integration time, but in the present embodiment, when Tx = 5 msec. , T D = 12.5 msec, the lens stop variation width is greatly improved to 0.0083 mm.

第9図は、本実施例に係るマイクロプロセツサのフロー
チヤートを示している。図中の遅延(デイレイ)タイマ
ーの遅延時間TDは、積分時間に依存関係を持つ式によ
りマイクロプロセツサ19内でカウントされるものとす
る。即ちプログラム的に実行する。又、合焦タイマー
は、合焦時に赤外線発光ダイオード(iRED)を所定時間
消灯させておき、省電力とレンズ停止状態の安定化をは
かるもので、一般に最大積分時間の6〜10倍程度に設定
される。
FIG. 9 shows a flow chart of the microprocessor according to this embodiment. The delay time T D of the delay (delay) timer in the figure is assumed to be counted in the microprocessor 19 by an equation having a dependency relationship with the integration time. That is, it is executed programmatically. In addition, the focus timer is to turn off the infrared light emitting diode (iRED) for a predetermined time during focusing to save power and stabilize the lens stopped state. Generally, it is set to about 6 to 10 times the maximum integration time. To be done.

以上の説明は便宜上、モータの給電がオフされてからの
レンズのイナーシヤによるオーバーランがゼロであると
して説明しているが、実際のシステムではこのオーバー
ランが若干ある。従って、遅延時間TDは式で得られる
値より若干小さくするのがよい。演算式としては、 となる。
For the sake of convenience, the above description has explained that the overrun due to the inertia of the lens after the power supply to the motor is turned off is zero, but in an actual system, this overrun is slightly. Therefore, the delay time T D should be slightly smaller than the value obtained by the equation. As an arithmetic expression, Becomes

以上の説明は、アクテイブ・タイプの自動焦点調節装置
の例を示したが、パツシブ・タイプの場合にも同様のデ
イレイが有効である。
Although the above description shows an example of the active type automatic focus adjusting device, the same delay is also effective in the case of the passive type.

効果 本発明は、フオーカシングレンズ駆動中に測距信号の積
分処理を行い、合焦判定を行うような自動焦点調節装置
において、合焦信号が出た後、積分時間により変化する
遅延時間を設けてフオーカシングモータを停止させるよ
うにしたから、特に積分時間が短い被写体を測距した時
の測距精度が大幅に向上する効果を有する。
Advantageous Effects of Invention The present invention, in an automatic focus adjustment device that performs integration processing of a distance measurement signal during driving of a focusing lens to perform in-focus determination, sets a delay time that changes depending on the integration time after a focus signal is output. Since the focusing motor is provided to stop the focusing motor, there is an effect that the ranging accuracy is significantly improved especially when the subject having a short integration time is measured.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を適用する装置の全体構成図。第2図は
受光素子を示す平面図。第3図,第5図は従来例の信号
波形図。第4図と第6図は従来例のレンズの停止位置の
分布を示す図。第7図は本発明実施例の波形図。第8図
はレンズの停止位置の分布を示す図。第9図はマイクロ
プロセツサのフローチヤート図。 7は受光素子で、7aと7bは画素、12aと12bは積分回路、
19はマイクロプロセツサ、8はモータである。
FIG. 1 is an overall configuration diagram of an apparatus to which the present invention is applied. FIG. 2 is a plan view showing a light receiving element. 3 and 5 are signal waveform diagrams of a conventional example. FIG. 4 and FIG. 6 are diagrams showing the distribution of stop positions of the conventional lens. FIG. 7 is a waveform diagram of the embodiment of the present invention. FIG. 8 is a diagram showing the distribution of lens stop positions. FIG. 9 is a flow chart of the microprocessor. 7 is a light receiving element, 7a and 7b are pixels, 12a and 12b are integrating circuits,
Reference numeral 19 is a microprocessor, and 8 is a motor.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】被写体に光を投光し、反射された光を受光
し、フォーカシングレンズ駆動中に積分手段によってこ
の受光出力の積分処理を行い、この積分処理による積分
値が所定範囲にあるか否かを検出することで合焦、非合
焦の判定を行う判定手段を有する自動焦点調節装置に於
て、前記判定手段によって前記積分値が前記所定範囲内
にあることが検出され合焦状態であると判定を下した後
の、前記積分手段による積分時間に依存した遅延時間後
に前記フォーカシングレンズを停止させたことを特徴と
する自動焦点調節装置。
1. A method of projecting light onto a subject, receiving reflected light, and performing integration processing of the received light output by an integrating means during driving of a focusing lens, and whether an integrated value of the integration processing is within a predetermined range. In an automatic focus adjusting device having a judging means for judging whether the object is in focus or not by detecting whether or not it is in focus, the judging means detects that the integrated value is within the predetermined range. The focusing device is characterized in that the focusing lens is stopped after a delay time depending on the integration time by the integration means after it is determined that
JP60203029A 1985-09-13 1985-09-13 Automatic focus adjustment device Expired - Lifetime JPH0736058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203029A JPH0736058B2 (en) 1985-09-13 1985-09-13 Automatic focus adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203029A JPH0736058B2 (en) 1985-09-13 1985-09-13 Automatic focus adjustment device

Publications (2)

Publication Number Publication Date
JPS6262312A JPS6262312A (en) 1987-03-19
JPH0736058B2 true JPH0736058B2 (en) 1995-04-19

Family

ID=16467167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203029A Expired - Lifetime JPH0736058B2 (en) 1985-09-13 1985-09-13 Automatic focus adjustment device

Country Status (1)

Country Link
JP (1) JPH0736058B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8040450B2 (en) 1995-12-20 2011-10-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63262968A (en) * 1987-04-20 1988-10-31 Victor Co Of Japan Ltd Autofocus system
JP2546172B2 (en) * 1993-11-04 1996-10-23 日本電気株式会社 Highway bus equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156028A (en) * 1984-01-25 1985-08-16 Nippon Kogaku Kk <Nikon> Auto-focusing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156028A (en) * 1984-01-25 1985-08-16 Nippon Kogaku Kk <Nikon> Auto-focusing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8040450B2 (en) 1995-12-20 2011-10-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US8339558B2 (en) 1995-12-20 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device
US9182642B2 (en) 1995-12-20 2015-11-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal electro-optic device

Also Published As

Publication number Publication date
JPS6262312A (en) 1987-03-19

Similar Documents

Publication Publication Date Title
US4518242A (en) Automatic focus adjusting device
JPS5863904A (en) Auto-focus controller
JPS6345564B2 (en)
EP0468455B1 (en) Automatic focusing device of camera
US4977457A (en) Autofocus device for determining an in-focus and real in-focus state
JPH0736058B2 (en) Automatic focus adjustment device
US5808291A (en) Image information detection system and optical equipment using the system
JPS6479712A (en) Automatic focusing adjuster
US5408291A (en) AF camera having a display for displaying a plurality of modes
JP2526897B2 (en) Automatic focus adjustment device
US5148210A (en) Automatic focusing apparatus
JPH0750239B2 (en) Automatic focus adjustment device
JP2773126B2 (en) Focus control device
JPH04133015A (en) Control method for automatic focusing device
JPH0830780B2 (en) Automatic focus adjustment device
KR200170178Y1 (en) Auto-distance measuring apparatus of passive type using added flash
JPH01226281A (en) Focus control device
KR100509362B1 (en) Passive focusing control device for digital camera thereof merhod
JPH02814A (en) Camera with automatic focusing function
JPH04981A (en) Video camera
JPH0728391B2 (en) Autofocus video camera
KR100420579B1 (en) focus adjusting system of the passive form and method thereof
JPS6136712A (en) Auto-focusing device
JPH04404A (en) Video camera
JPH0772763B2 (en) Automatic focus adjustment method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term