JPH0735682Y2 - Built-in motor type spindle - Google Patents

Built-in motor type spindle

Info

Publication number
JPH0735682Y2
JPH0735682Y2 JP1989051123U JP5112389U JPH0735682Y2 JP H0735682 Y2 JPH0735682 Y2 JP H0735682Y2 JP 1989051123 U JP1989051123 U JP 1989051123U JP 5112389 U JP5112389 U JP 5112389U JP H0735682 Y2 JPH0735682 Y2 JP H0735682Y2
Authority
JP
Japan
Prior art keywords
rotor
groove
rotary shaft
built
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989051123U
Other languages
Japanese (ja)
Other versions
JPH02143103U (en
Inventor
博樹 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP1989051123U priority Critical patent/JPH0735682Y2/en
Publication of JPH02143103U publication Critical patent/JPH02143103U/ja
Application granted granted Critical
Publication of JPH0735682Y2 publication Critical patent/JPH0735682Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Turning (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案はモータ内蔵形スピンドルに関し、特に工作機械
主軸用として有用な内部冷却構造をもつモータ内蔵形ス
ピンドルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a spindle with a built-in motor, and more particularly to a spindle with a built-in motor having an internal cooling structure useful for a machine tool spindle.

〔従来の技術〕[Conventional technology]

この種のモータ内蔵形スピンドルはケーシング内周に取
り付けたステータに対して回転軸の外周に直接焼ばめ、
または冷しばめ等でロータを遊嵌させた構造が一般的で
あるが、内蔵したモータの発熱により、ロータを保持し
ている回転軸が熱変形を起す。。特にモータ内蔵の精密
スピンドルや高速回転スピンドルでは軸受寿命の低下と
か精度低下につながる。この回転軸の熱変形を防止する
ために、従来、回転軸全体をセラミックで形成し、回転
軸に挿通したスリーブにロータを嵌着させて軸の熱膨張
を低減させるようにしたもの(例えば実開昭64−2565号
公報)、あるいは回転軸の外周に円周方向の溝を形成
し、この円周方向溝を覆うように軸外周にスリーブを固
着し、該スリーブを介してロータを固着するとともに該
ロータの軸方向両端位置で該スリーブに前記円周方向溝
に通じる半径方向の挿油孔を形成し、前記回転軸の中空
部から前記円周方向溝を経て前記通油孔からケーシング
内に冷却媒体を噴出させ、スプレー冷却する構造のもの
が知られている(例えば実開昭61−88467号公報)。ま
た前記円周方向溝をスパイラル溝とし、ケーシング側か
ら導入したオイルミストをスリーブの一方の径方向通気
孔から回転軸のスパイラル溝を経て他方の径方向通気孔
に通し、スリーブを介してロータの冷却を行い、モータ
の熱が軸側に伝わらないようにした構造も提案されてい
る(実開昭61−88468号)。
This type of motor built-in spindle is shrink fitted directly to the outer circumference of the rotating shaft with respect to the stator attached to the inner circumference of the casing,
Alternatively, a structure in which the rotor is loosely fitted by cold fitting or the like is common, but the rotating shaft holding the rotor is thermally deformed by the heat generation of the built-in motor. . In particular, precision spindles with built-in motors and high-speed rotating spindles lead to shortened bearing life and reduced accuracy. In order to prevent the thermal deformation of the rotating shaft, conventionally, the entire rotating shaft is made of ceramic, and a sleeve inserted through the rotating shaft is fitted with a rotor to reduce the thermal expansion of the shaft (for example, a real one). (Kaisho 64-2565 gazette) or a groove in the circumferential direction is formed on the outer circumference of the rotary shaft, and a sleeve is fixed to the outer circumference of the shaft so as to cover the circumferential groove, and the rotor is fixed via the sleeve. Along with the axial direction of the rotor, the sleeve is formed with radial oil insertion holes that communicate with the circumferential groove, and the hollow portion of the rotary shaft passes through the circumferential groove and the oil passage inside the casing. There is known a structure in which a cooling medium is ejected to spray-cool it (for example, Japanese Utility Model Laid-Open No. 61-88467). The circumferential groove is used as a spiral groove, and the oil mist introduced from the casing side is passed from one radial air hole of the sleeve through the spiral groove of the rotary shaft to the other radial air hole, and the oil mist is passed through the sleeve of the rotor. A structure has also been proposed in which the heat of the motor is cooled so as not to be transferred to the shaft side (No. Shokai 61-88468).

〔考案が解決しようとする課題〕[Problems to be solved by the device]

しかしながら、従来のモータ内蔵形スピンドルのうち、
軸全体をセラミックで形成したものは製作がやっかいで
コストも高く、また積極的に冷却する構造でなく、内部
で発生した熱の逃げ場がないので、軸とロータ間に介在
するスリーブが熱変形を受けて伸びを生じ、スリーブが
カラーを介して軸受に予圧を与えているので、軸受予圧
力が変化してしまう欠点がある。また回転軸外周に円周
方向の溝を形成して軸外周のスリーブとの間に空間を形
成し、この部分に流体を流すようにした前記実開昭61−
88467号のものは、スリーブの内周側は部分的に冷却さ
れるものの、スリーブ外周とロータが密着嵌合している
ために外周側は直接冷却されておらず、ロータの発熱が
直接スリーブに伝わり、スリーブの温度を前記例より若
干少なくできるが、スリーブの伸び変形を生じ、前記例
と同様にスリーブの伸びが軸受予圧を変化させる構造で
あるので軸受予圧力の変化をきたすという不具合があ
る。前述の実開昭61−88468号の回転電機の場合はスパ
イラル溝の両端に設けた径方向通気孔部分の圧力差がほ
とんど生じないと考えられるのでスパイラル溝による冷
却はほとんど期待できずスリーブの温度上昇がさけられ
ず、スリーブの伸びが軸受予圧を変化させる構造である
から前記と同様の問題が生じる。
However, among the conventional spindles with a built-in motor,
The one in which the entire shaft is made of ceramic is cumbersome to manufacture, costly, and does not have a structure that actively cools it.There is no escape area for the heat generated inside, so the sleeve interposed between the shaft and rotor does not undergo thermal deformation. There is a drawback in that the bearing preload changes because the bearing prestrates and the sleeve preloads the bearing via the collar. Further, a groove is formed in the outer circumference of the rotary shaft to form a space between the outer circumference of the shaft and the sleeve, and the fluid is allowed to flow in this portion.
In the case of 88467, the inner circumference side of the sleeve is partially cooled, but since the outer circumference of the sleeve and the rotor are closely fitted, the outer circumference side is not directly cooled, and the heat generated by the rotor is directly applied to the sleeve. Although the temperature of the sleeve can be slightly decreased compared to the above example, the sleeve is deformed and stretched, and the elongation of the sleeve changes the bearing preload in the same manner as in the above example, which causes a change in the bearing preload. . In the case of the rotary electric machine of No. 61-88468, which is described above, it is considered that there is almost no pressure difference between the radial vent holes provided at both ends of the spiral groove, so cooling by the spiral groove cannot be expected and the sleeve temperature The same problem as described above arises because the structure is such that the rise is unavoidable and the elongation of the sleeve changes the bearing preload.

〔課題を解決するための手段〕[Means for Solving the Problems]

そこで本考案は、回転軸の外周に線膨張係数の小さい断
熱部材の層を設けると共に断熱部材とロータとの間に冷
却空気の流通をもたらし、これによってロータの発熱が
できるだけ軸側に伝わらないようにすると共にロータの
発熱により軸受予圧が変化しにくい構造としたモータ内
蔵形スピンドルを提供することにある。即ち本考案は、
ロータを嵌着した回転軸を、ケーシング内周に取り付け
たステータ内に挿入されたモータ内蔵形スピンドルにお
いて、前記ロータに嵌合する回転軸の外周には線膨張係
数が小さい断熱部材の厚肉の溶着成形層が該ロータの軸
長よりも長く形成され、該溶着成形層の外面には少なく
とも前記ロータの軸長をこえる部分を有する長さで軸方
向にのびる複数本の狭巾の凹溝が形成され、前記凹溝の
深さは前記溶着成形層の肉厚の大略1/2の深さとされ、
前記回転軸には一端閉塞、他端開口した中空穴を形成す
ると共に、該中空穴と前記溶着成形層外周の凹溝とを連
通する連通孔および該各連通孔をつなぐ環状溝を形成し
前記回転軸の中空穴開口から冷却気体を送り込み該冷却
気体を前記溶着成形層の外周に嵌着した前記ロータの内
面に触れさせて前記ロータの両端側へ流出させるように
したものである。
Therefore, the present invention provides a layer of a heat insulating member having a small linear expansion coefficient on the outer periphery of the rotating shaft and causes the flow of cooling air between the heat insulating member and the rotor, so that heat generation of the rotor is prevented from being transmitted to the shaft side as much as possible. Another object of the present invention is to provide a spindle with a built-in motor that has a structure in which the bearing preload is unlikely to change due to heat generation of the rotor. That is, the present invention is
In a spindle with a built-in motor in which a rotating shaft fitted with a rotor is inserted into a stator attached to the inner circumference of a casing, the outer circumference of the rotating shaft fitted to the rotor has a thick wall of a heat insulating member having a small linear expansion coefficient. The welding molding layer is formed longer than the axial length of the rotor, and the outer surface of the welding molding layer has a plurality of narrow concave grooves extending in the axial direction with a length having at least a portion exceeding the axial length of the rotor. Is formed, the depth of the recessed groove is approximately 1/2 the thickness of the welding molding layer,
A hollow hole having one end closed and the other end opened is formed in the rotary shaft, and a communication hole that connects the hollow hole and the concave groove on the outer periphery of the welding forming layer and an annular groove that connects the communication holes are formed. Cooling gas is sent from the opening of the hollow hole of the rotating shaft so that the cooling gas is brought into contact with the inner surface of the rotor fitted to the outer periphery of the welding-molded layer and flows out to both ends of the rotor.

〔作用〕[Action]

本考案においては、ロータと回転軸との間に線膨張係数
が小さく断熱性の高いセラミックなどの材料の実施例図
面に示す程度の厚肉の層を介在せしめ、この断熱材層に
軸方向にのびる多数の凹溝を形成して前記ロータとの接
触面積を減らし、さらに前記回転軸を通して外部から前
記凹溝に冷却気体を流通させて強制気体冷却を行うもの
であるから、回転軸への熱伝達を極めて少なくできると
共にロータが線膨張係数の小さな断熱材層によってのみ
支持されるから軸受予圧の変動が小さい。この考案にあ
っては断熱部材としてセラミックを用い溶着等の手段で
軸外周に被着することができる。
In the present invention, a thick layer of a material such as ceramic having a small coefficient of linear expansion and a high heat insulating property, which is shown in the drawing, is interposed between the rotor and the rotating shaft, and the heat insulating layer is axially arranged in the axial direction. Since a large number of recessed grooves are formed to reduce the contact area with the rotor, and cooling gas is circulated from the outside to the recessed grooves through the rotating shaft to perform forced gas cooling, heat to the rotating shaft is reduced. Since the transmission can be extremely reduced and the rotor is supported only by the heat insulating material layer having a small linear expansion coefficient, the fluctuation of the bearing preload is small. In this invention, ceramic can be used as the heat insulating member and the outer circumference of the shaft can be adhered by means such as welding.

〔実施例〕〔Example〕

次に、本考案を実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図を参照すれば、スピンドルケーシング1の内周部
にモータのステータ2が固着され、またケーシング1の
中心を貫通するように回転軸3が該ケーシングに対して
軸受4,5によって軸支されている。ケーシング1内の部
分で回転軸3の外径は所要の長さにわたって小径となっ
ており、この小径部分を埋めるようにセラミックなどの
線膨張係数が小さく断熱性の高い材料が溶射等の手段で
溶着成形されている。溶着成形層6の厚みは図示の如く
或る程度の肉厚をもち、またこの溶着成形層6の長さ
は、この上に嵌合されるモータのロータ7の軸長よりも
長くなっており、また溶着した後、溶着成形層6の外周
に、第2図、第3図に拡大して示されるように複数個の
軸方向にのびる凹溝8が形成される。各凹溝8の深さは
第1図,第2図に示すように溶着成形層6のほぼ1/2と
なっており、また各凹溝8の長さは溶着成形層6の長さ
よりも短かいが少なくともロータ7の軸長をこえる長さ
に形成され、したがってロータ7を溶着成形層6の外周
に固着した状態で各凹溝8の両端はロータ7の両端面か
らケーシング1内に露出している。
Referring to FIG. 1, a stator 2 of a motor is fixed to an inner peripheral portion of a spindle casing 1, and a rotary shaft 3 is rotatably supported by bearings 4 and 5 so as to penetrate the center of the casing 1. Has been done. The outer diameter of the rotating shaft 3 is small over a required length in the portion inside the casing 1, and a material having a small linear expansion coefficient and a high heat insulating property such as ceramic is filled by means such as thermal spraying so as to fill the small diameter portion. It is welded and molded. The thickness of the welding molding layer 6 has a certain thickness as shown in the drawing, and the length of the welding molding layer 6 is longer than the axial length of the rotor 7 of the motor fitted thereon. After welding again, a plurality of recessed grooves 8 extending in the axial direction are formed on the outer periphery of the welding molding layer 6 as shown in an enlarged view in FIGS. 2 and 3. As shown in FIGS. 1 and 2, the depth of each recessed groove 8 is almost half that of the welding molding layer 6, and the length of each recessing groove 8 is shorter than the length of the welding molding layer 6. It is formed to be short but at least longer than the axial length of the rotor 7. Therefore, both ends of each groove 8 are exposed in the casing 1 from both end faces of the rotor 7 in a state where the rotor 7 is fixed to the outer periphery of the welding layer 6. is doing.

回転軸3にはその片端から他端の近くまで該回転軸と同
芯の中空穴9が形成され、さらにその中空穴9の略軸方
向中途箇所で、該中空穴9から溶着成形層6の凹溝8に
つながる半径方向の連通孔10が形成されている。連通孔
10の位置で溶着成形層6の外周にはすべての軸方向凹溝
8をつなぐように環状溝11が形成されている。したがっ
て環状溝11を通して各凹溝8が回転軸3の中空穴9に連
通している。第1図のように回転軸3の中空穴開口端に
は軸受押え12に取り付けたノズル部材13が、該回転軸の
回転動作と干渉しないように挿入されている。ノズル部
材13には図示しない冷却空気供給源につながる供給管が
接続されるようになっている。
The rotary shaft 3 is formed with a hollow hole 9 concentric with the rotary shaft from one end thereof to the vicinity of the other end thereof, and further, at a midway position of the hollow hole 9 in the axial direction, from the hollow hole 9 to the welding molding layer 6. A radial communication hole 10 is formed to connect to the groove 8. Communication hole
An annular groove 11 is formed on the outer periphery of the welded layer 6 at the position 10 so as to connect all the axial recessed grooves 8. Therefore, each concave groove 8 communicates with the hollow hole 9 of the rotary shaft 3 through the annular groove 11. As shown in FIG. 1, a nozzle member 13 attached to a bearing retainer 12 is inserted into the open end of the hollow hole of the rotary shaft 3 so as not to interfere with the rotating operation of the rotary shaft. A supply pipe connected to a cooling air supply source (not shown) is connected to the nozzle member 13.

ロータ7は、溶着成形層6の凹溝8を包囲するように該
凹溝を画成する凸条部の外周面に密接的に嵌合され、こ
の状態でロータ外周面が所定の隙間をもってステータ2
の内周面に対峙している。ステータ2への電源供給によ
りロータ7および回転軸3が回転するとき、ノズル部材
13を通して回転軸3の中空穴9内に冷却気体、例えばエ
アを送り込む。冷却気体は連通孔10、環状溝11を通って
各凹溝8を軸方向両側へ流れ、その両端からケーシング
1内に流入する。冷却気体が各凹溝8を流通するときに
ロータ7の内周面を直接冷却する。またロータ7と溶着
成形層6は各凹溝8によって接触面積が小さくなってお
り、さらに溶着成形層自体はセラミック等の断熱材であ
るためにロータ7から回転軸3への熱伝達は低減され、
これによって回転軸の温度上昇は防止され、従来のよう
な熱変形による軸受予圧力の変化、スピンドルの精度低
下は防止される。凹溝8からケーシング1内に流入した
冷却気体は軸受4,5およびステータ2の給電線部分を通
って外部に放出され、ケーシング1内に熱が閉じ込めら
れることはない。なお、本実施例では断熱部材の溶着成
形層に形成した凹溝を軸方向溝としたがスパイラル溝と
することができる。また前記成形層を回転軸に設けた小
径部に形成したがこの小径部は設けない構造とすること
もできる。
The rotor 7 is closely fitted to the outer peripheral surface of the ridge that defines the groove 8 so as to surround the groove 8 of the welding layer 6, and in this state, the rotor outer surface has a predetermined gap with the stator. Two
Faces the inner surface of the. When the rotor 7 and the rotating shaft 3 are rotated by the power supply to the stator 2, the nozzle member
A cooling gas, for example, air is fed into the hollow hole 9 of the rotary shaft 3 through 13. The cooling gas flows through the communication hole 10 and the annular groove 11 to both sides in the axial direction in each groove 8, and then flows into the casing 1 from both ends thereof. When the cooling gas flows through each groove 8, the inner peripheral surface of the rotor 7 is directly cooled. Further, the contact area between the rotor 7 and the welding molding layer 6 is reduced by the respective concave grooves 8, and since the welding molding layer itself is a heat insulating material such as ceramic, heat transfer from the rotor 7 to the rotary shaft 3 is reduced. ,
As a result, the temperature rise of the rotary shaft is prevented, and the change of the bearing preload and the accuracy reduction of the spindle due to the thermal deformation as in the conventional case are prevented. The cooling gas flowing from the groove 8 into the casing 1 is discharged to the outside through the bearings 4 and 5 and the power supply line portion of the stator 2, and the heat is not trapped in the casing 1. In the present embodiment, the concave groove formed in the fusion-molded layer of the heat insulating member is an axial groove, but it may be a spiral groove. Further, although the molding layer is formed in the small diameter portion provided on the rotary shaft, the small diameter portion may not be provided.

〔考案の効果〕[Effect of device]

以上説明したように本考案によれば、ロータと回転軸と
の間にセラミック溶射等で断熱材の溶着成形層を形成
し、この断熱溶着成形層の外周に凹溝を形成し、その外
面にロータを嵌着するようにし、さらに外部から凹溝内
に冷却気体を流通させて直接ロータを冷却するようにし
たので、ロータが線膨張係数が小さい断熱性の成形層を
介して回転軸に支持され、ロータの嵌合部の接触面積も
減少し、ロータから回転軸への熱伝達が低減し、回転軸
の温度上昇が防止される。回転軸の熱変形が抑えられる
ことからスピンドル精度が向上し、高速性も確保され
る。また断熱層の形成も容易である等、従来にない多く
の利点がもたらされる。
As described above, according to the present invention, a heat-insulating welding forming layer is formed by ceramic spraying or the like between the rotor and the rotating shaft, and a groove is formed on the outer periphery of the heat insulating welding forming layer, and the outer surface thereof is formed. Since the rotor was fitted and the cooling gas was circulated from the outside into the groove to directly cool the rotor, the rotor was supported by the rotating shaft through the heat insulating molding layer having a small linear expansion coefficient. As a result, the contact area of the fitting portion of the rotor is also reduced, the heat transfer from the rotor to the rotary shaft is reduced, and the temperature rise of the rotary shaft is prevented. Since the thermal deformation of the rotating shaft is suppressed, the spindle accuracy is improved and high speed is secured. Further, the heat insulating layer can be easily formed, which brings many advantages that have not been obtained in the past.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の実施例によるモータ内蔵形スピンドル
の縦断面図、第2図は第1図に示す実施例のロータ嵌合
部の部分的な拡大縦断面図、第3図は第2図のIII−III
線に沿った部分的な横断面図、第4図は第2図のIV−IV
線に沿った部分的な横断面図である。 1…ケーシング、2…ステータ、3…回転軸、4,5…軸
受、6…溶着成形層、7…ロータ、8…凹溝、9…中空
穴、10…連通孔、11…環状溝、12…軸受押え、13…ノズ
ル部材。
1 is a vertical sectional view of a spindle with a built-in motor according to an embodiment of the present invention, FIG. 2 is a partially enlarged vertical sectional view of a rotor fitting portion of the embodiment shown in FIG. 1, and FIG. Figure III-III
A partial cross-sectional view along the line, FIG. 4 is IV-IV of FIG.
FIG. 4 is a partial cross-sectional view taken along the line. 1 ... Casing, 2 ... Stator, 3 ... Rotating shaft, 4,5 ... Bearing, 6 ... Welding forming layer, 7 ... Rotor, 8 ... Recessed groove, 9 ... Hollow hole, 10 ... Communication hole, 11 ... Annular groove, 12 ... bearing retainer, 13 ... nozzle member.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】ロータを嵌着した回転軸を、ケーシング内
周に取り付けたステータ内に挿入されたモータ内蔵形ス
ピンドルにおいて、前記ロータに嵌合する回転軸の外周
には線膨張係数が小さい断熱部材の厚肉の溶着成形層が
該ロータの軸長よりも長く形成され、該溶着成形層の外
面には少なくとも前記ロータの軸長をこえる部分を有す
る長さで軸方向にのびる複数本の狭巾の凹溝が形成さ
れ、前記凹溝の深さは前記溶着成形層の肉厚の大略1/2
の深さとされ、前記回転軸には一端閉塞、他端開口した
中空穴を形成すると共に、該中空穴と前記溶着成形層外
周の凹溝とを連通する連通孔および該各連通孔をつなぐ
環状溝を形成し前記回転軸の中空穴開口から冷却気体を
送り込み該冷却気体を前記溶着成形層の外周に嵌着した
前記ロータの内面に触れさせて前記ロータの両端側へ流
出させるようにしたことを特徴とするモータ内蔵形スピ
ンドル。
1. In a spindle with a built-in motor in which a rotary shaft fitted with a rotor is inserted into a stator mounted on the inner circumference of a casing, the outer circumference of the rotary shaft fitted with the rotor has a small thermal expansion coefficient. A thick weld forming layer of the member is formed longer than the axial length of the rotor, and the outer surface of the weld forming layer has a plurality of narrow axially extending lengths having at least a portion exceeding the axial length of the rotor. A groove having a width is formed, and the depth of the groove is approximately 1/2 of the thickness of the welding molding layer.
And a hollow hole having one end closed and the other end open to the rotary shaft, and a communication hole that connects the hollow hole and the concave groove on the outer periphery of the welding molding layer and an annular shape that connects the communication holes. A groove is formed so that cooling gas is sent from the hollow hole opening of the rotary shaft so that the cooling gas is brought into contact with the inner surface of the rotor fitted to the outer periphery of the welding layer and flows out to both ends of the rotor. Built-in motor type spindle.
【請求項2】前記溶着成形層がセラミックの溶着成形層
である前記請求項第1項記載のモータ内蔵形スピンド
ル。
2. The spindle with a built-in motor according to claim 1, wherein the welding molding layer is a ceramic welding molding layer.
JP1989051123U 1989-04-28 1989-04-28 Built-in motor type spindle Expired - Lifetime JPH0735682Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989051123U JPH0735682Y2 (en) 1989-04-28 1989-04-28 Built-in motor type spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989051123U JPH0735682Y2 (en) 1989-04-28 1989-04-28 Built-in motor type spindle

Publications (2)

Publication Number Publication Date
JPH02143103U JPH02143103U (en) 1990-12-05
JPH0735682Y2 true JPH0735682Y2 (en) 1995-08-16

Family

ID=31570275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989051123U Expired - Lifetime JPH0735682Y2 (en) 1989-04-28 1989-04-28 Built-in motor type spindle

Country Status (1)

Country Link
JP (1) JPH0735682Y2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2593073Y2 (en) * 1991-06-25 1999-03-31 東芝機械株式会社 Motor cooling device built into the spindle head
DE112010004773T5 (en) * 2010-03-24 2012-10-18 Aisin Aw Co. Ltd. Rotor for a rotating electrical machine
JP5139562B2 (en) * 2011-06-24 2013-02-06 ファナック株式会社 Electric motor that can attach a sleeve to a rotating shaft with high accuracy
JP5943116B2 (en) * 2015-04-07 2016-06-29 日本精工株式会社 Motor built-in spindle device
JP6210124B2 (en) * 2016-04-08 2017-10-11 日本精工株式会社 Motor built-in spindle device
JP6210123B2 (en) * 2016-04-08 2017-10-11 日本精工株式会社 Motor built-in spindle device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108511U (en) * 1976-02-16 1977-08-18
JPS61121803A (en) * 1984-11-15 1986-06-09 Koyo Seiko Co Ltd Antifriction bearing for maching tool spindle

Also Published As

Publication number Publication date
JPH02143103U (en) 1990-12-05

Similar Documents

Publication Publication Date Title
JPH0246345B2 (en)
JPH0735682Y2 (en) Built-in motor type spindle
KR20040005639A (en) Spindle device using dynamic pressure bearing
JP2000291674A (en) Bearing cooling device
JP3706013B2 (en) High temperature rotating union
JP7164962B2 (en) Cooling structure of bearing device
JP3636746B2 (en) Magnetic bearing device
JPH0727270U (en) Cooling structure of internal liquid-cooled motor
JP3494419B2 (en) Motor built-in spindle
WO2020054661A1 (en) Bearing device cooling structure, and main spindle device of machine tool
JPH0382356A (en) Cooling structure of motor
WO2019188621A1 (en) Cooling structure for bearing device
JP7484688B2 (en) Cooling structure for bearing device
JPS61170254A (en) Liquid cooled motor
JPH0210856Y2 (en)
JP4529129B2 (en) Hydrostatic air bearing spindle
JP2506541Y2 (en) Bearing lubricator
CN112792363B (en) Electric spindle and machine tool
TW201923244A (en) Cooling structure for bearing device
JP3229483U (en) Gear shaft bearing device
CN112792364B (en) Rear bearing structure of electric spindle and electric spindle
CN215890833U (en) High-precision machine tool cooling device
JPH10113845A (en) Spindle
JPH0611742Y2 (en) Cooling device for machine tool spindle
JPH0224002A (en) Bearing for high speed main shaft of machine tool