JPH0735654U - Rhombus steel tower - Google Patents

Rhombus steel tower

Info

Publication number
JPH0735654U
JPH0735654U JP8045291U JP8045291U JPH0735654U JP H0735654 U JPH0735654 U JP H0735654U JP 8045291 U JP8045291 U JP 8045291U JP 8045291 U JP8045291 U JP 8045291U JP H0735654 U JPH0735654 U JP H0735654U
Authority
JP
Japan
Prior art keywords
tower
steel tower
view
arm
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8045291U
Other languages
Japanese (ja)
Other versions
JP2581350Y2 (en
Inventor
収平 岩田
Original Assignee
収平 岩田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 収平 岩田 filed Critical 収平 岩田
Priority to JP1991080452U priority Critical patent/JP2581350Y2/en
Publication of JPH0735654U publication Critical patent/JPH0735654U/en
Application granted granted Critical
Publication of JP2581350Y2 publication Critical patent/JP2581350Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electric Cable Installation (AREA)
  • Suspension Of Electric Lines Or Cables (AREA)

Abstract

(57)【要約】 (修正有) 【目的】 斜風時の実効荷重に対応する鉄塔構造物の効
率化。 【構成】 四方の稜角点に形鋼、鋼管等で成形した主柱
材1を配し、主柱材間の構面を腕金材2、水平材3、対
角材4、腹材6により構成し、腕金の吊材5は1本より
なる。
(57) [Summary] (Corrected) [Purpose] To improve the efficiency of steel tower structures to cope with the effective load during an oblique wind. [Structure] Main pillar materials 1 formed of shaped steel, steel pipe, etc. are arranged at four corner points, and the construction surface between the main pillar materials is composed of arm members 2, horizontal members 3, diagonal members 4, and belly members 6. However, the hanging material 5 of the armrest is made of one piece.

Description

【考案の詳細な説明】[Detailed description of the device]

(イ)産業上の利用分野 この考案は、送電線支持物本体の構成部材の構造配置に係わる骨組強度の効率 化および建替え工法の合理化ならびに送電線線下用地の縮小等に関するものであ る。 (ロ)従来の技術 従来の支持物は、第4図のような形態の鉄塔で、構成された支持物の骨組本体 の対電線路の方向の強度とこれに直角の方向の強度とが等しく設計され、本体の 4面が同形の構面を有する四角鉄塔(第3図、4図A、C)と、電線路の方向の 強度と、これに直角の方向の強度が異なる設計で、本体の相対する2面がそれぞ れ同形な構面を有する矩形鉄塔(第4図B)があり、いずれも本体の一側面とY 軸方向の構造軸が線路方向と一致するもので、同図Aの四角鉄塔が一般的に用い られている。(JEC−127−1979、送電用支持物設計標準、電気学会) (ハ)考案が解決しようとする問題点 1.第5図Aは、従来の鉄塔の支持物本体で断面形状が正方形で、その一邊が 電線路の方向と一致するもの、同図Bは、その本体を45度回転しY軸方向の対 角線を電線路方向と一致させ、構造軸としたものである。同図A、Bの本体断面 について、水平荷重Pによる電線路に直角方向の弯曲率をM、電線路方向の弯曲 率をαMとした場合(本体の一邊の長さをa,α<1とする)1本の主柱材(1 )に生ずる応力は、 2Pa=M(1+α)…………………図Aの場合 2Pa/√2=M(1+α)…………図Bの場合 ∴ A:B=√2/1=1.414 となり、対角線が線路方向と一致する図Bの総応力は図Aの応力の70%(B =1/√2A≒0.71)となるので、主柱材(1)と腹材(6)の応力は、水 平荷重Pに係わる応力分について軽減する。 2.従来の鉄塔のうち四角鉄塔の部材強度設計は、電線路の方向の強度と、こ れに直角の方向の強度とを等しくとっているため本体の骨組を構成する4本の主 柱材(1)と4面の腹材(6)の強度はそれぞれ等しく、また、矩形鉄塔の場合 でも電線路方向と直角方向の想定荷重は異なるが、4本の主柱材の強度は等しく 、最大の荷重に耐える設計としている。 しかし、総実荷重のうちの垂直荷重(20%弱)については全主柱材と腹材に 均等負荷されるが、水平方向の荷重(80%強)のうちの風圧荷重については、 電線路に直角方向の風(直風圧)の方が電線路方向のそれより大きく(比率6: 4)支持物の種類によっては風圧荷重が最大となる風の角度は直線、角度鉄塔で は線路方向に対して60度(斜風角)または90度、引留鉄塔では90度の方向 である。従来の四角鉄塔の本体断面に45度方向から風圧荷重が働いた場合、風 向対角線上の2本の主柱材と隣接する腹材が応力負担し、他の2本は負担しない ので、前記2本が設計応力より過負荷重となる。 3.従来の四角鉄塔(正方・矩形)を元位置で同一形状にて建替(高上げ)え る場合、第6図Aのように新旧の基礎体が接近または重合するため、基礎体およ び塔体の新設、撤去作業の並行実施は困難であり危険を伴う。 4.支持物上での線間水平距離は、電線横振れ時の最小絶縁間隔に本体幅を加 えた間隔以上とっているが、本体幅の線間距離(相互位相配列は同じ)に占める 比率は、77〜154KV級で約15%、220〜275KV級で約20%程度 あり、その分だけ線下用地幅も広くなる。 5.電線弛角の大きい懸垂鉄塔では、電線が腕金吊材(5)に接近(第7図A )するため、保安離隔確保のため上下の腕金間隔を標準間隔より大きくとる必要 がある。 などの諸問題があり実態に即した効率的かつ実用的な構造配置とはいえない。 この考案は、これらの問題点を改善し、より実効性を高めることを目的とする 。 (ニ)問題点を解決するための手段 第5図Aは従来の鉄塔で、一邊の長さaの本体に長さ2aの腕金(2)を取付 け、腕金と本体を含めた塔体幅cを5aとした構造断面で、図Bは、その本体を 45度回転した断面である。 図Cは、図Bの本体の一邊の長さをa/√2(対角線の長さをa)とし、対角 線を構造軸とした本体に腕金を取付け、塔体幅cを図Aと同じ長さの5aとした 場合の断面を示すもので、図Dは図Cの塔体幅を4aとしたもの、図Eは図Bの 本体のX軸上の両端の主柱材の間隔を広げて塔体幅cを4aとし、Y軸上の両端 の主柱材間を対角材(4)にて結構し、本体と腕金の構造を一体化した菱形構造 の断面である。 図Fは、菱形構造の変則型で、上部本体の構造断面が菱型、下部が矩形または 正方形の支持物で、上部X軸上の主柱材応力の軽減のため、最下腕金より下部基 礎間を2本の主柱材で、Y軸上の主柱材を2本の主脚材(13)にて逆Y形に分 岐結構した直風圧に強い構造の断面である。 第5図A〜Fの各断面構造の主柱材1本あたりの総弯曲率の比較では(A=1 とした場合) A:B:C:D:E:F=1:0.7:0.5:0.5:1.25:1.25 となり、C=D<B<A<E=Fとなる。 ここに、図C〜図Fが本考案の菱形構造で、電線路と直角方向の直風圧あるい は斜風圧の水平横荷重に強い骨組みで、図C,図D構造を適用した懸垂型の支持 物では腕金吊材が1本となるので、腕金と電線との接近間隔が従来より大きくと れるため、上下腕金間隔を短縮できる。 図E、図Fの構造では塔体幅が従来の鉄塔の本体幅だけ縮小(約20%)され る。また、いずれも建替え工法面で優れた構造である。 (ホ)作用 部材(主柱材)の設計応力(F)は、おおよそ垂直荷重(W)と水平荷重(H )により決められる。水平荷重には下図のように横荷重(電線路と直角方向)H Rと縦荷重(電線路方向)HPがあり、一般にHR>HPのためHRによって検 討され決定される。 そして、各荷重間は概略次の比率となっている。 これを45度回転した菱形構造で荷重を負担する場合、風向軸上の2本の主柱材 (b,c)の応力は、F=W/4+(HR/2/√2)×2=3.89>2.9 と過重となるが、彎曲低減率を考えれば水平応力分は、3.39×0.7=2. 37となり、F=0.5+2.37=2.87となるので四角鉄塔での応力と変 わらず、他の2本の主柱材(a,c)はHP方向の荷重負担のため、F=2.0 8<2.9となって応力は逆に軽減する。これが、第5図のC構造では、 F=0.5+(3.39×0.5)=2.19と更に軽減する。 同図のE構造では、X軸方向の応力F=0.5+(3.39×1.25)=4 .73、Y軸方向のF=0.5+(2.26×1.25)=3.33と主柱材応 力は共に増加するが、同図のF構造では、X軸上の主柱材は最下腕金部より2本 の主柱材によって下方基礎部へ分岐結構されるので、その応力は4.73/2= 2.37<2.9となる、また、E,F構造では四角鉄塔本体の3構面が削除さ れたと同じ形状となって塔体幅も20%程度縮小する。そして、この図C〜F本 体構造の支持物を適用して鉄塔を建替える場合、第6図のB、Cのように、新旧 の基礎体は接近、重合しないため、旧設備を解体撤去することなく鉄塔の建替え が可能となる。 適用にあたっては第8図のAのように直線や軽角度の懸垂型の支持物には第5 図のC、D構造を、重角度や引留の耐張型の支持物には同図のE,F構造を使用 すると効果がある。 (ヘ)実施例 本考案による支持物の適用について、その実施例を第8、第9、第10図によ って説明する。 第8図は、菱形構造鉄塔を代表する支持物の斜視図で、図Aは懸垂型、図Bは 耐張型を示す。 第9図のAは第5図C,Dの菱型構造本体の両側に腕金(2)と1本の腕金吊 材(5)を取付け、電線(10)を懸垂がいし装置(9)で支持する懸垂型鉄塔 の状況図を示す。同図Bは、第5図Eの菱形構造本体の両側主柱材(1)に電線 (10)を耐張がいし装置(8)で引留め、V吊り懸垂がいし装置(9)にてジ ャンパ線(11)を保持する耐張型鉄塔の状況図を示す。第10図のAは、旧鉄 塔の平面と正面図を、同図Bは、旧鉄塔基礎を撤去せず、新鉄塔(菱形)基礎を 同一敷地内に構築し、送電線の片側を停止後、新鉄塔の上部塔体構造の左半分を 組立後、電線を新鉄塔の主柱材に移設後、旧鉄塔の停止側の腕金を撤去し、停止 回線を活かした後の平面と正面図、同図Cは,反対回線を停止後、右半分の塔体 を組立て、電線を移線後、旧鉄塔の腕金を撤去し、移線をすべて完了した後の平 面と正面図を示すもので、旧鉄塔の本体(新鉄塔内)の撤去は、新鉄塔の塔頂に 設置した台棒により両回線を一時停止して行う。 (ト)考案の効果 この考案は以上説明したように、従来の四角鉄塔本体の構造軸を45度回転し 、その対角線を構造軸とし、電線路と直角方向の荷重に対する部材強度と電線路 と同方向の荷重に対する部材強度を等しくせず、それぞれの想定荷重に対応する 強度とすることにより支持物強度の実効性を高めるとともに、塔体と腕金を一体 化して支持物の塔体幅を縮小することによる線下用地の縮減、あるいは、既設鉄 塔を建替える場合の新鉄塔にこの構造を適用することによる工法の効率化と作業 の安全性の向上のほか、鋼材の軽量化、運搬費、労務費の軽減および建替え用地 費の節減など多方面での経済効果が得られる。(B) Industrial field of application The present invention relates to the efficiency of the frame strength related to the structural arrangement of the constituent members of the transmission line support body, the rationalization of the rebuilding method, and the reduction of the site under the transmission line. . (B) Conventional technology A conventional support is a steel tower having a configuration as shown in Fig. 4, and the strength of the support body constructed is equal to the strength of the main body in the direction of the power line and in the direction perpendicular thereto. A square tower (Figs. 3, 4A and C) that has been designed and has four surfaces with the same shape, and the strength in the direction of the electric line and the strength in the direction perpendicular to this are different. There is a rectangular steel tower (Fig. 4B) with two facing surfaces each having the same shape. In each case, one side of the main body and the structural axis in the Y-axis direction are aligned with the track direction. The square tower of A is generally used. (JEC-127-1979, Support Standards for Power Transmission, The Institute of Electrical Engineers of Japan) (C) Problems to be solved by the invention 1. Fig. 5A shows a conventional support body for a steel tower, which has a square cross-section and one of which is aligned with the direction of the electric line. Fig. 5B shows that the body is rotated 45 degrees and the diagonal direction in the Y-axis direction is shown. The line is aligned with the direction of the electric line and used as the structural axis. Regarding the cross-sections of the main body of FIGS. A and B, when the curvature in the direction perpendicular to the electric line due to the horizontal load P is M and the bending ratio in the electric line direction is αM (the main body length is a, α <1 The stress generated in one main pillar (1) is 2Pa = M (1 + α) ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… At B. ∴ A: B = √2 / 1 = 1.414, and the total stress in Figure B where the diagonal line matches the line direction is 70% of the stress in Figure A (B = 1 / √2A≈0.71). The stress of the main pillar material (1) and the belly material (6) is reduced by the stress component related to the horizontal load P. 2. Among the conventional steel towers, in the member strength design of the square tower, the strength in the direction of the electric line is equal to the strength in the direction perpendicular to this, so the four main pillar materials (1 ) And the strength of the belly members (6) on the four sides are equal, and even in the case of a rectangular tower, the assumed load in the direction perpendicular to the electric line direction is different, but the strength of the four main pillars is equal and the maximum load It is designed to withstand. However, the vertical load (less than 20%) of the total actual load is evenly applied to all the main pillars and the belly members, but the wind load of the horizontal load (more than 80%) is perpendicular to the electric line. The wind in the direction (direct wind pressure) is larger than that in the direction of the electric line (ratio 6: 4). Depending on the type of support, the wind pressure has the maximum wind pressure. The direction is 60 degrees (angle of wind) or 90 degrees, and the direction of the detention tower is 90 degrees. When a wind pressure load is applied to the main body cross section of a conventional square steel tower from the direction of 45 degrees, stress is applied to the two main pillars on the wind direction diagonal line and the abdominal material adjacent to them, and the other two are not. Two are overloaded due to design stress. 3. When a conventional square tower (square / rectangular) is rebuilt (raised) with the same shape at the original position, the old and new foundations approach or overlap as shown in Fig. 6A. It is difficult and dangerous to carry out new construction and removal of towers in parallel. 4. The horizontal distance between lines on the support is greater than or equal to the minimum insulation distance when the wire is shaken, plus the width of the main body, but the ratio of the width of the main body to the distance between lines (same mutual phase arrangement) is It is about 15% in the 77 to 154 KV class and about 20% in the 220 to 275 KV class, and the land width under the line becomes wider accordingly. 5. In a suspended steel tower with a large wire slack angle, the wires approach the arm hanging material (5) (Fig. 7A), so it is necessary to make the upper and lower arm intervals larger than the standard interval in order to secure the safety clearance. Due to various problems such as the above, it cannot be said that the structure is an efficient and practical structure that matches the actual situation. The purpose of this invention is to improve these problems and improve their effectiveness. (D) Means for solving the problem FIG. 5A shows a conventional steel tower, in which a arm (2) of length 2a is attached to the main body of length a and the tower including the arm and the main body is attached. FIG. B is a structural cross section in which the body width c is 5a, and FIG. In Fig. C, the length of the main body of Fig. B is a / √2 (the length of the diagonal is a), the arm is attached to the main body with the diagonal as the structural axis, and the tower width c is shown in Fig. A. Fig. 5 shows a cross section of the same length as 5a, Fig. D shows the tower width in Fig. C as 4a, and Fig. E shows the space between the main pillars at both ends on the X axis of the main body in Fig. B. Is a cross-section of a rhombus structure in which the main body and arm structure are integrated with each other by connecting the main column members at both ends on the Y-axis with diagonal members (4). Figure F is an irregular type of rhombus structure, in which the upper body has a rhombic cross-section and the lower part is a rectangular or square support, which is lower than the lower arm to reduce the stress of the main pillar material on the upper X axis. This is a cross section of a structure that is strong against direct wind pressure and has two main pillars between the foundations and two main leg members (13) on the Y-axis that are branched into an inverted Y shape. In the comparison of the total curvatures of the main pillars of each sectional structure shown in FIGS. 5A to 5F (when A = 1), A: B: C: D: E: F = 1: 0.7: 0.5: 0.5: 1.25: 1.25, and C = D <B <A <E = F. Here, FIGS. C to F show the rhombus structure of the present invention, which is a suspension type structure to which the structures shown in FIGS. C and D are applied, with a frame that is strong against horizontal lateral load of direct wind pressure or oblique wind pressure in the direction perpendicular to the electric line. Since there is only one arm hanging material for the support, the distance between the arm and the electric wire can be made larger than before, so the distance between the upper and lower arms can be shortened. In the structures shown in FIGS. E and F, the width of the tower body is reduced by the width of the main body of the conventional steel tower (about 20%). In addition, all of them have excellent structures in terms of rebuilding method. (E) Action The design stress (F) of the member (main pillar material) is roughly determined by the vertical load (W) and the horizontal load (H 2). As shown in the figure below, horizontal load includes horizontal load (direction perpendicular to electric line) HR and vertical load (direction of electric line) HP. Generally, since HR> HP, it is examined and determined by HR. Then, the ratios between the respective loads are approximately as follows. When the load is applied by the rhomboid structure rotated by 45 degrees, the stress of the two main column members (b, c) on the wind direction axis is F = W / 4 + (HR / 2 / √2) × 2 = Although it is overloaded with 3.89> 2.9, the horizontal stress component is 3.39 × 0.7 = 2. 37, and F = 0.5 + 2.37 = 2.87, so it is the same as the stress in the square tower, and the other two main pillars (a, c) bear the load in the HP direction. = 2.08 <2.9, and the stress is reduced. This is further reduced to F = 0.5 + (3.39 × 0.5) = 2.19 in the C structure of FIG. In the E structure of the figure, the stress in the X-axis direction F = 0.5 + (3.39 × 1.25) = 4. No. 73, F = 0.5 + (2.26 × 1.25) = 3.33 in the Y-axis direction and the main pillar material response increases, but in the F structure in the figure, the main pillar material on the X-axis is Is connected to the lower foundation by two main pillars from the lower arm, so the stress is 4.73 / 2 = 2.37 <2.9. In the E and F structures, It will have the same shape as when the three structures of the square tower were removed, and the width of the tower will be reduced by about 20%. When the steel tower is rebuilt by applying the supports of the main structure shown in Figures C to F, the old and new foundations do not approach and polymerize as shown in Figures 6B and 6C, so the old equipment is dismantled and removed. It is possible to rebuild the steel tower without doing so. When applied, the C and D structures shown in Fig. 5 are used for a straight-line or light-angle suspended type support as shown in Fig. 8A, and E in the same figure is used for a heavy-angle or tension-resistant type support. It is effective to use the F structure. (F) Example The application of the support according to the present invention will be described with reference to FIGS. 8, 9 and 10. FIG. 8 is a perspective view of a support representing a diamond-shaped steel tower, FIG. A shows a suspension type, and FIG. B shows a tension type. A of FIG. 9 is a device for suspending an electric wire (10) by attaching a wire (2) and a wire hanging member (5) to both sides of the diamond-shaped structure body of FIGS. The figure below shows the situation of the suspended steel tower supported by. FIG. 5B shows that the electric wire (10) is retained by the tensioning insulator (8) on both side main pillars (1) of the diamond-shaped structure main body of FIG. 5E, and jumper is suspended by the V suspension suspension insulator (9). FIG. 3 shows a situation diagram of a tension-resistant steel tower holding a wire (11). Fig. 10A shows a plan and front view of the old steel tower, and Fig. 10B does not remove the old steel tower foundation, but constructs a new steel tower (rhombic) foundation on the same site and stops one side of the transmission line. Later, after assembling the left half of the upper tower structure of the new steel tower, after moving the electric wire to the main pillar material of the new steel tower, the armband on the stop side of the old steel tower was removed, and the plane and front after utilizing the stop line In the figure and Figure C, after the opposite line is stopped, the right half of the tower is assembled, the wires are transferred, the armor of the old steel tower is removed, and the plane and front view after completing the transfer are shown. As shown in the figure, the main body of the old steel tower (inside the new steel tower) will be removed by temporarily suspending both lines with the pedestal installed at the top of the new steel tower. (G) Effect of the Invention As described above, the invention rotates the structure axis of the conventional square tower main body by 45 degrees, and uses the diagonal as the structure axis, with the member strength against the load in the direction perpendicular to the electric line and the electric line. The strength of the support is increased by making the member strengths against loads in the same direction not equal, but by increasing the strength corresponding to each assumed load.In addition, the tower and arm are integrated to increase the tower width of the support. By reducing the size of the site below the line, or by applying this structure to a new steel tower when rebuilding an existing steel tower, not only the efficiency of the construction method and the improvement of work safety but also the weight reduction and transportation of steel materials Costs, labor costs, and land cost for reconstruction can be reduced.

【提出日】平成5年6月30日[Submission date] June 30, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content] 【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

この考案は、送電線支持物本体の構成部材の構造配置に係わる骨組強度の効率 化および既設鉄塔建替え工法の合理化ならびに送電線線下用地の縮小等に関する ものである。The present invention relates to streamlining of the frame strength related to the structural arrangement of the constituent members of the transmission line support body, rationalization of the existing steel tower rebuilding method, and reduction of the site under the transmission line.

【0002】[0002]

【従来の技術】[Prior art]

従来の支持物の代表は、図4のような形態の鉄塔で、構成された支持物の骨組 本体の対電線路の方向の強度とこれに直角の方向の強度とが等しく設計され、本 体の4面が同形の構面を有する四角鉄塔(図A、C)と電線路の方向の強度と 、これに直角の方向の強度が異なる設計で、本体の相対する2面がそれぞれ同形 な構面を有する矩形鉄塔(図B)があり、いずれも本体の一側面とY軸方向の 構造軸が線路方向と一致するもので、同図Aの四角鉄塔が一般的に用いられてい る。(JEC−127−1979、送電用支持物設計標準、電気学会)A typical example of a conventional support is a steel tower having a configuration as shown in FIG. 4, in which the strength of the frame of the constructed support is designed to be equal to the strength of the main body in the direction of the power transmission line and the strength perpendicular to it. The design is such that the strength in the direction of the electric line is different from that of the square steel tower (A and C in the same figure) where the four surfaces have the same shape, and the strength in the direction perpendicular to this is different, and the two opposite surfaces of the main body have the same shape. There is a rectangular steel tower (B in the same figure) that has a construction surface. In both cases, one side surface of the main body and the structural axis in the Y-axis direction coincide with the track direction, and the square steel tower in A in the same figure is generally used. . (JEC-127-1979, Support Design Standard for Power Transmission, The Institute of Electrical Engineers of Japan)

【0003】[0003]

【考案が解決しようとする課題】[Problems to be solved by the device]

1.図5Aは、従来の鉄塔の支持物本体で断面形状が正方形で、その一邊が電線 路の方向と一致するもの、同 図Bは、その本体を45度回転しY軸方向の対角線 を電線路方向と一致させ構造軸としたものである。ここに、同図A、Bの本体 断面について、水平荷重Pによる電線路に直角方向の弯曲率をM、電線路方向の 弯曲率をαMとした場合(本体の一邊の長さをa,α<1とする) 1本の主柱材1に生ずる応力は、 2Pa=M(1+α) …………………図Aの場合 2Pa/√2=M(1+α)…………………図Bの場合 ∴A:B=√2/1=1.414 となり、対角線が線路方向と一致する図Bの総応力は図Aの応力の70%( B=1/√2A≒0.71)となるので、主柱材1と腹材6の応力は、水平荷重 Pに係わる応力分について軽減する。 2.従来の鉄塔の部材強度検討は、電線路方向と、これに直角方向あるいは6 0度方向から想定荷重を加味した強度設計を行っており、それぞれの方向の想 定荷重は異なるが、常に4本の主脚材と4面の腹材が対応するとの考え方に立っ ての設計の ため本体の骨組を構成する4本の主柱材1と4面の腹材6の強度はそ れぞれ等しく、最大の荷重に耐える強度となっている。 しかし、総実荷重のうち垂直荷重(20%弱)については常に全主柱材と腹材 に均等負荷されるが、水平方向の荷重(全体の80%強)のうち風圧荷重につい ては、電線路に直角方向の風(直風圧)による荷重の方が電線路方向のそれより 大きく(比率6:4)支持物の種類によっては風圧荷重が最大となる風の角度は 直線、角度鉄塔では線路方向に対して60度(斜風角)または90度、引留鉄塔 では90度の方向であるが、この四角鉄塔に45度方向風圧荷重が働いた場合 、風向線上の2本の主柱材と隣接する腹材応力負担するが、他の主柱材2本は応力(引張と圧縮力相殺) 負担しないので、前記2本が設計応力より過負荷重と なる。 3.従来の四角鉄塔(正方・矩形)を元位置で同一形状にて建替(高上げ)える 場合、第6図Aのように新旧の基礎体が接近または重合するため、基礎体および 塔体の新設、撤去作業の並行実施は困難であり危険を伴う。 4.図5Aに示すように電線相互の線間距離は、電線横振れ時の塔体との最小 絶縁間隔に本体幅を加えた間隔以上とっているが、本体幅の線間距離に占 める割合は、77〜154KV級で約15%、220〜275KV級で約20% 程度あり、その分だけ線下用地幅広くなる。 5.図7Cが示すように電線弛角θの大きい懸垂鉄塔で電線が塔体側に振れると 腕金吊材5に接近するため、保安離隔確保のため上下腕金間隔を標準間隔より 大きくとる必要がある。 などの諸問題があり実態に即した効率的かつ実用的な構造配置とはいえない。 この考案は、これらの問題点を改善し、より実効性を高めることを目的とする 。1. Figure 5A is a cross-sectional shape is square with the support material body of a conventional tower, its Ichi邊 which coincides with the direction of the electric lines, the figure B is wireway diagonal Y-axis direction rotates the body 45 degrees The structure axis is aligned with the direction . Here, regarding the cross-sections of the main body of FIGS. A and B, when the curvature of the direction perpendicular to the electric line due to the horizontal load P is M and the curvature of the direction of the electric line is αM (the main body length is a, α <1) The stress generated in one main pillar 1 is 2Pa = M (1 + α) ……………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………………… for Figure B ∴A: B = √2 / 1 = 1.414 , and the 70% of the total stress in drawing B of diagonal coincides with the line direction stress in FIG a (B = 1 / √2A ≒ 0 .71), the stress of the main pillar material 1 and the abdominal material 6 is reduced with respect to the stress component related to the horizontal load P. 2. Strength Study of members of a conventional tower includes a wire path direction, this is carried out considering the strength design assumptions load from a direction perpendicular or 6 0 degree direction, virtual constant force in each direction is different, always The strengths of the four main pillars 1 and the four sided abdominal members 6 that compose the frame of the main body are designed based on the idea that the four main leg members correspond to the four sided abdominal members. The strength is the same, and it is strong enough to withstand the maximum load. However, of the total actual load, the vertical load (less than 20%) is always applied equally to all the main pillars and the abdominal members, but the horizontal load (more than 80% of the total ) is the wind pressure load. The load due to the wind (direct wind pressure) in the direction perpendicular to is larger than that in the direction of the electric line (ratio 6: 4), and depending on the type of support, the wind pressure has the maximum wind angle. It is 60 degrees (angle of wind) or 90 degrees, and it is in the direction of 90 degrees in the draw tower, but when a wind pressure load in the direction of 45 degrees acts on this square tower, it becomes two main pillars on the wind direction. adjacent web members are stress burden Suruga, since the two other main pillar not bear stress (tensile and compressive forces offset), the two become overloaded heavy than design stress. 3. When a conventional square steel tower (square / rectangle) is rebuilt (raised) with the same shape at the original position, the new and old foundations approach or overlap as shown in Fig. 6A. It is difficult and dangerous to carry out new construction and removal work in parallel. 4. Conductor spacing c of the wire each other as shown in FIG. 5A, although taken over intervals plus body width a to the minimum insulating distance between the tower body during wire lateral deflection, the distance between lines c of the body width a which accounts ratio is about 15% by 77~154KV class, there about 20% 220~275KV class, a line under land width is correspondingly increased. 5. Since the wire in large suspension tower of the electric wire slack angle θ as shown in FIG. 7C approaches the arm-hanging member 5 when swinging to the tower side, is necessary to take greater than the standard spacing the upper and lower cross-arm distance l for security spaced securing is there. Due to various problems such as the above, it cannot be said that the structure is an efficient and practical structure that matches the actual situation. The purpose of this invention is to improve these problems and improve their effectiveness.

【0004】[0004]

【課題を解決するための手段】[Means for Solving the Problems]

図5Aは従来鉄塔の本体構造で、一邊の長さaの本体に長さ2aの腕金2を取 付け、腕金と本体を含めた塔体幅cを5aとした構造断面で、図Bは、その本 体を45度回転した断面である。 図Cは、図Bの本体の一邊の長さをa/√2(対角線の長さをa)とし、 対角線を構造軸とした本体に腕金を取付け、塔体幅cを図Aと同じ長さの5a とした場合の断面を示すもので、図Dは図Cの塔体幅を4aとしたもの、 図Eは図Bの本体のX軸上の両端の主柱材の間隔を広げて塔体幅cを4aとし 、Y軸上の両端の主柱材間を対角材4にて結構し、本体と腕金の構造を一体化し た菱形構造の断面で同図Aの本体構造の3構面を取り除いた形と同形である。 のDとFは、菱形構造の変則型で、上部本体構造断面が菱型、下部が矩 形または正方形の支持物で、主柱材応力の軽減のため、最下腕金取付部(ベンド 点)より下部の脚材を、Y軸上の脚は2本の主柱材1で、X軸上の脚材は2本の 主脚材12にて逆Y形に分岐結構した構造の断面である。第5図A〜Fの各断面 構造の主柱材1本あたりの総弯曲率の比較では(A=1とした場合) A:B:C:D:E:F=1:0.7:0.5:0.5:1.25:1.25 となり、C=D<B<A<E=Fとなる。 ここに、図C〜図Fが本考案の菱形構造で、電線路と直角方向の直風圧ある いは斜風圧の水平横荷重に強い骨組みであり図C,図D構造を適用した懸垂 型鉄塔(図8)では腕金吊材が1本とな、腕金と電線の接近間隔が従来より大 きくとれるので、上下腕金間隔短縮できる。また、図E、図Fの構造は塔 体幅が従来の鉄塔本体幅だけ縮小(約20%)されるほか、いずれも既設の建替鉄塔としても 優れた構造である。Figure 5A is a body structure of a conventional tower, with preparative cross-arm 2 of length 2a to the body length a of Ichi邊, in the structure section was 5a tower body width c including the cross-arm and the body, FIG. B is a cross section obtained by rotating the main body by 45 degrees. FIG C is (a length of a diagonal line a) the length of one邊a / √2 of the body of the figure B and then, attaching the cross-arm to the body in which the diagonal structure axis, FIG tower body width c shows a cross section of a case of a 5a of the same length as a, figure D is obtained by a 4a tower body width of the figure C, E in the drawing is at both ends of the X axis of the body of the figure B The interval between the main pillars is widened to make the tower width c 4a, and the main pillars at both ends on the Y-axis are connected by diagonal members 4 to form a rhombic cross-section with the body and arm structure integrated. It has the same shape as the main body structure of FIG. D and F in the figure, in the irregular type diamond structure, the upper portion of the body structure section is rhombic, the lower the rectangle or square supporting structure, for the relief of the main pillar stress, the lowermost cross-arm mounting portion the leg members of the lower than (Bend point), the legs of the Y-axis two main pillar 1, leg members on X-axis was quite branched reversed Y-shape with two Shuashizai 12 structure Is a cross section. In the comparison of the total curvature of one main pillar material of each cross-section structure of FIGS. 5A to 5F (when A = 1), A: B: C: D: E: F = 1: 0.7: 0.5: 0.5: 1.25: 1.25, and C = D <B <A <E = F. Here, a diamond structure of FIG C~ diagram F is the present invention, have in direct wind pressure electrical line perpendicular direction is a strong skeleton in the horizontal lateral load oblique wind pressure was applied figure C, and FIG. D structure suspension tower (8), the arm-hanging member is Ri Do and one, so approaching distance of cross-arm and the wire is taken greatly than the conventional upper and lower cross-arm spacing can be shortened. Further, FIG. E, the structure of Figure F except that the tower body width is reduced by conventional tower body width (about 20%), both are excellent structures as rebuilding pylons existing.

【0005】[0005]

【作用】[Action]

鉄塔部材(主柱材)の応力(F)は、凡そ垂直荷重(W)と水平荷重(H)に より決まるが、その水平荷重は図12のように横荷重(電線路と直角方向)HR と縦荷重(電線路方向)HPがあり、一般にHR>HPのためHRによって、 ぼ部材強度が決まると言っても過言ではない 。そして、各荷重は概略次の比率と なっている。 W:H=2:8 HR:HP=6:4 従って、 W:HR=2:4.8 W:HP=2:3.2 図12Aに示す四角鉄塔(正方形)において各主柱材(a,b,c,d)応 力Fは、F=W/4+HR/2=0.5+2.4=2.9となり4本とも同じで ある。 これを45度回転した菱形構造で荷重を負担する場合、風向軸上の2本の主柱材b′とc′ の応力は、F=W/4+(HR/2/√2)×2=3.89>2.9 と過重となるが彎曲低減率を考えれば水平応力分は、3.39×0.7=2.3 7となり、 F=0.5+2.37=2.87となるので四角鉄塔での応力と変 わらず、他の2本の主柱材a′とc′はHP方向の荷重負担のため、F=2.0 8<2.9とな応力は逆に軽減する。 これが図5C構造では弯曲率が0.5にて、F=0.5+(3.39×0.5 )=2.19と更に軽減する。 同図のE構造では、X軸方向の応力F=0.5+(3.39×1.25)=4 .73、Y軸方向のF=0.5+(2.26×1.25)=3.33と主柱材応 力は共に増加するが、同図のF構造では、X軸上の主柱材は最下腕金部より2本 の主柱材によって下方基礎部へ分岐結構されるので、その応力は4.73/2= 2.37<2.9となるまた、E,F構造では四角鉄塔本体の3構面が削除さ れたと同じ形状となって塔体幅も20%程度縮小する。そして、この図C〜F本 体構造の支持物を適用して鉄塔を建替える場合、図6のB、Cのように新旧の基 礎体は接近、重合しないため、旧設備を解体撤去することなく鉄塔の建替えが可 能となる。 適用にあたっては図Aのように直線や軽角度の懸垂型の支持物には図5のC 、D構造を、図2Aのように重角度や引留の耐張型の支持物には同図のE,F構 造を使用すると効果がある。Stress tower member (main pillar) (F) is approximately vertical load (W) and is more determined circle horizontal load (H), lateral load as the horizontal load 12 (electric line perpendicular direction) There are HR and longitudinal load (electric wire path direction) HP, generally by HR> HR for HP, it is no exaggeration to say that almost member strength is determined. And each load is roughly the following ratio. W: H = 2: 8 HR: HP = 6: 4 Therefore, W: HR = 2: 4.8 W: HP = 2: 3.2 In the square tower (square) shown in FIG. 12A , each main pillar material (a , B, c, d), the response F is F = W / 4 + HR / 2 = 0.5 + 2.4 = 2.9, which is the same for all four. When this is rotated by 45 degrees to bear a load, the stress of the two main pillars b ′ and c ′ on the wind direction axis is F = W / 4 + (HR / 2 / √2) × 2 = Although it is overloaded with 3.89> 2.9, the horizontal stress becomes 3.39 × 0.7 = 2.37 and F = 0.5 + 2.37 = 2.87 in consideration of the bending reduction rate. since varying the stress of a square tower Warazu, for the other two 'and c' main pillar a the load burden on HP directions, F = 2.0 8 <2.9 and Do Ri stress reversed Reduce. In the structure of FIG. 5C, this is further reduced to F = 0.5 + (3.39 × 0.5) = 2.19 at a curvature of 0.5 . In the E structure of the figure, the stress in the X-axis direction F = 0.5 + (3.39 × 1.25) = 4. No. 73, F = 0.5 + (2.26 × 1.25) = 3.33 in the Y-axis direction and the main pillar material response increases, but in the F structure in the figure, the main pillar material on the X-axis is Is branched from the lowermost arm to the lower foundation by two main columns, so the stress is 4.73 / 2 = 2.37 <2.9 . In addition, the E and F structures have the same shape as that of the three quadrangular tower main body surfaces removed, and the tower width is reduced by about 20%. Then, when the steel tower is rebuilt by applying the supports of the main structure shown in Figs. C to F, the old and new foundations do not approach and polymerize as shown in B and C of Fig. 6, so the old equipment is dismantled and removed. It is possible to rebuild the steel tower without any trouble. C in Figure 5 is the pendent support of line or light angle as shown in FIG. 1 A is In application, the D structure, drawing the heavy angle and tension-type support of the anchor as shown in Figure 2A It is effective to use the E and F structures.

【0006】[0006]

【実施例】【Example】

本考案による支持物の適用について、その実施例を図1A、図2A、図9およ 図10によって説明する。 図1Aおよび図2Aは、菱形構造鉄塔を代表する支持物の斜視図で、図1Aは 懸垂型、図2Aは耐張型を示す。 図9Aは図5C,Dの菱型構造本体の両側に腕金2と1本の腕金吊材5を取付 け、電線10を懸垂がいし装置9で支持する懸垂型鉄塔の状況図を示す。 図10Aは、図5Eの菱形構造本体の両側主柱材1に電線10を耐張がいし装 置8で引留め、V吊り懸垂がいし装置9にてジャンパー線11を保持する耐張型 鉄塔の状況図を示す。 図1のAは、旧鉄塔の平面と正面図を、同図Bは、旧鉄塔基礎を撤去せず、 新鉄塔(菱形)基礎を同一敷地内に構築し、送電線の片側を停止後、新鉄塔の上 部構造の左半分を組立後、電線を新鉄塔の主柱材に移設後、旧鉄塔の停止側の腕 金を撤去し、停止回線を活かした後の平面と正面図で、同図Cは反対回線を停止 後、右半分の塔体を組立て、電線を移線後、旧鉄塔の腕金を撤去し、移線をすべ て完了した後の平面と正面図を示すもので、旧鉄塔の本体(新鉄塔内)の撒去は 、新鉄塔の塔頂に設置した台棒により両回線を一時停止して行う。Application of the support material according to the present invention will be described the embodiment FIGS. 1A, 2A, by 9 and Figure 10. 1A and 2A is a perspective view of a supporting structure representative of rhombus structure tower, Figure 1 A is pendent, FIG. 2A shows a tension-type. FIG. 9A shows a situation diagram of a suspended steel tower in which the armrests 2 and one suspension member 5 are attached to both sides of the diamond-shaped structure body of FIGS. 5C and D, and the electric wire 10 is supported by the suspension device 9. FIG. 10A shows a situation of a tension-type steel tower in which the electric wire 10 is retained by the tension-resisting insulator 8 on the main pillars 1 on both sides of the diamond-shaped main body of FIG. 5E and the jumper wire 11 is retained by the V-suspension and suspender 9. The figure is shown. A in Figure 1 1, a plan and a front view of the old tower, drawing B is not removed the old tower foundation, building a new tower (diamonds) basis in the same premises, after stopping the one side of the transmission line After assembling the left half of the upper structure of the new steel tower, after moving the electric wire to the main pillar material of the new steel tower, remove the suspension wire on the stop side of the old steel tower and make a plan and front view after utilizing the stop line. , Figure C shows the plan and front view after the opposite line is stopped, the right half tower is assembled, the wire is transferred, the armor of the old steel tower is removed, and the transfer is completed. The removal of the old steel tower body (inside the new steel tower) is performed by temporarily suspending both lines by the pedestal installed at the top of the new steel tower.

【0006】[0006]

【考案の効果】[Effect of device]

この考案は以上説明したように、従来の四角鉄塔本体の構造軸を45度回転し 、その対角線を構造軸とし、電線路と直角方向の荷重と同方向の荷重に対する部 材強度を等しくせず、ベンド点より下部の脚材構造の改良(逆Y字形分岐)によ り45度風向時応力を均斉化(2脚から4脚対応) することにより支持物強度の 実効性を高めるとともに、塔体と腕金を一体化して支持物の塔体幅を縮小するこ とによる線下用地の縮減、あるいは、既設鉄塔を建替える場合の新鉄塔にこの構 造を適用することによる工法の効率化と作業の安全性の向上のほか、材の軽量 化、運搬費、労務費の軽減および建替え用地費の節減など多方面での経済効果が 得られる。As described above, this invention rotates the structural axis of the conventional square tower main body by 45 degrees and uses the diagonal as the structural axis, and does not make the member strength equal to the load in the direction perpendicular to the electric line and the load in the same direction. , to increase the effectiveness of the support material strength by (four legs corresponding 2 legs) bottom of improvement of leg member structure (inverted Y-shaped branch) in I Ri 45 ° homogenized wind direction during stress than the bend point, the tower Reduction of the site under the line by reducing the tower width of the support by integrating the body and arm, or improving the efficiency of the construction method by applying this structure to the new steel tower when rebuilding the existing tower in addition to the improvement of the safety of work, weight reduction of the leg material, transportation costs, the economic effect of in various fields, such as the reduction of labor costs and rebuilding land cost savings can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案による菱形構造の本体に腕金を取付け
た懸垂型鉄塔の部材構成の平面と正面図。第2図は、本
体と腕金が一体化した菱形構造の耐張型鉄塔の部材構成
の平面と正面図。第3図は、従来の四角鉄塔の部材構成
の平面と正面図。第4図は、従来使用されている代表鉄
塔の形態による分類と、その正面図と側面図。第5図
は、支持物本体の断面構造の変化図で、図Aは従来の四
角鉄塔の本体構造(点線は腕金部)図Bは、図Aの本体
構造軸を45度回転したもの(点線は腕金部)図Cは、
図Bの本体の対角線の長さを図Aの一邊の長さaと同じ
くし、図Aの腕金と同じ長さbの腕金を取付けて塔体幅
cを5aとしたもの。図Dは、図Cの腕金幅bを1.5
aとして、塔体幅cを4aとした場合の断面構造図を示
す。図Eは、図Bの対角線のX軸方向を拡げて塔体幅c
を4aとし、Y軸方向を縮めて塔体幅をaとし、X−Y
構造軸の長さの比を4:1とし、Y軸上の主柱材間を対
角材で結構したもので、図Aの本体構造の3構面が削除
され、塔体幅を縮小したもの。第6図は、既設鉄塔を建
替える場合の新旧基礎の配置状況図で、図Aは、新旧が
同一形状(四角鉄塔)の場合、図Bは、第1図の菱形構
造鉄塔で懸垂型の場合、図Cは第2図の菱形構造鉄塔で
耐張型の場合の平面図と正面図を示す。第7図のAは、
電線弛角の大きい従来の懸垂型鉄塔の腕金吊材と電線の
接近状況を示す正面と平面と側面図、図Bは、菱形構造
の懸垂型鉄塔で腕金吊材一本の吊材と電線の接近状況を
示す正面と平面と側面図。第8図は、菱形構造鉄塔の斜
視図で図Aは懸垂型、図Bは耐張型を示す。第9図は、
菱形構造鉄塔の電線支持状況図で、図Aは懸垂型、図B
は耐張型の平面図と正面図を示す。第10図のA,B,
Cは、従来の四角鉄塔を菱形鉄塔に建替える場合の工法
手順を示す平面図と正面図である。 1…………………………主柱材 2…………………腕
金主材 3……………………側面水平材 4……………………
対角材 5………………………腕金吊材 6………………斜材
・腹材 7…………………………補助材 8…………引留がい
し装置 9………………懸垂がいし装置 10…………………
…電線 11…………………ジャンパ線 12…………………
主脚材 13………………………基礎部
FIG. 1 is a plan view and a front view of a member structure of a suspension type steel tower in which a arm is attached to a main body of a rhombic structure according to the present invention. FIG. 2 is a plan view and a front view of a member structure of a rhombus-shaped tension-resistant steel tower in which a main body and arm are integrated. FIG. 3 is a plan view and a front view of a member structure of a conventional square steel tower. FIG. 4 is a front view and a side view of the classification according to the form of the representative steel tower that has been conventionally used. FIG. 5 is a view showing a change in the sectional structure of the support body. FIG. A is a body structure of a conventional square steel tower (dotted lines are arm members). FIG. B is a body structure axis of FIG. (The dotted line is the arm part) Figure C shows
The length of the diagonal line of the main body of FIG. B is the same as the length a of the whole area of FIG. A, and the armature of the same length b as the armor of FIG. A is attached to make the tower body width c 5a. FIG. D shows the arm width b of FIG.
As a, a cross-sectional structure diagram when the tower width c is 4a is shown. FIG. E shows the tower body width c with the diagonal X-axis direction of FIG.
Is 4a, the Y-axis direction is contracted to make the tower width a, and XY
The ratio of the lengths of the structural axes is 4: 1 and the main pillars on the Y axis are connected by diagonal members, and the three structural surfaces of the main body structure in Figure A have been deleted to reduce the width of the tower. . FIG. 6 is a layout view of the old and new foundations when rebuilding an existing steel tower. FIG. A shows a case where the old and new foundations have the same shape (square tower), and FIG. B shows a suspension structure of the diamond-shaped steel tower of FIG. In this case, FIG. C shows a plan view and a front view of the rhomboid structure steel tower of FIG. A in FIG. 7 is
Front, plan and side view showing the approaching state of a wire suspension wire and a wire of a conventional suspension type steel tower with a large wire slack angle. Fig. B is a suspension type steel tower with a rhombus structure and one suspension material The front, the plane, and the side view showing the approaching state of the electric wire. FIG. 8 is a perspective view of a rhombus structure steel tower, FIG. A shows a suspension type, and FIG. B shows a tension type. Figure 9 shows
Fig. A is a wire support situation diagram of a rhombus steel tower, Fig. A is a suspension type, Fig. B
Shows a plan view and a front view of the tension type. A, B of FIG.
C is a plan view and a front view showing a construction method procedure when rebuilding a conventional square steel tower into a rhomboid steel tower. 1 ……………………………… Main pillar material 2 …………………… Main arm material 3 …………………… Horizontal horizontal material 4 ……………………
Diagonal material 5 ………………………… Bracket hanging material 6 ……………… Slanting material / belly material 7 ………………………… Auxiliary material 8 ………… Retractor insulator 9 ……………… Suspension insulator device 10 ……………………
… Electric wire 11 …………………… Jumper wire 12 ……………………
Main leg material 13 ………………………… Basic section

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年6月30日[Submission date] June 30, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【考案の名称】 菱形構造鉄塔[Name of device] Rhombic structure steel tower

【実用新案登録請求の範囲】 この考案は、架空送電線路の支持物を新設または建替え
る場合の支持物本体(腕金構造を含む)の骨組み構造、
配置に関するもので、次の条件を具備することを特徴と
する菱形構造の鉄塔。
[Claims for utility model registration] This invention is a framework structure of a support body (including a arm structure) when a support for an overhead power transmission line is newly installed or rebuilt,
A rhombic steel tower that is related to the arrangement and is characterized by the following conditions .

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案を代表する菱形構造鉄塔で、同図Aは懸
垂型の斜視図と平面図。同図Bと同図Cは菱形構造の本
体に腕金を取付けた懸垂型鉄塔の部材構成を示す平面と
正面図。
FIG. 1 is a diamond-shaped steel tower that represents the present invention .
A perspective view and a plan view of a vertical type. FIG B and the panel C plane front view showing a member structure of suspension tower fitted with a cross-arm to the body of the rhombus structure.

【図2】本考案を代表する菱形構造鉄塔で、同図Aは耐
張型の斜視図と平面図。同図Bと同図Cは本体と腕金が
一体化した菱形構造の耐張型鉄塔の部材構成を示す平面
と正面図。
FIG. 2 is a diamond-shaped steel tower that represents the present invention.
A perspective view and a plan view of a stretch pattern. FIGS. 2B and 2C are a plan view and a front view showing a member configuration of a tension-resistant steel tower having a rhombus structure in which a main body and arm are integrated.

【図3】従来の四角鉄塔の部材構成を示す図で、同図A
平面図、同図Bは正面図。
FIG. 3 is a diagram showing a member structure of a conventional square tower , and FIG.
Is a plan view and FIG. B is a front view.

【図4】従来使用されている代表鉄塔の形態による分類
図で、同図Aは四角鉄塔、同図Bは矩形鉄塔、同図Cは
烏帽子鉄塔の正面図と側面図。
[Fig. 4] Classification according to the form of representative steel towers used conventionally
In the figure, A is a square tower, B is a rectangular tower, and C is a figure.
Front and side view of the Eboshi tower .

【図5】支持物本体の断面構造の変化図で、図Aは従
来の四角鉄塔の本体構造(点線は腕金部)。図Bは、
Aの本体構造軸を45度回転したもの(点線は腕金
部)。同図Cは、図Bの本体の対角線の長さを図A
の一邊の長さaと同じくし、図Aの腕金長さbと同
じ長さの腕金を取付けて塔体幅cを5aとしたもの。
図Dは、図Cの腕金幅bを1.5aとして、塔体幅c
を4aとした場合の断面構造図を示す(点線は脚材)
図Eは、図Bの対角線のX軸方向を拡げて塔体幅c
を4aとし、Y軸方向を縮めて塔体幅をaとし、X−Y
構造軸の長さの比を4:1とし、Y軸上の主柱材間を対
角材で結構したもので、図Aの本体構造の3構面
、塔体幅を縮小した形と同形(点線は本体と腕金
部)のもの。同図Fは同図Eの主柱材を最下腕金部のベ
ンド点からその応力を軽減するため逆Y形に分岐結構し
た構造の平面と正面と側面図(点線は脚材)を示すもの
である。
[5] In variation diagram of a sectional structure of the support material body, drawing A main body structure of a conventional rectangular tower (dotted lines arm-section). FIG. B is,
The body structure axis of Figure A is rotated by 45 degrees (dotted line is arm part) . FIG C is the length of a diagonal line of the body of the figure B figure A
The same comb length a one邊of, the the length b of the cross-arm of the figure A
The arm width of the same length is attached to make the tower body width c 5a. In the same figure D, the width b of the arm shown in FIG.
4A is a cross-sectional structure diagram in the case of 4a (dotted line is leg material) .
FIG E is drawing a diagonal of the X-axis direction spread in the tower body width c of B
Is 4a, the Y-axis direction is contracted to make the tower width a, and XY
The length ratio of the structural shaft 4: 1, and in which fine was between the main column member on the Y-axis pair square timber, and <br/> remove the 3 Plane body structure of FIG. A, column Same shape as the reduced body width (dotted line indicates body and arm
Part) . Fig. F shows the main pillar of Fig.
In order to reduce the stress from the end point, it can be branched into an inverted Y shape.
Showing the plane, front and side view of the structure (dotted line is leg material)
Is.

【図6】既設鉄塔を建替える場合の新旧基礎の配置状況
図で、図Aは、新旧鉄塔が同一形状(四角鉄塔)の場
の平面と正面図。同図Bは、本体構造を45度回転し
図1の菱形(方形)構造鉄塔で懸垂型場合の正面と
平面図。 図Cは図2の菱形構造鉄塔で耐張型の場合の
平面と正面図を示す。
[6] In arrangement state diagram of new and old foundation when changing denominated the existing tower, this figure A is a plan and front view of the new and old towers same shape (square tower). FIG B rotates the body structure 45 degrees
In diamond (square) structure tower 1 and the front of the case of the pendent was
Plan view. FIG C shows a plane front view of the tension type in rhombus structure tower of FIG.

【図7】電線弛角の大きい従来の懸垂型鉄塔の腕金吊材
と電線の接近状況を示す図で、同図Aは正面図、同図B
平面図、同図Cは側面図
FIG. 7 is a diagram showing a state in which a wire suspension member and a wire of a conventional suspended type steel tower having a large wire slack angle are close to each other , FIG.
Is a plan view and C is a side view .

8】菱形構造の懸垂型鉄塔で腕金吊材一本と電
線の接近状況を示す図で、同図Aは正面図、同図Bは
図、同図Cは側面図。
FIG. 8 is a diagram showing the approach state of a wire suspension member ( one piece ) and an electric wire in a suspension tower with a rhombus structure , FIG. A being a front view, FIG. B being a plan view, and FIG. C is a side view.

【図9】菱形構造の懸垂型鉄塔の電線支持状況を示す
で、図Aは平面図、同図Bは正面図。
[9] a view showing the electric wire supporting condition of suspension tower rhombic structure, Fig A is a plan view, FIG. B is a front view.

【図10】菱形構造の耐張型鉄塔の電線支持状況を示す
図で、同図Aは平面図、同図Bは正面図。
FIG. 10 shows the electric wire support condition of a diamond-shaped tension-resistant steel tower
In the figure, A is a plan view and B is a front view.

【図11】従来の四角鉄塔を菱形鉄塔に建替える場合の
工法手順を示す平面図と正面図で、同図Aは建替前の状
況図、同図Bは旧鉄塔を包み込んで新鉄塔を組立て中の
状況図、同図Cは新鉄塔の組立て完了時の状況図。
FIG. 11 is a plan view and a front view showing a construction method procedure for rebuilding a conventional square steel tower into a rhombic steel tower, FIG.
Figure B shows that the new steel tower is being assembled by wrapping up the old steel tower.
Situation diagram, Fig. C is the situation diagram when the assembly of the new steel tower is completed.

【図12】鉄塔上部の本体断面に働く水平荷重の方向と
応力分布を示す図で同図Aは四角鉄塔の断面と、これ
を45度回転した菱形構造鉄塔の断面に水平荷重が加わ
った場合の応力分布図。図Bは四角鉄塔の場合の主柱
材に生じる応力の内容を示す。同図Cは菱形鉄塔の場合
主柱材に生じる応力の内容を示す。
[Fig. 12] Direction of horizontal load acting on the main body cross section of the tower
In the figure showing the stress distribution , the same figure A shows the cross section of the square tower and this
The horizontal load is applied to the cross section of the rhomboid structure steel tower rotated by 45 degrees.
Stress distribution map when FIG. 9B shows the contents of stress generated in the main pillar material in the case of a square tower. Figure C shows the case of the rhombus tower
The contents of the stress generated in the main pillar material of are shown below.

【符号の説明】 1 主柱材 2 腕金主材 3 側面水平材 4 対角材 5 腕金吊材 6 斜材・腹材 7 補助材 8 引留がいし装置 9 懸垂がいし装置 10 電線 11 ジャンパ線 12 主脚材 13 基礎部14 ベンド点 本体幅 腕金長さ 塔体幅 保安離隔(最小接近距離) θ 電線弛角 [Reference Numerals] 1 main pillar material 2 arm Kinshu member 3 side horizontal member 4 diagonal member 5 cross-arm hanging member 6 diagonal members, web members 7 auxiliary member 8 anchor insulators device 9 suspended insulators 10 wires 11 jumper line 12 landing gear material 13 base portion 14 bend point a body width b arm-length c tower body width l security separation (minimum approach distance) theta wire slack angle

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図7】 [Figure 7]

【図8】 [Figure 8]

【図9】 [Figure 9]

【図10】 [Figure 10]

【図11】 FIG. 11

【図12】 [Fig. 12]

【手続補正書】[Procedure amendment]

【提出日】平成6年6月6日[Submission date] June 6, 1994

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本考案による菱形構造の本体に腕金
を取付けた懸垂型鉄塔の部材構成を示す平面と正面図。
FIG. 1 is a plan view and a front view showing a member structure of a suspension type steel tower in which arm members are attached to a rhombic structure main body according to the present invention.

【図2】 本考案による菱形構造の本体と腕金
が一体化した耐張型鉄塔の部材構成を示す平面と正面
図。
2A and 2B are a plan view and a front view showing a member structure of a tension-resistant steel tower in which a main body of a rhombic structure and armrests according to the present invention are integrated.

【図3】 従来の四角鉄塔の部材構成を示す平
面と正面図。
FIG. 3 is a plan view and a front view showing a member configuration of a conventional square tower.

【図4】 従来使用されている代表鉄塔の形態
による分類。 (A) 四角鉄塔の正面と側面図。 (B) 矩形鉄塔の正面と側面図。 (C) 烏帽子鉄塔の正面と側面図。
FIG. 4 Classification according to the form of a representative steel tower that has been conventionally used. (A) Front and side view of a square tower. (B) A front view and a side view of the rectangular steel tower. (C) Front and side view of the Eboshi tower.

【図5】 鉄塔本体の断面構造の変化を示す平
面と側面図。 (A) 従来の四角鉄塔の本体構造(点線は腕
金部)。 (B) 図Aの本体構造軸を45度回転した場
合(点線は腕金部)。 (C) 図Bの本体の対角線の長さを図Aの本
体幅の長さaとし、図Aの腕金と同じ長さb(2a)の
腕金を取付けた場合。 (D) 図Cの本体に1.5aの長さの腕金を
取付けた場合。 (E) 図Bの対角線のX軸方向を拡げて正面
の塔体幅cを4aとし、Y軸方向を縮めて側面の塔体幅
をaとし、本体のX−Y構造軸の長さの比を4:1とし
て、Y軸上の主柱材間を対角材で結構した場合で、図A
の本体構造の3構面(コの字)を削除した形と同型。 (F) 図Eの主柱材を最下腕金部のベンド点
から応力軽減のため逆Y字形に分岐した構造の場合(点
線は主柱材と主脚材)。
5A and 5B are a plan view and a side view showing a change in the sectional structure of the steel tower body. (A) A conventional structure of a square tower (the dotted line is the arm part). (B) In the case where the main body structure axis of FIG. A is rotated by 45 degrees (dotted line is arm part). (C) When the diagonal length of the main body of FIG. B is set to the length a of the main body width of FIG. A, and the arm b of the same length b (2a) as that of the arm of FIG. A is attached. (D) A case in which a arm with a length of 1.5a is attached to the main body of FIG. (E) Expand the diagonal X-axis direction of FIG. B to make the front tower width c 4a, shrink the Y-axis direction to the side tower width a, and calculate the length of the XY structure axis of the main body. Fig. A shows the case where the ratio between the main pillars on the Y axis is 4: 1
It is the same shape as the shape of the main body structure of which the three structural surfaces (U-shape) are deleted. (F) In the case of a structure in which the main pillar material of FIG. E is branched into an inverted Y shape from the bend point of the lowermost arm metal part to reduce stress (dotted lines are main pillar material and main leg material).

【図6】 既設(四角)鉄塔を建替える場合の
新旧基礎の配置状況を示す正面と平面図。 (A) 新旧が同一形状(四角鉄塔)の場合。 (B) 新鉄塔が図1の菱形構造鉄塔(懸垂
型)の場合。 (C) 新鉄塔が図2の菱形構造鉄塔(耐張
型)の場合。
FIG. 6 is a front view and a plan view showing the arrangement of new and old foundations when rebuilding an existing (square) steel tower. (A) When the old and new have the same shape (square tower). (B) The case where the new steel tower is the rhomboid structure steel tower (suspended type) of FIG. (C) When the new steel tower is the rhombic structure steel tower (strengthened type) of FIG.

【図7】 電線弛角の大きい鉄塔での電線と腕
金吊材との接近状況を示す正面と平面と側面図。 (A) 従来の四角鉄塔(懸垂型、腕金吊材2
本)の場合。 (B) 菱形構造鉄塔(懸垂型、腕金吊材1
本)の場合。
FIG. 7 is a front view, a plane view, and a side view showing a situation in which an electric wire and a hanger hanging material are approached in a steel tower with a large electric wire sag. (A) Conventional square tower (suspended type, arm hanging material 2
For books). (B) Rhombus structure steel tower (suspended type, arm hanging material 1
For books).

【図8】 本考案による菱形構造鉄塔の斜視図
と平面図。 (A) 懸垂型鉄塔(2回線、垂直配列)。 (B) 耐張型鉄塔(2回線、垂直配列)。
FIG. 8 is a perspective view and a plan view of a rhomboid structure steel tower according to the present invention. (A) Suspended type tower (2 lines, vertical arrangement). (B) Tension-resistant tower (2 lines, vertical arrangement).

【図9】 菱形構造鉄塔の電線支持状況を示す
正面と平面図。 (A) 懸垂鉄塔のV吊懸垂がいし装置。 (B) 耐張鉄塔の引留がいし装置とV吊懸垂
がいし装置。 既設(四角)鉄塔を菱形構造鉄塔に建替える場合の
9A and 9B are a front view and a plan view showing an electric wire supporting state of a rhomboid structure steel tower. (A) V-suspension insulator for a suspended steel tower. (B) An anchoring device for a tension tower and a V-suspending insulator device. When rebuilding an existing (square) tower to a rhomboid structure tower

【図10】 建替工法の手順を示す正面と平面
図。 (A) 建替え前(左側の電線を撤去し、新基
礎を施工) (B) 新基礎完了、塔体下部と上部左半分の
組立てと旧鉄塔左側の腕金を撤去後、左側の架線を実
施。 (C) 右側の回線停止にて電線を撤去後、上
部右半分の組立てと旧鉄塔右側の腕金を撤去後、右側の
架線を実施すると共に旧鉄塔の本体と基礎を解体撤去
し、全てを完了する。
FIG. 10 is a front view and a plan view showing a procedure of a rebuilding method. (A) Before rebuilding (remove the electric wire on the left side and construct a new foundation) (B) Complete the new foundation, assemble the lower half of the tower and the upper left half, and remove the armpiece on the left side of the old steel tower Implementation. (C) After removing the electric wire by stopping the line on the right side, after assembling the upper right half and removing the armpiece on the right side of the old steel tower, carry out the overhead wire on the right side and dismantle and remove the main body and foundation of the old steel tower. Complete.

【符号の説明】 1 主柱材 2 腕金主材 3 側面水平材 4 対角材 5 腕金吊材 6 斜材・腹材 7 補助材 8 引留がいし装置 9 懸垂がいし装置 10 電線 11 ジャンパ線 12 主脚材 13 基礎部[Explanation of symbols] 1 Main pillar material 2 Main arm member 3 Side horizontal material 4 Diagonal material 5 Bracket hanging material 6 Slanting material / belly material 7 Auxiliary material 8 Retaining and removing device 9 Suspending and removing device 10 Electric wire 11 Jumper wire 12 Main leg material 13 Foundation

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

【図7】 [Figure 7]

【図9】 [Figure 9]

【図8】 [Figure 8]

【図10】 [Figure 10]

Claims (1)

【実用新案登録請求の範囲】 この考案は、架空送電線路の支持物を新設または建替え
る場合の支持物本体(腕金構造を含む)の骨組み構造、
配置に関するもので、第1図、第2図のように、 1.本体構造断面の形状が斜方形をなし、 2.対角線と構造軸とが合致し、 3.対角線のY軸が電線路方向に、X軸がこれと直角方
向に合致し、 4.Y軸方向とX軸方向の構造軸の長さの比が1:3〜
5、 5.相対する2面が同形の構面を有し、 6.四方の稜角点に形鋼、鋼管等で成形した主柱材
(1)を配し、 7.主柱材間の構面を腕金材(2)、水平材(3)、対
角材(4)、腹材(6)等によって結構し、 8.腕金の吊材(5)が1本よりなり、 9.最下腕金より上部の本体構造断面と、それより下部
の構造断面の形状が異なる骨組み、などを特長とする菱
形構造の鉄塔。
[Claims for utility model registration] This invention is a framework structure of a support body (including a arm structure) when a support for an overhead power transmission line is newly installed or rebuilt,
It is related to the arrangement, and as shown in FIGS. 1. The cross-section of the main body structure is rhomboid. 2. The diagonal line and the structural axis match, and 3. The Y-axis of the diagonal line is aligned with the electric line direction, and the X-axis is aligned with the direction orthogonal thereto, The ratio of the lengths of the structural axes in the Y-axis direction and the X-axis direction is 1: 3 to
5, 5. 5. The two surfaces facing each other have the same structure. 7. The main pillar material (1) made of shaped steel, steel pipe, etc. is arranged at the corner points on all sides, and 7. 7. The construction surface between the main pillar members is made up of arm members (2), horizontal members (3), diagonal members (4), belly members (6), etc. 8. The hanging material (5) of the armrest is made of one piece, A steel tower with a rhombus structure, characterized by a frame structure in which the main body structure cross section above the lower arm and the structure cross section below that are different.
JP1991080452U 1991-06-29 1991-06-29 Rhombus tower Expired - Lifetime JP2581350Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991080452U JP2581350Y2 (en) 1991-06-29 1991-06-29 Rhombus tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991080452U JP2581350Y2 (en) 1991-06-29 1991-06-29 Rhombus tower

Publications (2)

Publication Number Publication Date
JPH0735654U true JPH0735654U (en) 1995-07-04
JP2581350Y2 JP2581350Y2 (en) 1998-09-21

Family

ID=13718654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991080452U Expired - Lifetime JP2581350Y2 (en) 1991-06-29 1991-06-29 Rhombus tower

Country Status (1)

Country Link
JP (1) JP2581350Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018845B1 (en) * 2008-09-17 2011-03-04 한국전력공사 Iron tower for power transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226973A (en) * 1984-04-25 1985-11-12 日立電線株式会社 Iron tower

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60226973A (en) * 1984-04-25 1985-11-12 日立電線株式会社 Iron tower

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018845B1 (en) * 2008-09-17 2011-03-04 한국전력공사 Iron tower for power transmission

Also Published As

Publication number Publication date
JP2581350Y2 (en) 1998-09-21

Similar Documents

Publication Publication Date Title
US4458102A (en) Transmission line composite beam suspension assembly
WO2022042263A1 (en) Power transformation framework
JPH0735654U (en) Rhombus steel tower
CN213980169U (en) Composite material cross arm tower
CN115874709A (en) Double-group ground cantilever inclined truss-suspension cable support combined long-span corridor and assembling method
KR101521810B1 (en) Solar cell panel suspension structure system using compression member
JP2018518617A (en) Lattice mast structure and method for improving the stability of the lattice mast structure
CN111321810A (en) Building supporting system
CN213980168U (en) Composite cross arm tower
JPH0233553Y2 (en)
JP3337655B2 (en) Power transmission triangle tower
CN208167962U (en) 1100kV Indoor DC Field crosses over the bearing bracket structure under casing roof truss
Krishna et al. Performance of cable trusses under static loads
CN212359262U (en) Power transformation framework
CN213043236U (en) Power transformation framework
CN220201233U (en) Tower crane tower body structure with prestressed inhaul cables
CN211173005U (en) Suspended ceiling construction platform of high formwork and low suspended ceiling structure
CN109868724B (en) Double-fold-line bridge span assembly for cable stiffening
US2049783A (en) Transmission tower
CN209523125U (en) Hoist cable scaffold support construction and system
CN211369017U (en) Cable truss large-span vestibule structure
JPH0363306A (en) Suspension bridge-type pipeline bridge
JP3006019U (en) Overhead track support
JP2000352012A (en) Tension, weight, and supporting force balanced bridge
SU996702A1 (en) Power transmission line mast