JPH0735533A - Method of measuring thickness of coating layer on fuel particle and device for measuring the same - Google Patents

Method of measuring thickness of coating layer on fuel particle and device for measuring the same

Info

Publication number
JPH0735533A
JPH0735533A JP5182814A JP18281493A JPH0735533A JP H0735533 A JPH0735533 A JP H0735533A JP 5182814 A JP5182814 A JP 5182814A JP 18281493 A JP18281493 A JP 18281493A JP H0735533 A JPH0735533 A JP H0735533A
Authority
JP
Japan
Prior art keywords
coating layer
thickness
image
fuel particles
coated fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5182814A
Other languages
Japanese (ja)
Inventor
Shuichi Suzuki
修一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP5182814A priority Critical patent/JPH0735533A/en
Publication of JPH0735533A publication Critical patent/JPH0735533A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To measure a thickness of a coating layer on a fuel particle by converting an X-ray picked-up image into an electrical Signal indicating a tone thereof, by calculating inflection points of the tone level from the signal, and by calculating the thickness of the coating layer from the distance between the inflection points. CONSTITUTION:A device 10 for measuring a thickness of a coating layer on a fuel particle is composed of an image pick-up device 12, a differentiating part 1, a thickness computing part 14 and an output part 15. An X-ray picked-up image which is obtained by picking up an image of coated fuel particles with the use of X-rays, is converted into an electrical signal corresponding to the tone level thereof. The tone level of the image 1 is differentiated by the differentiating part 13 in accordance with an electrical signal delivered from the device 12. The thickness of the coating layer of the particles is calculated by the computing part 14 from a distance between inflection points detected by the differentiating part 13. The thus calculated thickness is delivered from the output part 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、被覆燃料粒子におけ
る被覆層厚さの測定方法および測定装置に関し、更に詳
しくは、例えばHTR(高温ガス炉)やHTTR(高温
工学試験研究炉)用として使用される被覆燃料粒子にお
ける被覆層厚さを、簡便な操作で効率よく、しかも高い
精度で自動的に測定することができる被覆燃料粒子にお
ける被覆層厚さの測定方法および測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring a coating layer thickness in coated fuel particles, and more specifically, for use in, for example, HTR (high temperature gas reactor) and HTTR (high temperature engineering test research reactor). The present invention relates to a method and an apparatus for measuring a coating layer thickness in a coated fuel particle, which can automatically and efficiently measure the coating layer thickness in a coated fuel particle with high accuracy.

【0002】[0002]

【従来の技術と発明が解決しようとする課題】従来にお
いては、たとえば二重被覆燃料粒子や、四重被覆燃料粒
子等の被覆燃料粒子における被覆層の厚さを、以下のよ
うにして測定していた。例えば図2に示すような、燃料
核2の表面に第一被覆層3aと第二被覆層3bとをこの
順に被覆してなる二重被覆燃料粒子1aの場合、図3に
示すように、二重被覆燃料粒子1aを樹脂5の中に埋め
込んだ後、これを研磨機等を用いて前記二重被覆燃料粒
子1aの赤道面4まで研磨することにより、金相試料6
を調製する。そして、投影機を用いて前記金相試料6に
おける赤道面4の像を拡大した後、この拡大像を基にし
て、第一被覆層3a及び第二被覆層3bの厚さを目視に
より測定していた。また、例えば図4に示すような、燃
料核2の表面に第一被覆層3aと第二被覆層3bと第三
被覆層3cと第四被覆層3dとをこの順に被覆してなる
四重被覆燃料粒子1bの場合、第三被覆層3c及び第四
被覆層3dの厚さについては、四重被覆燃料粒子1bの
X線写真を撮影する。そして、このX線写真の像を投影
機を用いて拡大し、この拡大像を基にして、第三被覆層
3c及び第四被覆層3dの厚さを目視により測定してい
た。
2. Description of the Related Art Conventionally, the thickness of the coating layer in coated fuel particles such as double coated fuel particles and quadruple coated fuel particles has been measured as follows. Was there. For example, in the case of a double-coated fuel particle 1a in which the surface of the fuel nucleus 2 is coated with the first coating layer 3a and the second coating layer 3b in this order as shown in FIG. 2, as shown in FIG. After the heavy-coated fuel particles 1a were embedded in the resin 5, the heavy-coated fuel particles 1a were polished to the equator surface 4 of the double-coated fuel particles 1a by using a polishing machine or the like.
To prepare. Then, after enlarging the image of the equatorial plane 4 in the gold phase sample 6 using a projector, the thicknesses of the first coating layer 3a and the second coating layer 3b were visually measured based on this enlarged image. Was there. Further, for example, as shown in FIG. 4, a quadruple coating obtained by coating the surface of the fuel core 2 with a first coating layer 3a, a second coating layer 3b, a third coating layer 3c and a fourth coating layer 3d in this order. In the case of the fuel particles 1b, regarding the thickness of the third coating layer 3c and the fourth coating layer 3d, an X-ray photograph of the quadruple coated fuel particles 1b is taken. Then, the image of the X-ray photograph was enlarged using a projector, and the thicknesses of the third coating layer 3c and the fourth coating layer 3d were visually measured based on the enlarged image.

【0003】しかしながら、かかる従来の測定方法にお
いては、煩雑な前処理を要し、測定に時間が掛るので効
率的でないという問題がある。しかも、目視にて被覆層
の境界を判断し、被覆層の厚さを測定するので測定誤差
が大きく、高い精度で測定することができない。また、
測定者間のバラツキが大きいので、測定結果に対する信
頼性が低い等の問題がある。
However, such a conventional measuring method has a problem that it is not efficient because it requires a complicated pretreatment and takes a long time for the measurement. Moreover, since the boundary of the coating layer is visually determined and the thickness of the coating layer is measured, the measurement error is large and the measurement cannot be performed with high accuracy. Also,
There is a problem that the reliability of the measurement result is low because the variation among the measurers is large.

【0004】この発明は、前記従来の方法における問題
を解消し、例えばHTR(高温ガス炉)やHTTR(高
温工学試験研究炉)用として使用される被覆燃料粒子に
おける被覆層厚さを、簡便な操作で効率よく、しかも高
い精度で自動的に測定することができる、被覆燃料粒子
における被覆層厚さの測定方法およびその測定装置を提
供することを目的とする。
The present invention solves the above-mentioned problems in the conventional method, and the coating layer thickness in the coated fuel particles used for, for example, HTR (high temperature gas reactor) and HTTR (high temperature engineering test research reactor) can be easily adjusted. An object of the present invention is to provide a method for measuring the coating layer thickness in coated fuel particles and a measuring apparatus therefor, which can be automatically measured with high efficiency and high accuracy in operation.

【0005】[0005]

【前記課題を解決するための手段】前記課題を解決する
ための前記請求項1に記載の発明は、被覆燃料粒子をX
線撮影し、得られたX線撮影像をその濃淡を表す電気信
号に変換し、その電気信号に基づき前記X線撮影像にお
ける濃淡レベルの変極点を算出し、変極点間距離に基づ
いて被覆層の厚さを算出することを特徴とする被覆燃料
粒子における被覆層厚さの測定方法であり、請求項2に
記載の発明は、被覆燃料粒子をX線撮影して得られたX
線撮影像をその濃淡レベルに対応する電気信号に変換す
る撮像装置と、この撮像装置から出力される電気信号に
基づきX線撮影像における濃淡レベルを微分する微分処
理部と、微分処理部で検出された変極点間の距離に基づ
き被覆燃料粒子中の被覆層の厚みを算出する厚み演算部
とを有することを特徴とする被覆燃料粒子における被覆
層厚み測定装置である。
In order to solve the above-mentioned problems, the invention according to the above-mentioned claim 1 is directed to coating fuel particles with X
The X-ray photographed image is radiographed, the obtained X-ray photographed image is converted into an electric signal representing the light and shade, the inflection point of the light and shade level in the X-ray photographed image is calculated based on the electric signal, and the covering is performed based on the distance between the inflection points A method for measuring a coating layer thickness in a coated fuel particle, which comprises calculating a layer thickness, wherein the invention according to claim 2 is an X-ray obtained by radiographing the coated fuel particle.
An imaging device that converts a radiographic image into an electric signal corresponding to the gray level, a differentiation processing unit that differentiates the gray level in the X-ray imaging image based on the electric signal output from the imaging device, and a detection by the differentiation processing unit And a thickness calculator for calculating the thickness of the coating layer in the coated fuel particles based on the distance between the inflection points thus formed.

【0006】[0006]

【作用】この発明においては、被覆燃料粒子をX線撮影
して得られたX線撮影像を撮像装置で撮影し、その撮像
装置からX線撮影像における濃淡レベルを示す電気信号
が出力される。その電気信号を微分処理部に出力する。
その微分処理部で、X線撮影像における濃淡レベルを示
している電気信号に基づき、その濃淡レベルの変化にお
ける変極点を検出する。微分処理部から出力される変極
点を示す電気信号を厚み演算部に出力する。厚み演算部
では、入力された、変極点を示す電気信号に基づき、被
覆燃料粒子中の被覆層の厚みを算出する。算出された被
覆層の厚みはたとえば出力装置により表示される。
According to the present invention, an X-ray image obtained by X-raying the coated fuel particles is imaged by the image pickup device, and the image pickup device outputs an electric signal indicating a gray level in the X-ray image. . The electric signal is output to the differentiation processing unit.
The differentiation processing unit detects the inflection point in the change of the gray level based on the electric signal indicating the gray level in the X-ray image. An electric signal indicating the inflection point output from the differentiation processing unit is output to the thickness calculation unit. The thickness calculator calculates the thickness of the coating layer in the coated fuel particles based on the input electric signal indicating the inflection point. The calculated thickness of the coating layer is displayed by, for example, an output device.

【0007】[0007]

【実施例】以下に、この発明に係る被覆燃料粒子におけ
る被覆層厚みの測定方法の実施例につき、図面を参照し
ながら説明する。なお、この発明は以下の実施例に何ら
限定されるものではない。
EXAMPLES Examples of the method for measuring the coating layer thickness in the coated fuel particles according to the present invention will be described below with reference to the drawings. The present invention is not limited to the following embodiments.

【0008】図1はこの発明に係る被覆燃料粒子厚み測
定装置の一例を示すブロック図である。
FIG. 1 is a block diagram showing an example of a coated fuel particle thickness measuring apparatus according to the present invention.

【0009】図1に示すように、被覆燃料粒子厚み測定
装置10は、被覆燃料粒子をX線撮影して得られたX線
撮影像11をその濃淡レベルに対応する電気信号に変換
する撮像装置12と、この撮像装置から出力される電気
信号に基づきX線撮影像11における濃淡レベルを微分
する微分処理部13と、微分処理部13で検出された変
極点間の距離に基づき被覆燃料粒子中の被覆層の厚みを
算出する厚み演算部14と、厚み演算部14で算出され
た被覆層の厚みを出力する出力部15とを有するこの発
明においては、撮像装置12は被覆燃料粒子をX線撮影
して得られたX線撮影像をその濃淡レベルに対応する電
気信号に変換することができるのであれば、公知の種々
の装置を組みあわせて構成することができ、この実施例
においては、図5に示すように、二重被覆燃料粒子1a
のX線写真を公知の方法により撮影して得られたX線写
真を顕微鏡を用いて拡大し、得られた拡大画像を撮像す
るCCDカメラを有して構成される。この撮像装置12
から出力される電気信号は、図5に示されるように、X
線撮影像の任意の一方向(図5中のL)に沿った濃淡レ
ベルに対応する電気信号12Aが出力される。この電気
信号12Aは、第一被覆層3a及び第二被覆層3bに対
応した黒化度の分布を示す曲線を示す。
As shown in FIG. 1, a coated fuel particle thickness measuring apparatus 10 is an image pickup apparatus for converting an X-ray photographed image 11 obtained by X-ray photographing of coated fuel particles into an electric signal corresponding to the gray level. 12, a differentiation processing unit 13 that differentiates the gray level in the X-ray image 11 based on the electrical signal output from the imaging device, and the coated fuel particles based on the distance between the inflection points detected by the differentiation processing unit 13. In the present invention, which has the thickness calculation unit 14 for calculating the thickness of the coating layer and the output unit 15 for outputting the thickness of the coating layer calculated by the thickness calculation unit 14, the imaging device 12 uses the coating fuel particles as X-rays. As long as the X-ray image obtained by photographing can be converted into an electric signal corresponding to the gray level, it can be configured by combining various known devices. In this embodiment, Figure 5 As shown, the double coated fuel particles 1a
The X-ray photograph obtained by photographing the X-ray photograph of No. 2 by a known method is magnified using a microscope, and a CCD camera for capturing the magnified image obtained is configured. This imaging device 12
As shown in FIG. 5, the electric signal output from
An electric signal 12A corresponding to a gray level along an arbitrary one direction (L in FIG. 5) of the line image is output. This electric signal 12A shows a curve showing the distribution of the blackening degree corresponding to the first coating layer 3a and the second coating layer 3b.

【0010】なお、この実施例装置の外にも、X線照射
装置と撮像装置とを被覆燃料粒子を挟んで配置し、X線
照射装置から照射され、被覆燃料粒子を透過したX線を
そのまま撮像管に取り込み、これを電気信号に変換し出
力する構成を採用しても良い。
In addition to the apparatus of this embodiment, an X-ray irradiator and an image pickup device are arranged with the coated fuel particles sandwiched therebetween, and the X-rays irradiated from the X-ray irradiator and transmitted through the coated fuel particles are as they are. A configuration may be adopted in which the image is taken into the image pickup tube, converted into an electric signal and output.

【0011】前記微分処理部13は、前記撮像装置12
から出力された濃淡レベルに対応する電気信号12Aを
入力して、その電気信号12Aにより示される曲線を微
分演算処理し、図5における微分曲線12Bを得る。こ
のとき、燃料核2と第一被覆層3aとの境界面aの存在
を示すピークa’及びa”、第一被覆層3aと第二被覆
層3bとの境界面bの存在を示すピークb’及びb”、
並びに、二重被覆燃料粒子1aの表面となる第ニ被覆層
3bの境界面cの存在を示すピークc’及びc”を有す
る微分曲線が得られる。この微分曲線に対応する電気信
号が厚み演算部14に出力される。
The differential processing section 13 includes the image pickup device 12
The electric signal 12A corresponding to the gray level output from is input, and the curve indicated by the electric signal 12A is subjected to the differential operation processing to obtain the differential curve 12B in FIG. At this time, peaks a ′ and a ″ indicating the existence of the boundary surface a between the fuel core 2 and the first coating layer 3a, and a peak b indicating the existence of the boundary surface b between the first coating layer 3a and the second coating layer 3b. 'And b',
Also, a differential curve having peaks c ′ and c ″ indicating the existence of the boundary surface c of the second coating layer 3b which is the surface of the double coated fuel particle 1a is obtained. The electric signal corresponding to this differential curve is the thickness calculation. It is output to the unit 14.

【0012】厚み演算部14は、前記微分処理部13で
求めたこれらのピークのうち互いに隣接するピーク間、
具体的には、a’及びb’間、a”及びb”間、b’及
びc’間、並びに、b”及びc”間のピクセル数を求め
る。このとき、例えば10ピクセルが1μmである等と
予め較正して決定し、これをこの厚み演算部14に記憶
させておくと、求めたピクセル数から直ちに被覆層の厚
みが算出することができる。すると、前記ピクセル数か
ら直ちに第一被覆層及び第二被覆層の厚みを算出するこ
とができる。この算出した結果は、出力部15に表示さ
れる。
The thickness calculation unit 14 calculates the difference between the peaks adjacent to each other among the peaks obtained by the differential processing unit 13,
Specifically, the number of pixels between a ′ and b ′, between a ″ and b ″, between b ′ and c ′, and between b ″ and c ″ is calculated. At this time, for example, if 10 pixels are determined to be 1 μm by calibrating in advance and stored in the thickness calculating unit 14, the thickness of the coating layer can be immediately calculated from the calculated number of pixels. Then, the thicknesses of the first coating layer and the second coating layer can be calculated immediately from the number of pixels. The calculated result is displayed on the output unit 15.

【0013】出力部15はCRT装置であってもプロッ
ターであっても良い。なお、記憶装置を有していると、
前記算出結果を保存することができる。
The output unit 15 may be a CRT device or a plotter. If you have a storage device,
The calculation result can be saved.

【0014】この発明によると、一連の測定操作が簡便
なので効率がよく、被覆燃料粒子における被覆層の厚み
がパーソナルコンピューター等の解析手段により測定さ
れるので、測定値の誤差や測定者毎のバラツキ等が少な
く、標準偏差を小さくすることができ、高い精度で測定
することができる。
According to the present invention, a series of measurement operations are simple and efficient, and the thickness of the coating layer in the coated fuel particles is measured by an analyzing means such as a personal computer. It is possible to measure with high accuracy because there are few problems and the standard deviation can be reduced.

【0015】なお、この発明は、以下のように、その目
的に応じて適宜の変更を加えて行なうことができる。
The present invention can be implemented with appropriate modifications according to the purpose as follows.

【0016】前記被覆燃料粒子としては、特に制限はな
いが、通常、ウラン、トリウム、プルトニウム等の核燃
料物質からなる燃料核の表面に、炭化ケイ素、炭化ジル
コニウム等のセラミックスや炭素(例えば熱分解炭素)
等の被覆層を形成してなる被覆燃料粒子を挙げることが
できる。前記被覆燃料粒子は、例えば、HTR(高温ガ
ス炉)用として、あるいはHTTR(高温工学試験研究
炉)用として使用される。
The coated fuel particles are not particularly limited, but ceramics such as silicon carbide and zirconium carbide and carbon (for example, pyrolytic carbon) are usually formed on the surface of the fuel core made of nuclear fuel material such as uranium, thorium and plutonium. )
Coated fuel particles formed by forming a coating layer such as The coated fuel particles are used, for example, for an HTR (high temperature gas reactor) or for an HTTR (high temperature engineering test reactor).

【0017】前記被覆燃料粒子の平均粒径は、通常80
0〜900μmであり、前記燃料核の平均粒径は、通常
400〜600μmであり、前記被覆層の厚みは、通常
150〜250μmである。
The average particle size of the coated fuel particles is usually 80.
The average particle diameter of the fuel core is usually 400 to 600 μm, and the thickness of the coating layer is usually 150 to 250 μm.

【0018】前記被覆燃料粒子における被覆層の数とし
ては、単数でも複数でもよく特に制限はないが、複数の
場合は、通常2層又は4層である。被覆層が複数の層か
ら形成される被覆燃料粒子としては、例えば、BISO
型、TRISO型等を挙げることができる。
The number of coating layers in the above-mentioned coated fuel particles is not particularly limited and may be either a single number or a plurality, but in the case of a plurality, it is usually 2 layers or 4 layers. Examples of the coated fuel particles in which the coated layer is composed of a plurality of layers include, for example, BISO.
Type, TRISO type and the like.

【0019】(実験例)この発明の方法及び投影機を用
いて目視にて行なう従来の方法とこの発明の方法とによ
り、被覆層の厚みを測定し、その結果を表1に示した。
なお、表1における、厚みの平均値は100回測定した
ときの値の平均値であり、標準偏差はn=100の値で
ある。この発明の方法においては、X線撮影像としてX
線写真の像を用い、画像処理手段として、顕微鏡(オリ
ンパス(株)製;BHSM型)、CCDカメラ(Dag
e(株)製;CCD−72E型)及びモニター装置(S
ONY(株)製;CPD−1304型)を用いた。ま
た、従来の方法においては、投影機(ニコン(株)製;
V−12型)を用いた。
(Experimental Example) The thickness of the coating layer was measured by the method of the present invention and the conventional method of visual observation using a projector and the method of the present invention, and the results are shown in Table 1.
In Table 1, the average thickness is the average of 100 measurements, and the standard deviation is n = 100. In the method of the present invention, the X-ray image
A microscope (Olympus Corp .; BHSM type), a CCD camera (Dag) is used as an image processing means using the image of the line photograph.
e Co., Ltd .; CCD-72E type) and monitor device (S
ONY Co., Ltd .; CPD-1304 type) was used. In the conventional method, a projector (manufactured by Nikon Corporation;
V-12 type) was used.

【0020】結果としては、この発明の方法によると、
従来における方法に比べて標準偏差が小さく、高い精度
で測定することができた。
As a result, according to the method of the present invention,
The standard deviation was smaller than that of the conventional method, and it was possible to measure with high accuracy.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【効果】この発明によると、例えばHTR(高温ガス
炉)やHTTR(高温工学試験研究炉)用として使用さ
れる被覆燃料粒子における被覆層厚みを、簡便な操作で
効率よく、しかも高い精度で自動的に測定することがで
きる被覆燃料粒子における被覆層厚みの測定方法及び被
覆層厚み測定装置を提供することができる。
[Effect] According to the present invention, for example, the coating layer thickness in the coated fuel particles used for HTR (high temperature gas reactor) and HTTR (high temperature engineering test research reactor) can be automatically adjusted with a simple operation efficiently and with high accuracy. It is possible to provide a coating layer thickness measuring method and a coating layer thickness measuring device for coating fuel particles that can be measured selectively.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1はこの発明に係る被覆燃料粒子における被
覆層厚みを測定する方法を実施する一例としての被覆層
厚み測定装置を示す説明図である。
FIG. 1 is an explanatory view showing a coating layer thickness measuring device as an example for carrying out the method for measuring the coating layer thickness in coated fuel particles according to the present invention.

【図2】図2は従来における金相試料の一例を示す概略
断面説明図である。
FIG. 2 is a schematic cross-sectional explanatory view showing an example of a conventional gold phase sample.

【図3】図3は二重被覆燃料粒子を樹脂の中に埋め込ん
だ後、これを研磨機等を用いて前記二重被覆燃料粒子の
赤道面まで研磨することにより、調製された金相試料を
示す概略断面説明図である。
FIG. 3 shows a gold phase sample prepared by embedding double-coated fuel particles in a resin and then polishing the double-coated fuel particles to the equatorial plane of the double-coated fuel particles using a polishing machine or the like. It is a schematic cross-sectional explanatory view showing.

【図4】図4は従来における金相試料の一例を示す概略
断面説明図である。
FIG. 4 is a schematic cross-sectional explanatory view showing an example of a conventional gold phase sample.

【図5】この発明により被覆層の厚みを測定する原理を
示す説明図である。
FIG. 5 is an explanatory diagram showing the principle of measuring the thickness of the coating layer according to the present invention.

【符合の説明】[Explanation of sign]

1a・・・二重被覆燃料粒子、1b・・・四重被覆燃料
粒子、2・・・燃料核、3a・・・第一被覆層、3b・
・・第二被覆層、3c・・・第三被覆層、3d・・・第
四被覆層、4・・・赤道面、5・・・樹脂、6・・・金
相試料、a・・・燃料核2と第一被覆層3aとの境界
面、a’・・・境界面aの存在を示すピーク、a”・・
・境界面aの存在を示すピーク、b・・・第一被覆層3
aと第二被覆層3bとの境界面、b’・・・境界面bの
存在を示すピーク、b”・・・境界面bの存在を示すピ
ーク、c・・・二重被覆燃料粒子1aの表面となる第二
被覆層3bの境界面、c’・・・境界面cの存在を示す
ピーク、c”・・・境界面cの存在を示すピーク、10
・・・被覆燃料粒子厚み測定装置、11・・・X線撮影
像、12・・・撮像装置、13・・・微分処理部、14
・・・演算部、15・・・出力部。
1a ... Double coated fuel particles, 1b ... Quadruple coated fuel particles, 2 ... Fuel core, 3a ... First coating layer, 3b.
..Second coating layer, 3c ... Third coating layer, 3d ... Fourth coating layer, 4 ... Equatorial plane, 5 ... Resin, 6 ... Metal phase sample, a ... A boundary surface between the fuel core 2 and the first coating layer 3a, a '... A peak indicating the existence of the boundary surface a, a "...
-Peak indicating the existence of boundary surface a, b ... First coating layer 3
The boundary surface between a and the second coating layer 3b, b '... the peak indicating the existence of the boundary surface b, b "... the peak indicating the existence of the boundary surface b, c ... the double coated fuel particle 1a The boundary surface of the second coating layer 3b serving as the surface of c, the peak indicating the existence of the boundary surface c, the peak of the boundary surface c ″, the peak indicating the existence of the boundary surface 10
・ ・ ・ Coated fuel particle thickness measuring device, 11 ... X-ray image, 12 ... Imaging device, 13 ... Differentiation processing unit, 14
... Calculation unit, 15 ... Output unit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 被覆燃料粒子をX線撮影し、得られたX
線撮影像をその濃淡を表す電気信号に変換し、その電気
信号に基づき前記X線撮影像における濃淡レベルの変極
点を算出し、変極点間距離に基づいて被覆層の厚さを算
出することを特徴とする被覆燃料粒子における被覆層厚
さの測定方法。
1. An X-ray obtained by radiography of coated fuel particles
Converting the radiographic image into an electric signal representing the shade, calculating the inflection point of the gray level in the X-ray image based on the electric signal, and calculating the thickness of the coating layer based on the distance between the inflection points. A method for measuring the coating layer thickness in coated fuel particles, comprising:
【請求項2】 被覆燃料粒子をX線撮影して得られたX
線撮影像をその濃淡レベルに対応する電気信号に変換す
る撮像装置と、この撮像装置から出力される電気信号に
基づきX線撮影像における濃淡レベルを微分する微分処
理部と、微分処理部で検出された変極点間の距離に基づ
き被覆燃料粒子中の被覆層の厚みを算出する厚み演算部
とを有することを特徴とする被覆燃料粒子における被覆
層厚み測定装置。
2. X-ray obtained by radiography of coated fuel particles
An imaging device that converts a radiographic image into an electric signal corresponding to the gray level, a differentiation processing unit that differentiates the gray level in the X-ray imaging image based on the electric signal output from the imaging device, and a detection by the differentiation processing unit And a thickness calculation unit for calculating the thickness of the coating layer in the coated fuel particles based on the distance between the inflection points.
JP5182814A 1993-07-23 1993-07-23 Method of measuring thickness of coating layer on fuel particle and device for measuring the same Pending JPH0735533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5182814A JPH0735533A (en) 1993-07-23 1993-07-23 Method of measuring thickness of coating layer on fuel particle and device for measuring the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5182814A JPH0735533A (en) 1993-07-23 1993-07-23 Method of measuring thickness of coating layer on fuel particle and device for measuring the same

Publications (1)

Publication Number Publication Date
JPH0735533A true JPH0735533A (en) 1995-02-07

Family

ID=16124914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5182814A Pending JPH0735533A (en) 1993-07-23 1993-07-23 Method of measuring thickness of coating layer on fuel particle and device for measuring the same

Country Status (1)

Country Link
JP (1) JPH0735533A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501871A (en) * 2006-08-29 2010-01-21 エーエルデー・バキューム・テクノロジーズ・ゲーエムベーハー Spherical fuel element for gas-cooled high temperature pebble bed reactor (HTR) and method for producing the same
CN110428916A (en) * 2019-07-10 2019-11-08 湖南大学 A kind of thickness detecting method of coated particle, device and calculate equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941715B2 (en) * 1981-12-15 1984-10-09 株式会社三宅製作所 External heating device for boiling pot or distillation pot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941715B2 (en) * 1981-12-15 1984-10-09 株式会社三宅製作所 External heating device for boiling pot or distillation pot

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501871A (en) * 2006-08-29 2010-01-21 エーエルデー・バキューム・テクノロジーズ・ゲーエムベーハー Spherical fuel element for gas-cooled high temperature pebble bed reactor (HTR) and method for producing the same
US8243871B2 (en) 2006-08-29 2012-08-14 Ald Vacuum Technologies Gmbh Spherical fuel element and production thereof for gas-cooled high temperature pebble bed nuclear reactors (HTR)
CN110428916A (en) * 2019-07-10 2019-11-08 湖南大学 A kind of thickness detecting method of coated particle, device and calculate equipment
CN110428916B (en) * 2019-07-10 2021-04-23 湖南大学 Thickness detection method and device for coated particles and computing equipment

Similar Documents

Publication Publication Date Title
JP2004012407A (en) Transparent imaging serving system, and x-ray ct / dr photographing service system
Ewert et al. Essential parameters and conditions for optimum image quality in digital radiology
Fetterly et al. Measurement of the presampled two‐dimensional modulation transfer function of digital imaging systems
JP2589613B2 (en) X-ray CT imaging method and X-ray CT apparatus
Doi et al. Measurements of optical and noise properties of screen-film systems in radiography
JPH0735533A (en) Method of measuring thickness of coating layer on fuel particle and device for measuring the same
JPH07265286A (en) X-ray diagnostic system
JP2004351100A (en) System and method for medical image processing
CN106290433A (en) X-ray data processing means and method thereof and program
JP2007330687A (en) Device and program for generating panorama tomographic image
JP5534699B2 (en) X-ray diagnostic apparatus and image processing apparatus
KR20100071302A (en) Method and appratus for acquiring penetration images of radioactive ray
JP3545073B2 (en) Radioscopy using difference image processing
KR100812536B1 (en) Nondestructive measurement method of the coating thickness in a triso-coated fuel particle by using the phase contrast x-ray radiography image and apparatus thereof
JPH08212341A (en) Method and device for image processing of radiograph
Umetani et al. Development of 36M-pixel x-ray detector for large field of view and high-resolution micro-CT
Liu et al. Optical flow method for neutron radiography flow diagnostics
JP2001224576A (en) Image processing method and image processor
Troitskiy Industrial X-ray testing without intermediate data carriers of information
JP2002112985A (en) Diagnostic imaging support device
JP2002143141A (en) Diagnostic imaging supporting equipment
JP2006280713A (en) Method for detecting candidate of abnormal shade, and medical image system
Blakeley Digital radiography–is it for you?
CN108537727B (en) System amplification factor high-precision algorithm for X-ray digital imaging system
JPH0866388A (en) Radiation image pick-up device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980414