JPH0735437B2 - Polycarbonate - Google Patents

Polycarbonate

Info

Publication number
JPH0735437B2
JPH0735437B2 JP7390686A JP7390686A JPH0735437B2 JP H0735437 B2 JPH0735437 B2 JP H0735437B2 JP 7390686 A JP7390686 A JP 7390686A JP 7390686 A JP7390686 A JP 7390686A JP H0735437 B2 JPH0735437 B2 JP H0735437B2
Authority
JP
Japan
Prior art keywords
polycarbonate
group
present
hours
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7390686A
Other languages
Japanese (ja)
Other versions
JPS62230821A (en
Inventor
光治 篠木
哲夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP7390686A priority Critical patent/JPH0735437B2/en
Publication of JPS62230821A publication Critical patent/JPS62230821A/en
Publication of JPH0735437B2 publication Critical patent/JPH0735437B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,耐熱性及び難燃性に優れた新規のポリカーボ
ネートに関するものであり,さらに詳しくは,主として
リン原子を含有する芳香族ジオールから得られる新規の
ポリカーボネートに関するものである。
TECHNICAL FIELD The present invention relates to a novel polycarbonate having excellent heat resistance and flame retardancy, and more specifically, it is mainly obtained from an aromatic diol containing a phosphorus atom. The present invention relates to a novel polycarbonate.

(従来の技術) 従来より,耐衝撃性や耐熱性等に優れた高分子としてポ
リカーボネートが知られており,エンジニアリング樹脂
として極めて多様に用いられている。一般にポリカーボ
ネート樹脂としては,大別して脂肪族ポリカーボネート
樹脂,脂肪族−芳香族ポリカーボネート樹脂及び芳香族
ポリカーボネート樹脂に分類されるが,なかでもビスフ
ェノールAからのポリカーボネート樹脂(三菱瓦斯化
学,商品名「ユーピロン」,三菱化成,商品名「ノバレ
ックス」,帝人化成,商品名「パンライト」等)が工業
的に生産されている。
(Prior Art) Polycarbonate has been known as a polymer having excellent impact resistance and heat resistance, and is used as an engineering resin in various ways. Generally, polycarbonate resins are roughly classified into aliphatic polycarbonate resins, aliphatic-aromatic polycarbonate resins, and aromatic polycarbonate resins. Among them, polycarbonate resins derived from bisphenol A (Mitsubishi Gas Chemical Co., Ltd., trade name “UPILON”, Mitsubishi Kasei, product name "Novarex", Teijin Kasei, product name "Panlite", etc.) are industrially produced.

近年,経済性の面から,成形品の肉厚は薄くなる傾向に
あるために加工性の改良が要請されている。そのため薄
物成形品の成形に使用する流動性を改良したポリカーボ
ネート樹脂(三菱瓦斯化学,商品名「ユーピロンH300
0」)が提案され現存上市されている。
In recent years, from the viewpoint of economic efficiency, the wall thickness of molded products has tended to be thin, and therefore workability is required to be improved. Therefore, a polycarbonate resin with improved fluidity (Mitsubishi Gas Chemical Co., Ltd., trade name "UPILON H300" used for molding thin molded products
0 ”) has been proposed and is currently on the market.

また近年,火災予防の観点から繊維やエンジニアリング
樹脂の難燃性への要請が強まっており,ポリカーボネー
ト樹脂においてもガラス繊維を充填し難燃性を付与した
ポリカーボネート樹脂(例えば三菱瓦斯化学,商品名
「ユーピロンGS2010M」)が提案され現在上市されてい
る。
Further, in recent years, there has been an increasing demand for flame retardancy of fibers and engineering resins from the viewpoint of fire prevention, and in polycarbonate resins, polycarbonate resins filled with glass fibers to impart flame retardancy (for example, Mitsubishi Gas Chemical Co., Ltd., trade name " Iupilon GS2010M ”) was proposed and is now on the market.

(発明が解決しようとする問題点) しかしながら,前記したような従来技術においては,溶
融加工性の改良が未だ不十分であるだけでなく,流動性
を改良するためにポリカーボネート樹脂を低分子量化す
る必要があり,そのために耐衝撃性やストレスクラック
性等が低下する欠点がある。
(Problems to be Solved by the Invention) However, in the above-mentioned conventional techniques, not only the improvement of melt processability is still insufficient, but also the polycarbonate resin has a low molecular weight in order to improve the fluidity. However, there is a drawback that impact resistance and stress crack resistance are reduced.

さらに,ガラス繊維を充填して難燃性を付与したポリカ
ーボネート樹脂においては,難燃性は付与できてもガラ
ス繊維を充填することにより溶融加工性を低下させると
いう欠点がある。
Further, in a polycarbonate resin filled with glass fibers to impart flame retardancy, there is a drawback that the melt processability is deteriorated by filling glass fibers even though flame retardancy can be imparted.

したがって,本発明の主たる目的は,溶融加工性に優
れ,耐熱性が良く,しかも高度な難燃性能を有した新規
なポリカーボネート樹脂を提供することにある。
Therefore, the main object of the present invention is to provide a novel polycarbonate resin having excellent melt processability, good heat resistance, and high flame retardancy.

(問題点を解決するための手段) 本発明者らは,前記のごとき問題点の無い新しいポリカ
ーボネート樹脂について鋭意研究した結果,特定の構造
単位を有する含リンポリカーボネート樹脂が極めて優れ
た性質を有することを見い出し,本発明に到達した。
(Means for Solving Problems) The inventors of the present invention have earnestly studied a new polycarbonate resin having no problems as described above, and as a result, found that a phosphorus-containing polycarbonate resin having a specific structural unit has extremely excellent properties. They have found the present invention and reached the present invention.

すなわち,本発明は,下記構造式(I)で示される構造
単位からなる極限粘度が0.5以上のポリカーボネートを
要旨とするものであり,好ましくは,400℃以下の温度で
異方性溶融相を生成することのできるサーモトロピック
液晶性ポリカーボネートを要旨とするものである。
That is, the subject matter of the present invention is a polycarbonate having an intrinsic viscosity of 0.5 or more, which comprises a structural unit represented by the following structural formula (I), and preferably, an anisotropic molten phase is formed at a temperature of 400 ° C. or less. The gist is a thermotropic liquid crystalline polycarbonate that can be used.

(式において,Arは三価の芳香族基を示す。但し,芳香
環の水素原子はハロゲン原子,炭素数1〜20の低級アル
キル基,アリール基,アルコキシ基もしくはアリロキシ
基で置換されていてもよい。) 構造式(I)におけるArとしては,ベンゼン環及びナフ
タレン環が好ましい。
(In the formula, Ar represents a trivalent aromatic group. However, even if the hydrogen atom of the aromatic ring is substituted with a halogen atom, a lower alkyl group having 1 to 20 carbon atoms, an aryl group, an alkoxy group or an aryloxy group. Good.) As Ar in the structural formula (I), a benzene ring and a naphthalene ring are preferable.

本発明にいうサーモトロピック液晶性とは,溶融相にお
いてポリカーボネートの分子が規則的に一方向に配列し
てネマティック相といわれる液晶を生成する性質のこと
をいい,直交偏光子を用いた常用の偏光技術により確認
できる。
The thermotropic liquid crystallinity referred to in the present invention refers to the property that the molecules of the polycarbonate are regularly arranged in one direction in the melt phase to form a liquid crystal called a nematic phase. It can be confirmed by technology.

本発明のポリカーボネートとしては,とくに400℃以
下,好ましくは300℃程度で非常に加工し易い異方性溶
融相を形成することができるポリカーボネートが極めて
好適である。
As the polycarbonate of the present invention, a polycarbonate that can form an anisotropic melt phase that is extremely easy to process at 400 ° C. or less, preferably about 300 ° C. is extremely suitable.

本発明のポリカーボネートの製造法は特に制約されるも
のでなく,例えば(1)含リンの芳香族ジオールと炭酸
エステルとの塊状重合法により,あるいは(2)含リン
の芳香族ジオールとホスゲンとをアルカリ溶液下で重合
するホスゲン法で製造することができるが,含リンの芳
香族ジオールが耐アルカリ性に劣る場合があるので
(1)の方法が好適である。
The method for producing the polycarbonate of the present invention is not particularly limited. For example, (1) a bulk polymerization method of a phosphorus-containing aromatic diol and a carbonic acid ester, or (2) a phosphorus-containing aromatic diol and phosgene Although it can be produced by the phosgene method of polymerizing in an alkaline solution, the method (1) is preferable because the phosphorus-containing aromatic diol may have poor alkali resistance.

本発明のポリカーボネートの製造に用いる含リンの芳香
族ジオールとしては,具体的には下記構造式(II),
(III),(IV)(それぞれPHQ,1,4-PHQ,2,6-PNQと略称
する。)等の有機リン化合物が挙げられる。
As the phosphorus-containing aromatic diol used for producing the polycarbonate of the present invention, specifically, the following structural formula (II),
Examples thereof include organic phosphorus compounds such as (III) and (IV) (PHQ, 1,4-PHQ, 2,6-PNQ, respectively).

また,本発明のポリカーボネートの製造に用いられる炭
酸エステルとしては,炭酸ジフェニル,炭酸ジメチル,
炭酸ジエチル等が挙げられる。
The carbonic acid ester used for producing the polycarbonate of the present invention includes diphenyl carbonate, dimethyl carbonate,
Diethyl carbonate and the like can be mentioned.

本発明のポリカーボネートの極限粘度〔η〕は0.5以
上,好ましくは0.5〜5.0,最適には0.5〜2.0であり,
〔η〕が0.5より小さいと成形品として実用的な物性を
得ることが難しい。
The polycarbonate of the present invention has an intrinsic viscosity [η] of 0.5 or more, preferably 0.5 to 5.0, optimally 0.5 to 2.0,
When [η] is less than 0.5, it is difficult to obtain practical physical properties as a molded product.

本発明のポリカーボネートを製造するときの含リン芳香
族ジオールと炭酸エステルの仕込み比率は,通常当量比
で30/70〜50/50であり,最適には40/60〜50/50である。
The ratio of the phosphorus-containing aromatic diol to the carbonic acid ester used in the production of the polycarbonate of the present invention is usually 30/70 to 50/50, and optimally 40/60 to 50/50 in terms of equivalent ratio.

本発明のポリカーボネートを製造するための温度条件及
び反応時間は,まず含リンの芳香族ジオールと炭酸エス
テルとのエステル交換反応においては,通常窒素雰囲気
下100〜200℃で0.5〜4時間,好ましくは120〜190℃で
1〜3時間,最適には120〜170℃で1.5〜2時間であ
る。続いて,反応系内を100〜50mmHgに減圧し,温度を2
30〜260℃,好ましくは250〜260℃で1〜6時間,好ま
しくは2〜4時間反応させる。さらに縮合反応は,減圧
下(通常0.01〜10mmHg),280〜350℃で1〜8時間,好
ましくは290〜340℃で2〜6時間,最適には300〜330℃
で2〜4時間とする。
The temperature conditions and reaction time for producing the polycarbonate of the present invention are as follows. First, in a transesterification reaction between a phosphorus-containing aromatic diol and a carbonic acid ester, usually in a nitrogen atmosphere at 100 to 200 ° C. for 0.5 to 4 hours, preferably 120 to 190 ° C for 1 to 3 hours, optimally 120 to 170 ° C for 1.5 to 2 hours. Then, the pressure inside the reaction system was reduced to 100 to 50 mmHg, and the temperature was raised to 2
The reaction is carried out at 30 to 260 ° C, preferably 250 to 260 ° C for 1 to 6 hours, preferably 2 to 4 hours. Furthermore, the condensation reaction is carried out under reduced pressure (usually 0.01 to 10 mmHg) at 280 to 350 ° C for 1 to 8 hours, preferably 290 to 340 ° C for 2 to 6 hours, optimally 300 to 330 ° C.
2 to 4 hours.

また,通常,反応には触媒が用いられるが,本発明のポ
リカーボネートを得るための触媒としては各種金属化合
物が用いられる。かかる金属化合物としては,アンチモ
ン,チタン,ゲルマニウム,スズ,亜鉛,アルミニウ
ム,マグネシウム,カルシウム,マンガン,ナトリウム
及びコバルトなどの化合物が用いられる。触媒の添加量
としては,ポリカーボネートの構成単位1モルに対し,
通常1×10-5〜1×10-2モル,好ましくは5×10-5〜5
×10-3モル,最適には1×10-4〜1×10-3モル用いられ
る。
Usually, a catalyst is used in the reaction, but various metal compounds are used as the catalyst for obtaining the polycarbonate of the present invention. As the metal compound, compounds such as antimony, titanium, germanium, tin, zinc, aluminum, magnesium, calcium, manganese, sodium and cobalt are used. The catalyst is added in an amount of 1 mol of polycarbonate constitutional unit,
Usually 1 × 10 −5 to 1 × 10 −2 mol, preferably 5 × 10 −5 to 5
× 10 -3 mol, optimally 1 × 10 -4 to 1 × 10 -3 mol is used.

(実施例) 以下,実施例をあげて本発明をさらに詳しく説明する。(Examples) Hereinafter, the present invention will be described in more detail with reference to Examples.

なお,例中ポリマーの極限粘度〔η〕はフェノール−四
塩化エタン等重量混合溶媒中20℃で測定した溶液粘度か
ら求めた。また,軟化点は,軟化点測定装置(柳本製作
所製 AMPI型)を用い,昇温速度2℃/分で測定した。
また,難燃性はUL94規格による難燃性の級(HB,V−2,V
−1,V−0)ならびにJIS K 7201規格による限界酸素指
数(LOI)により判定した。衝撃強度はASTM D 256に規
定されている衝撃試験片を成形し,アイゾット衝撃強度
(ノッチ付)で評価した。溶融粘度は高化式フロー・テ
スター(島津製作所FT-500型)を用い,温度280℃,ノ
ズル1mmφ×10mmL,圧力40kg/cm2の条件下で測定し,溶
融加工性の尺度とした。一方,本発明のポリカーボネー
トは赤外線吸収スペクトル及び元素分析により同定し
た。また,サーモトロピック液晶性はホットステージ付
Leitz偏光顕微鏡で確認した。
In addition, the intrinsic viscosity [η] of the polymer in the examples was determined from the solution viscosity measured at 20 ° C. in a mixed solvent such as phenol-ethane tetrachloride by weight. The softening point was measured with a softening point measuring device (AMPI type manufactured by Yanagimoto Seisakusho) at a heating rate of 2 ° C / min.
In addition, the flame retardancy is based on UL94 standard (HB, V-2, V
-1, V-0) and the limiting oxygen index (LOI) according to JIS K 7201 standard. The impact strength was evaluated by Izod impact strength (notched) after forming an impact test piece specified in ASTM D256. The melt viscosity was measured by using a Koka type flow tester (Shimadzu FT-500 type) under the conditions of temperature 280 ° C, nozzle 1mmφ × 10mmL, pressure 40kg / cm 2 and used as a measure of melt processability. On the other hand, the polycarbonate of the present invention was identified by infrared absorption spectrum and elemental analysis. Also, thermotropic liquid crystal property is with hot stage
Confirmed with a Leitz polarization microscope.

実施例1 反応装置にPHQと炭酸ジフェニルを当量比で45/55となる
割合で仕込み,触媒として酢酸亜鉛をポリカーボネート
の繰り返し単位1モルに対し4×10-4モル加え,窒素雰
囲気下160℃で2時間エステル変換反応を行った。続い
て反応系内を100〜50mmHgに減圧し,温度を1時間かけ
て250℃として,そのままで3時間反応し生成するフェ
ノールを溜出させた。さらに温度を1時間かけて300℃
とし,徐々に減圧して1mmHgとして3時間反応した。得
られたポリマーは〔η〕が0.72,軟化点は183℃,UL94規
格V−0級,限界酸素指数60で色調,透明性に優れてい
た。
Example 1 A reactor was charged with PHQ and diphenyl carbonate at an equivalent ratio of 45/55, and zinc acetate as a catalyst was added at 4 × 10 −4 mol per 1 mol of repeating unit of polycarbonate, and the mixture was heated at 160 ° C. under a nitrogen atmosphere at 160 ° C. The ester conversion reaction was carried out for 2 hours. Then, the pressure in the reaction system was reduced to 100 to 50 mmHg, the temperature was raised to 250 ° C. over 1 hour, and the reaction product was reacted for 3 hours to distill the produced phenol. Furthermore, the temperature is 300 ℃ over 1 hour.
The pressure was gradually reduced to 1 mmHg and the reaction was performed for 3 hours. The obtained polymer had an [η] of 0.72, a softening point of 183 ° C., UL94 standard V-0 grade, a limiting oxygen index of 60, and was excellent in color tone and transparency.

このポリマーを赤外線吸収スペクトル,元素分析により
分析したところ,次に示すような結果が得られ,下記の
繰り返し単位を有するポリカーボネートであることを確
認した。
When this polymer was analyzed by infrared absorption spectrum and elemental analysis, the following results were obtained, and it was confirmed that the polymer was a polycarbonate having the following repeating units.

すなわち,赤外線吸収スペクトルにおいては,1770κに
芳香族カルボン酸エステルのC=Oに基く吸収が,720
κ,760κにパラ置換芳香族の吸収が,840κに非対称3置
換芳香族の吸収が見られた。一方,元素分析の結果で
は,C=64.97%(理論値65.15%),H=3.21%(理論値3.
17%),P=8.69%(理論値8.84%)であった。また,ホ
ットステージ付Leitz偏光顕微鏡で観察した結果,得ら
れたポリマーはサーモトロピック液晶性ポリカーボネー
トであることを確認した。
That is, in the infrared absorption spectrum, the absorption based on C = O of the aromatic carboxylic acid ester was 1770 κ and 720
Absorption of para-substituted aromatics was observed at κ and 760κ, and absorption of asymmetric tri-substituted aromatics was observed at 840κ. On the other hand, the elemental analysis results show that C = 64.97% (theoretical value 65.15%), H = 3.21% (theoretical value 3.
17%), P = 8.69% (theoretical value 8.84%). As a result of observation with a Leitz polarization microscope with a hot stage, it was confirmed that the obtained polymer was thermotropic liquid crystalline polycarbonate.

実施例2 反応装置にPHQと炭酸ジメチルを当量比で45/55となる割
合で仕込み,触媒として酢酸亜鉛をポリカーボネートの
繰り返し単位1モルに対し,4×10-4モル加え,窒素雰囲
気下120℃で2時間エステル交換反応を行った。続いて
反応系内を100〜50mmHgに減圧し,温度を1時間かえて2
50℃とし,そのままで3時間反応し生成するフェノール
を溜出させた。さらに温度を1時間かけて290℃とし,
徐々に減圧して1mmHgとして3時間反応した。得られた
ポリマーは〔η〕が0.69,軟化点は181℃,UL94規格V−
0級,限界酸素指数58のポリマーであった。なお,赤外
線吸収スペクトル,元素分析,Leitz偏光顕微鏡観察の結
果は,実施例1と同様でありサーモトロピック液晶性ポ
リカーボネートであることを確認した。
Example 2 A reactor was charged with PHQ and dimethyl carbonate in an equivalent ratio of 45/55, and zinc acetate as a catalyst was added at 4 × 10 −4 mol to 1 mol of repeating units of polycarbonate, and 120 ° C. under a nitrogen atmosphere. Transesterification was carried out for 2 hours. Then, the pressure inside the reaction system was reduced to 100 to 50 mmHg, and the temperature was changed for 1 hour.
The temperature was set to 50 ° C., and the phenol produced by reacting for 3 hours was distilled off. Further, the temperature is raised to 290 ° C over 1 hour,
The pressure was gradually reduced to 1 mmHg and the reaction was performed for 3 hours. The obtained polymer had an [η] of 0.69, a softening point of 181 ° C, UL94 standard V-
It was a polymer with 0 grade and a limiting oxygen index of 58. The results of infrared absorption spectrum, elemental analysis, and Leitz polarization microscope observation were the same as in Example 1, and it was confirmed that the substance was a thermotropic liquid crystalline polycarbonate.

実施例3,4 PHQの代わりにそれぞれ1,4-PNQあるいは2,6-PNQを用い
た以外は実施例1と同様に行った結果,得られたポリマ
ーは実施例3においては〔η〕が0.70,軟化点188℃,UL9
4規格V−0級,限界酸素指数62,実施例4においては
〔η〕0.98,軟化点186℃,UL94規格V−0級,限界酸素
指数60で,いずれも色調,透明性に優れていた。実施例
3のポリマーを赤外線吸収スペクトル,元素分析により
分析したところ,次に示すような結果が得られ,下記の
繰り返し単位を有するポリカーボネートであることを確
認した。
As a result of carrying out in the same manner as in Example 1 except that 1,4-PNQ or 2,6-PNQ was used instead of PHQ in Examples 3 and 4, respectively, the obtained polymer had [η] in Example 3. 0.70, softening point 188 ℃, UL9
4 standard V-0 class, limiting oxygen index 62, in Example 4 [η] 0.98, softening point 186 ° C, UL94 standard V-0 class, limiting oxygen index 60, all excellent in color tone and transparency. . When the polymer of Example 3 was analyzed by infrared absorption spectrum and elemental analysis, the following results were obtained, and it was confirmed that the polymer had the following repeating unit.

すなわち,赤外線吸収スペクトルにおいては,1770κに
芳香族カルボン酸エステルのC=0に基く吸収が,746
κ,763κにパラ置換芳香族の吸収が,1630κにナフタレ
ン環に基く吸収が見られた。一方,元素分析の結果で
は,C=69.51%(理論値69.02%),H=3.18%(理論値3.
27%),P=7.69%(理論値7.74%)であった。また,ホ
ットステージ付Leitz偏光顕微鏡で観察した結果,得ら
れたポリマーはサーモトロピック液晶性ポリカーボネー
トであることを確認した。なお,実施例4のポリマーも
ほぼ同様の結果が得られた。
That is, in the infrared absorption spectrum, the absorption based on C = 0 of the aromatic carboxylic acid ester at 1770 κ was 746.
Absorption of para-substituted aromatics was observed at κ and 763κ, and absorption at 1630κ was based on the naphthalene ring. On the other hand, in the elemental analysis results, C = 69.51% (theoretical value 69.02%), H = 3.18% (theoretical value 3.
27%) and P = 7.69% (theoretical value 7.74%). As a result of observation with a Leitz polarization microscope with a hot stage, it was confirmed that the obtained polymer was thermotropic liquid crystalline polycarbonate. In addition, the polymer of Example 4 was also able to obtain almost the same result.

実施例5 PHQと炭酸ジフェニルの当量比を30/70とした以外は実施
例1と同様に行った結果,得られたポリマーは〔η〕が
0.67,軟化点183℃,UL94規格V−0級,限界酸素指数59
で色調,透明性に優れたサーモトロピック液晶性ポリカ
ーボネートであった。
Example 5 The same procedure as in Example 1 was carried out except that the equivalence ratio of PHQ to diphenyl carbonate was 30/70. As a result, the polymer obtained had [η].
0.67, softening point 183 ℃, UL94 standard V-0 class, limiting oxygen index 59
It was a thermotropic liquid crystalline polycarbonate with excellent color tone and transparency.

実施例6 含リン芳香族ジオールとしてPHQのみを用いるかわりに,
PHQと1,4-PNQの2種をモル比が70/30となる割合で用い
た以外は実施例1と同様に行った。得られたポリマーは
〔η〕が0.61,軟化点181℃,UL94規格V−0級,限界酸
素指数54で色調,透明性に優れた400℃ではサーモトロ
ピック液晶性を有しないポリカーボネートであった。
Example 6 Instead of using PHQ alone as the phosphorus-containing aromatic diol,
Example 1 was repeated except that PHQ and 1,4-PNQ were used in a molar ratio of 70/30. The obtained polymer was a polycarbonate having a [η] of 0.61, a softening point of 181 ° C., UL94 standard V-0 grade, a color tone with a limiting oxygen index of 54, and excellent transparency at 400 ° C. and having no thermotropic liquid crystallinity.

比較例1,2 PHQと炭酸ジフェニルの当量比を10/90あるいは80/20に
かえた以外は,実施例1と同様に行った結果,得られた
ポリマーは〔η〕がそれぞれ0.31,0.27で,非常に脆い
ものであった。
Comparative Examples 1 and 2, except that the equivalent ratio of PHQ to diphenyl carbonate was changed to 10/90 or 80/20, the results were the same as in Example 1, and the obtained polymer had [η] of 0.31 and 0.27, respectively. , It was very brittle.

(発明の効果) 本発明のポリカーボネートは,成形性,耐熱性に優れ,
しかも高度な難燃性を有する耐熱性高分子で,フィル
ム,成形用素材として極めて有用なものである。
(Effect of the invention) The polycarbonate of the present invention has excellent moldability and heat resistance,
Moreover, it is a heat-resistant polymer with a high degree of flame retardancy and is extremely useful as a material for film and molding.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】下記構造式(I)で示される構造単位から
なる極限粘度0.50以上のポリカーボネート。 (式において,Arは三価の芳香族基を示す。但し,芳香
環の水素原子はハロゲン原子,炭素数1〜20の低級アル
キル基,アリール基,アルコキシ基もしくはアリロキシ
基で置換されていてもよい。)
1. A polycarbonate having an intrinsic viscosity of 0.50 or more, which comprises a structural unit represented by the following structural formula (I). (In the formula, Ar represents a trivalent aromatic group. However, even if the hydrogen atom of the aromatic ring is substituted with a halogen atom, a lower alkyl group having 1 to 20 carbon atoms, an aryl group, an alkoxy group or an aryloxy group. Good.)
【請求項2】400℃以下の温度で異方性溶融相を生成す
ることのできるサーモトロピック液晶性を有する特許請
求の範囲第1項記載のポリカーボネート。
2. The polycarbonate according to claim 1, which has a thermotropic liquid crystallinity capable of forming an anisotropic melt phase at a temperature of 400 ° C. or lower.
JP7390686A 1986-03-31 1986-03-31 Polycarbonate Expired - Lifetime JPH0735437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7390686A JPH0735437B2 (en) 1986-03-31 1986-03-31 Polycarbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7390686A JPH0735437B2 (en) 1986-03-31 1986-03-31 Polycarbonate

Publications (2)

Publication Number Publication Date
JPS62230821A JPS62230821A (en) 1987-10-09
JPH0735437B2 true JPH0735437B2 (en) 1995-04-19

Family

ID=13531695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7390686A Expired - Lifetime JPH0735437B2 (en) 1986-03-31 1986-03-31 Polycarbonate

Country Status (1)

Country Link
JP (1) JPH0735437B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009005147A1 (en) * 2007-07-04 2009-01-08 Ube Industries, Ltd. Phosphorus-containing polycarbonate polyol, method for production thereof, and phosphorus-containing polycarbonate polyurethane

Also Published As

Publication number Publication date
JPS62230821A (en) 1987-10-09

Similar Documents

Publication Publication Date Title
EP2181141B1 (en) Insoluble and branched polyphosphonates and methods related thereto
US20040167284A1 (en) Branched polyphosphonates that exhibit an advantageous combination of properties, and methods related thereto
US8389664B2 (en) High molecular weight, random, bisphenol based copoly(phosphonate carbonate)s
JPS6215573B2 (en)
JPS60168721A (en) Copolyester-carbonate resin
CN103649171A (en) Polycarbonate polymers containing bisphenol compounds
JPH0251524A (en) Preparation of aromatic polyester composition
US20040167283A1 (en) Linear polyphosphonates that exhibit an advantageous combination of properties, and methods related thereto
CN102140164B (en) Novel phosphorus and nitrogen containing flame-retardant thermotropic liquid crystal copolyester with low melting point and synthesis method thereof
JPH0356527A (en) Aromatic polyester and production thereof
JPH0735437B2 (en) Polycarbonate
JPS61163932A (en) Thermotropic aromatic copolyester
KR101629093B1 (en) Synthetic product, polycarbonate resin therefrom and molded product using the same
JPH06239986A (en) Polycarbonate
JPS63146927A (en) Aromatic copolyesteramide
KR920011023B1 (en) Wholly aromatic polyester
US4855380A (en) Cyclopentadiene-containing cyclic polycarbonate oligomer
JP2527196B2 (en) Method for producing polycarbonate resin
JPH011725A (en) Polycarbonate manufacturing method
JPH0649751B2 (en) New Polycarbonate
KR960006300B1 (en) Aromatic copolyester and the method for manufacturing the same
JP2700628B2 (en) High molecular weight aliphatic polyester and method for producing the same
JPS62172018A (en) Production of polycarbonate having improved fluidity
JPH04275360A (en) Thermoplastic resin composition
JPH0826141B2 (en) Method for producing polycarbonate