JPH0734913A - Internal combustion engine - Google Patents

Internal combustion engine

Info

Publication number
JPH0734913A
JPH0734913A JP5199286A JP19928693A JPH0734913A JP H0734913 A JPH0734913 A JP H0734913A JP 5199286 A JP5199286 A JP 5199286A JP 19928693 A JP19928693 A JP 19928693A JP H0734913 A JPH0734913 A JP H0734913A
Authority
JP
Japan
Prior art keywords
intake
stroke
internal combustion
combustion engine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5199286A
Other languages
Japanese (ja)
Inventor
Mitsumasa Fukuda
光正 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5199286A priority Critical patent/JPH0734913A/en
Publication of JPH0734913A publication Critical patent/JPH0734913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To reduce fuel consumption with a simple mechanism by returning intake gas introduced from an intake valve in the initial stage of a compression stroke after an intake stroke. CONSTITUTION:An intake quantity regulating stage of a prescribed angle is provided in the initial stage of a compression stroke after an intake stroke. In this stage, an intake valve 3 is opened in the initial stage of the compression stroke, and the intake gas once taken in is again returned through the intake valve 3 for compressing a little fuel. The closing angle of the intake valve 3 can be changed by the axial movement of a camshaft whose shape has been changed in the axial direction. In such a case where the load of an internal combustion engine is low, by increasing the delay of the closing time of the intake valve 3, fuel consumption can be reduced without rarefying intake gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はレシプロ、ロータリ機関
等の4サイクルで稼働する内燃機関に係り、特に燃料の
消費量を制御する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine that operates in four cycles, such as a reciprocating engine and a rotary engine, and more particularly to a technique for controlling fuel consumption.

【0002】[0002]

【従来の技術】従来の4サイクルエンジンにおいては、
燃費低減や排出ガスの清浄化を図るために、キャブレタ
ーから供給する混合気の混合比率を低下させ、又はイン
ジェクションの燃料供給量を減らしていた。このように
するとシリンダ内に取り込む混合気は希薄化するので、
これを効率良く安定して燃焼させるために、着火装置の
変更、複数位置での着火、2段階着火等の方法や、吸気
経路の改善により混合気を攪拌するなどの方法が採用さ
れている。
2. Description of the Related Art In a conventional 4-cycle engine,
In order to reduce fuel consumption and purify exhaust gas, the mixture ratio of the air-fuel mixture supplied from the carburetor is reduced or the fuel supply amount for injection is reduced. By doing so, the air-fuel mixture taken into the cylinder is diluted, so
In order to burn this efficiently and stably, methods such as changing the ignition device, ignition at a plurality of positions, two-stage ignition, and a method of stirring the air-fuel mixture by improving the intake path are adopted.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の各方法
では混合気の濃度を正確に設定し、しかも濃度を充分に
均一化しないと失火等の危険がある。したがって混合気
の濃度の精度及び均一性を確保するためには精密且つ複
雑な吸気装置が必要であり、必然的に製造コストが増大
するという問題点があった。そこで本発明は上記問題点
に鑑みてなされたものであり、その課題は、混合気の濃
度を変更することなく、シリンダ内に供給され、圧縮さ
れる燃料供給量を変更できる内燃機関を得ることにあ
る。
However, in each of the above methods, there is a risk of misfire or the like unless the concentration of the air-fuel mixture is set accurately and the concentration is not made sufficiently uniform. Therefore, in order to ensure the accuracy and uniformity of the concentration of the air-fuel mixture, a precise and complicated intake device is necessary, which inevitably increases the manufacturing cost. Therefore, the present invention has been made in view of the above problems, and an object thereof is to obtain an internal combustion engine that can change the fuel supply amount that is supplied into the cylinder and compressed without changing the concentration of the air-fuel mixture. It is in.

【0004】[0004]

【課題を解決するための手段】上記課題を達成するため
に本発明が講じた手段は、吸気工程にて吸入したガスの
うちの所定量を圧縮工程中に吸気弁から排出する吸気量
調整段階を設けるものである。また、相互に逆位相で稼
働する複数の気筒を設けた内燃機関であって、吸気工程
中の所定期間及びこれに対応する圧縮工程中の所定期間
にそれぞれ開放されるように構成された調整弁を各気筒
に設け、各気筒の調整弁の出口側を相互に連通させるも
のである。これらの手段においては、ピストンに接続さ
れたクランク機構の位置をピストンの摺動方向に移動さ
せるクランク機構移動手段を設けることが望ましい。
Means for Solving the Problems The means taken by the present invention to achieve the above-mentioned object is an intake amount adjusting step for discharging a predetermined amount of a gas sucked in an intake process from an intake valve during a compression process. Is provided. An internal combustion engine provided with a plurality of cylinders that operate in opposite phases to each other, and is configured to be opened during a predetermined period during an intake stroke and a corresponding predetermined period during a compression stroke. Is provided in each cylinder, and the outlet side of the adjusting valve of each cylinder is communicated with each other. In these means, it is desirable to provide crank mechanism moving means for moving the position of the crank mechanism connected to the piston in the sliding direction of the piston.

【0005】[0005]

【作用】かかる手段によれば、吸気工程に続く圧縮工程
において吸気を排出する吸気量調整段階が設けられてい
るため、圧縮・燃焼される実質的な吸気量を減少させる
ことができる。従って、燃費低減の要求される場合、負
荷の少ない場合等においては、吸気量調整段階を長くす
ることにより燃料消費を低減させることができる。この
場合、混合気の濃度を希薄化する必要がなく、吸気弁の
閉じ角等を変えるだけで燃料の吸気量を調整できるの
で、複雑な調整装置が不要である。また、吸気弁とは別
個の調整弁により吸気量の調整を行う場合は、吸気の逆
流による吸気系の汚染や脈動等が発生せず、しかも気筒
間で混合気のやり取りを行うので効率的である。また、
逆位相にある気筒間において吸気のやり取りをするため
吸気抵抗や排気抵抗が軽減され、効率のよい吸排気を行
うことができる。さらに、クランク機構移動手段によっ
てクランク軸を昇降させることにより機関の圧縮比を最
適値に調整でき、クランク機構移動手段を上記吸気弁の
駆動機構に付加することにより、実質的な吸気量と圧縮
比とを独立に設定することができる。例えば吸気量を低
減させても圧縮比を一定に保つことが可能となるため、
吸気量を変えても燃焼状態を安定に維持できる。
According to such means, since the intake amount adjusting step for discharging the intake air is provided in the compression process subsequent to the intake process, the substantial intake amount of compressed / combusted air can be reduced. Therefore, when fuel consumption is required to be reduced or when the load is low, the intake amount adjustment step can be lengthened to reduce fuel consumption. In this case, since it is not necessary to dilute the concentration of the air-fuel mixture, and the intake amount of the fuel can be adjusted simply by changing the closing angle of the intake valve, a complicated adjusting device is unnecessary. In addition, when adjusting the intake air amount with an adjustment valve that is separate from the intake valve, contamination of the intake system due to backflow of intake air, pulsation, etc. do not occur, and since the air-fuel mixture is exchanged between the cylinders, it is efficient. is there. Also,
Since intake air is exchanged between cylinders in opposite phases, intake resistance and exhaust resistance are reduced, and efficient intake and exhaust can be performed. Furthermore, the compression ratio of the engine can be adjusted to an optimum value by raising and lowering the crankshaft by the crank mechanism moving means, and by adding the crank mechanism moving means to the drive mechanism of the intake valve, the substantial intake amount and compression ratio can be increased. And can be set independently. For example, since it is possible to keep the compression ratio constant even if the intake air amount is reduced,
The combustion state can be stably maintained even if the intake air amount is changed.

【0006】[0006]

【実施例】次に、図面を参照して本発明に係る内燃機関
の実施例を説明する。図1に示すように、本実施例は、
シリンダ1の内部をピストン2が上下に往復動作し、こ
れに同期して吸気弁3及び排気弁4が開閉する4サイク
ルのレシプロ機関である。(a)の吸気工程においては
吸気弁3が開いた状態でピストン2が下降し、(b)に
示す下死点まで到達する。そして再びピストン2は上昇
して圧縮工程に入るが、この工程当初において(c)に
示すように吸気弁3は開いた状態を保ち、所定期間(例
えば吸気弁の駆動カム角にして約20〜25度)経過後
に初めて(d)に示すように吸気弁3を閉じる。この後
は(e)に示すようにピストンが上死点まで上昇し、そ
の直前に着火して、(f)に示す膨張工程において燃焼
ガスがピストンを下降させる。以下、通常のレシプロ機
関と同様に排気工程が続く。
Embodiments of the internal combustion engine according to the present invention will now be described with reference to the drawings. As shown in FIG. 1, in this embodiment,
This is a four-cycle reciprocating engine in which a piston 2 reciprocates up and down inside a cylinder 1 and an intake valve 3 and an exhaust valve 4 open and close in synchronization with this. In the intake stroke of (a), the piston 2 descends with the intake valve 3 open, and reaches the bottom dead center shown in (b). Then, the piston 2 rises again and enters the compression process, but at the beginning of this process, the intake valve 3 is kept open as shown in (c), and the intake valve 3 is kept open for a predetermined period (for example, the drive cam angle of the intake valve is about 20 to After the lapse of 25 degrees, the intake valve 3 is closed for the first time as shown in (d). After this, as shown in (e), the piston rises to the top dead center and ignites immediately before that, and the combustion gas lowers the piston in the expansion step shown in (f). After that, the exhaust process is continued as in a normal reciprocating engine.

【0007】図2は本実施例における吸気弁3のカムシ
ャフトの底面図であり、カムシャフト10の両端に係合
部11,12が形成され、ここに有孔円盤状の駆動板1
3,14が嵌合している。駆動板13,14は相互に逆
ねじに形成された駆動軸15と16に螺合している。駆
動軸15と16は、相互に螺合した歯車17と18に連
結され、歯車17はモータ19の出力歯車19aに螺合
する。なお、係合部12の右側には図示しないプーリが
取付けられ、プーリに掛けられたタイミングベルトによ
りカムシャフト10を回転駆動するようになっている。
FIG. 2 is a bottom view of the camshaft of the intake valve 3 according to this embodiment. Engagement portions 11 and 12 are formed at both ends of the camshaft 10, and the drive plate 1 having a perforated disc shape is formed therein.
3, 14 are fitted. The drive plates 13 and 14 are screwed onto drive shafts 15 and 16 which are formed as reverse screws. The drive shafts 15 and 16 are connected to mutually meshed gears 17 and 18, and the gear 17 is screwed to an output gear 19a of a motor 19. A pulley (not shown) is attached to the right side of the engaging portion 12, and the camshaft 10 is rotationally driven by a timing belt hung on the pulley.

【0008】図2(b)に示すように、カムシャフト1
0は通常の弁開き区間に対応する開弁角Aよりも大きな
弁開き区間に対応する開弁角Bをもつ。そしてカムシャ
フト10の軸線方向に沿ってその角度差B−A=Xが0
から漸増するように形成されている。したがって、モー
タ19を回転させることにより駆動軸15,16に螺合
した駆動板13,14が移動するとカムシャフト10が
軸線方向に移動し、カムシャフト10の図示しないタペ
ット当接部も移動するため、圧縮工程中における弁開き
区間を増減させることができる。実際には、角度差X
は、吸気工程において最大の体積効率の得られる最適の
吸気弁閉じ角を基準として設定される。
As shown in FIG. 2B, the camshaft 1
0 has a valve opening angle B corresponding to a larger valve opening section than a valve opening angle A corresponding to a normal valve opening section. The angular difference B−A = X is 0 along the axial direction of the camshaft 10.
It is formed so as to gradually increase from. Therefore, when the drive plates 13 and 14 screwed onto the drive shafts 15 and 16 move by rotating the motor 19, the camshaft 10 moves in the axial direction, and the tappet contact portion (not shown) of the camshaft 10 also moves. The valve opening section during the compression process can be increased or decreased. Actually, the angle difference X
Is set with reference to the optimum intake valve closing angle at which the maximum volume efficiency is obtained in the intake stroke.

【0009】上記実施例では、吸気工程に続く圧縮工程
において、吸気弁を開放した状態に保つ吸気量調整段階
が設けられているため、その段階の区間に対応する角度
差Xにより、実質的な吸気量を減少させることができ
る。従って、燃費低減の要求される場合や負荷の少ない
場合等においては、角度差Xを大きくすることにより燃
料消費を低減させることができる。この場合、混合気の
濃度を希薄化する必要がなく、吸気弁の閉じ角を変える
だけで燃料の吸気量を調整できるので、複雑な調整装置
が不要であり、角度差Xが所定範囲内であれば安定した
燃焼状態を維持できる。なお以上の構成に関しては、上
記実施例に限らず、基本的に4サイクルで稼働するロー
タリー機関においても、吸気ポートの形状を変更し又は
調節可能とすることにより同様の効果が得られる。
In the above-described embodiment, since the intake amount adjusting step for keeping the intake valve open is provided in the compression step subsequent to the intake step, the angle difference X corresponding to the section of that step causes a substantial difference. The amount of intake air can be reduced. Therefore, when the fuel consumption reduction is required or the load is small, the fuel consumption can be reduced by increasing the angle difference X. In this case, since it is not necessary to dilute the concentration of the air-fuel mixture and the intake amount of the fuel can be adjusted only by changing the closing angle of the intake valve, a complicated adjusting device is unnecessary, and the angle difference X is within a predetermined range. If so, a stable combustion state can be maintained. Note that the above-described configuration is not limited to the above-described embodiment, and also in a rotary engine that basically operates in four cycles, the same effect can be obtained by changing or adjusting the shape of the intake port.

【0010】図3は上記実施例に適応され得るクランク
機構移動手段の実施例を示す。ピストン2のピストンピ
ンに枢着された連接棒5にクランク軸6が枢設され、ク
ランク軸6に1次出力軸7が連結されている。1次出力
軸7に連結された歯車7aは歯車8aに螺合し、歯車8
aは図示しないフレームに軸受固定された2次出力軸8
に連結されている。一方、1次出力軸7及び2次出力軸
8は、平面コ字形の駆動部材20におけるアーム部20
a,20bにそれぞれ枢着されている。駆動部材20は
モータ21に直結されたねじ棒22に螺合する部分円筒
状の雌ねじ部を備え、ねじ棒22の回転に従って駆動部
材20が2次出力軸8を中心に上下方向に回動するよう
になっている。駆動部材20の雌ねじ部は、水平面によ
る切断線は略半円状で、垂直面による切断線は駆動部材
20の回動半径に適合した円弧状となっている鞍形の曲
面上に形成されている。
FIG. 3 shows an embodiment of the crank mechanism moving means applicable to the above embodiment. A crankshaft 6 is pivotally mounted on a connecting rod 5 pivotally mounted on a piston pin of the piston 2, and a primary output shaft 7 is connected to the crankshaft 6. The gear 7a connected to the primary output shaft 7 is screwed into the gear 8a,
a is a secondary output shaft 8 fixed to a frame (not shown)
Are linked to. On the other hand, the primary output shaft 7 and the secondary output shaft 8 are the arm portion 20 of the planar U-shaped drive member 20.
a and 20b, respectively. The drive member 20 is provided with a partially cylindrical female screw portion that is screwed into a screw rod 22 directly connected to the motor 21, and the drive member 20 rotates in the up-down direction about the secondary output shaft 8 as the screw rod 22 rotates. It is like this. The internal thread portion of the drive member 20 is formed on a saddle-shaped curved surface whose cutting line along a horizontal plane is substantially semicircular and whose cutting line along a vertical surface is an arc shape adapted to the turning radius of the driving member 20. There is.

【0011】このクランク機構移動手段によれば、クラ
ンク軸6を昇降させることにより機関の圧縮比を最適値
に調整できる。また、クランク機構移動手段を上記吸気
弁の駆動機構に付加することにより、実質的な吸気量と
圧縮比とを独立に設定することができる。例えば吸気量
を低減させても圧縮比を一定に保つことが可能となる。
従って、圧縮比やストロークを一定にして排気量のみを
増減させることが可能であり、燃焼状態の安定化を図る
ことができる。
According to the crank mechanism moving means, the compression ratio of the engine can be adjusted to the optimum value by moving the crank shaft 6 up and down. Further, by adding the crank mechanism moving means to the drive mechanism for the intake valve, the substantial intake amount and the compression ratio can be set independently. For example, the compression ratio can be kept constant even if the intake air amount is reduced.
Therefore, it is possible to increase or decrease only the exhaust amount while keeping the compression ratio and stroke constant, and it is possible to stabilize the combustion state.

【0012】図4は直列4気筒のレシプロ機関におい
て、圧縮工程当初に開弁される調整弁30を吸気弁とは
別個に各気筒にそれぞれ設け、各気筒の調整弁30が開
閉する開口を連通管31に連結させたものである。吸気
弁3と排気弁4は通常の機関と同様に駆動され、吸気工
程では吸気弁3が開き、排気工程では排気弁4が開く。
(a)に示すように、シリンダが吸気工程の初期にあ
る場合には吸気弁3とともに調整弁30も開いており、
このとき、圧縮工程の初期において吸気量調整段階にあ
るシリンダにおいても調整弁30が開いている。従っ
て、シリンダに吸入された混合気はその調整弁30を
介して連通管31内に流れ、シリンダの調整弁30か
らシリンダ内に流入する。吸気工程の後期にはシリン
ダの調整弁30は閉じ、また圧縮工程の後期にあるシ
リンダの調整弁30も閉じる。
FIG. 4 is a reciprocating engine having four in-line cylinders. Each of the cylinders is provided with a regulating valve 30 that is opened at the beginning of the compression process, separately from the intake valve, and the regulating valve 30 of each cylinder is opened and closed. It is connected to the pipe 31. The intake valve 3 and the exhaust valve 4 are driven similarly to a normal engine, and the intake valve 3 opens in the intake process and the exhaust valve 4 opens in the exhaust process.
As shown in (a), when the cylinder is in the early stage of the intake stroke, the adjustment valve 30 is open together with the intake valve 3,
At this time, the adjusting valve 30 is opened even in the cylinder in the intake amount adjusting stage in the initial stage of the compression process. Therefore, the air-fuel mixture sucked into the cylinder flows into the communication pipe 31 through the adjusting valve 30 and flows into the cylinder from the adjusting valve 30 of the cylinder. The adjustment valve 30 of the cylinder is closed in the latter half of the intake stroke, and the adjustment valve 30 of the cylinder in the latter half of the compression stroke is also closed.

【0013】このようにして、(b)に示すように、調
整弁を会して混合気のやり取りが各気筒間において行わ
れる。この例では、吸気弁とは別個の調整弁により吸気
量の調整を行うので、吸気の逆流による吸気系の汚染や
吸入ガスの脈動等が発生せず、しかも気筒間で混合気の
やり取りを行うので効率的である。また、逆位相にある
気筒間において吸気のやり取りをする結果、調整弁及び
連通管を介して移動する混合気の吸気抵抗や排気抵抗が
軽減され、調整弁を通して効率のよい吸排気を行うこと
ができる。この例では直列4気筒のエンジンを用いた
が、各気筒に対し逆位相で駆動される気筒が存在する他
の気筒数でも同様の効果が得られる。
In this way, as shown in (b), the air-fuel mixture is exchanged between the cylinders by meeting the adjusting valves. In this example, since the amount of intake air is adjusted by the adjustment valve that is separate from the intake valve, contamination of the intake system and pulsation of intake gas due to backflow of intake air do not occur, and the mixture is exchanged between the cylinders. So it is efficient. Further, as a result of exchanging intake air between the cylinders in opposite phases, intake resistance and exhaust resistance of the air-fuel mixture moving through the adjustment valve and the communication pipe are reduced, and efficient intake and exhaust can be performed through the adjustment valve. it can. In this example, an in-line four-cylinder engine is used, but the same effect can be obtained even if the number of cylinders in which there is a cylinder driven in an opposite phase with respect to each cylinder.

【0014】[0014]

【発明の効果】以上説明したように、本発明は、吸気工
程にて吸入したガスのうちの所定量を圧縮工程中に排出
する吸気量調整段階を設けることに特徴点を有するの
で、以下の効果を奏する。 吸気工程に続く圧縮工程において吸気を排出する吸
気量調整段階が設けられているため、圧縮・燃焼される
実質的な吸気量を減少させることができる。従って、燃
費低減の要求される場合や負荷の少ない場合等において
は、吸気量調整段階を長くすることにより燃料消費を低
減させることができる。この場合、混合気の濃度を希薄
化する必要がなく、吸気弁等の閉じ角を変えるだけで燃
料の吸気量を調整できるので複雑な調整装置が不要とな
る。 吸気弁とは別個の調整弁により吸気量の調整を行う
ので、吸気の逆流による吸気系の汚染や吸気ガスの脈動
が発生せず、しかも気筒間で混合気のやり取りを行うの
で効率的である。また、逆位相にある気筒間において吸
気のやり取りをする結果、調整弁の吸気抵抗や排気抵抗
が軽減され、効率のよい吸排気を行うことができる。 クランク機構移動手段によってクランク軸を昇降さ
せることにより機関の圧縮比を最適値に調整できる。ま
た、クランク機構移動手段を上記吸気弁の駆動機構に付
加することにより、実質的な吸気量と圧縮比とを独立に
設定することができる。例えば吸気量を低減させても圧
縮比を一定に保つことが可能となるため、吸気量を変え
ても燃焼状態を安定に維持できる。
As described above, the present invention is characterized by providing the intake amount adjusting step for discharging a predetermined amount of the gas sucked in the intake process during the compression process. Produce an effect. Since the intake amount adjustment stage for discharging intake air is provided in the compression process subsequent to the intake process, it is possible to reduce the substantial intake amount that is compressed and burned. Therefore, when the fuel consumption reduction is required or the load is small, the fuel consumption can be reduced by lengthening the intake air amount adjustment stage. In this case, it is not necessary to dilute the concentration of the air-fuel mixture, and the intake amount of the fuel can be adjusted simply by changing the closing angle of the intake valve or the like, so that a complicated adjusting device is unnecessary. Since the amount of intake air is adjusted by a control valve that is separate from the intake valve, there is no contamination of the intake system or pulsation of intake gas due to backflow of intake air, and it is efficient because the air-fuel mixture is exchanged between the cylinders. . Further, as a result of exchanging intake air between cylinders in opposite phases, intake resistance and exhaust resistance of the regulating valve are reduced, and efficient intake and exhaust can be performed. By moving the crank shaft up and down by the crank mechanism moving means, the compression ratio of the engine can be adjusted to the optimum value. Further, by adding the crank mechanism moving means to the drive mechanism for the intake valve, the substantial intake amount and the compression ratio can be set independently. For example, since the compression ratio can be kept constant even if the intake air amount is reduced, the combustion state can be stably maintained even if the intake air amount is changed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る内燃機関の実施例の動作を説明す
るための工程図である。
FIG. 1 is a process diagram for explaining the operation of an embodiment of an internal combustion engine according to the present invention.

【図2】(a)は同実施例におけるカムシャフトの調整
系の構造を示す底面図、(b)はカムシャフトの断面図
である。
FIG. 2A is a bottom view showing the structure of the adjustment system of the camshaft in the embodiment, and FIG. 2B is a sectional view of the camshaft.

【図3】(a)はクランク機構移動手段に係る実施例の
主要部を示す平面図、(b)は同主要部を示す縦断面図
である。
FIG. 3A is a plan view showing a main part of an embodiment relating to a crank mechanism moving means, and FIG. 3B is a vertical cross-sectional view showing the main part.

【図4】(a)は調整弁を備えた4気筒エンジンの動作
を説明するための説明図、(b)は同エンジンの工程表
である。
FIG. 4A is an explanatory diagram for explaining the operation of a four-cylinder engine equipped with a regulating valve, and FIG. 4B is a process chart of the engine.

【符号の説明】[Explanation of symbols]

1 シリンダ 2 ピストン 3 吸気弁 4 排気弁 5 連接棒 6 クランク軸 7 1次出力軸 8 2次出力軸 10 カムシャフト 11,12 係合部 13,14 駆動板 15,16,22 駆動軸 19,21 モータ 20 駆動部材 30 調整弁 31 連通管 1 Cylinder 2 Piston 3 Intake valve 4 Exhaust valve 5 Connecting rod 6 Crankshaft 7 Primary output shaft 8 Secondary output shaft 10 Camshaft 11,12 Engagement part 13,14 Drive plate 15,16,22 Drive shaft 19,21 Motor 20 Drive member 30 Adjustment valve 31 Communication pipe

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02D 13/02 L 7536−3G 15/04 A 7536−3G D 7536−3G Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location F02D 13/02 L 7536-3G 15/04 A 7536-3G D 7536-3G

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 吸気工程、圧縮工程、膨張工程及び排気
工程の4サイクルで稼働する内燃機関において、吸気工
程にて吸入したガスのうちの所定量を圧縮工程中に吸気
弁から排出する吸気量調整段階を設けた内燃機関。
1. In an internal combustion engine operating in four cycles of an intake stroke, a compression stroke, an expansion stroke and an exhaust stroke, a predetermined amount of gas sucked in the intake stroke is discharged from an intake valve during the compression stroke. Internal combustion engine with adjustment stage.
【請求項2】 請求項1において、前記吸気量調整段階
を前記圧縮工程当初から所定区間内とする内燃機関。
2. The internal combustion engine according to claim 1, wherein the intake air amount adjusting step is within a predetermined section from the beginning of the compression process.
【請求項3】 請求項2において、前記吸気弁を、軸線
方向に開弁区間の変化する形状に形成された延長形カム
軸によって駆動するとともに、該延長形カム軸の吸気弁
に対する駆動部分を軸線方向に移動させる駆動部移動手
段を設けた内燃機関。
3. The intake valve according to claim 2, wherein the intake valve is driven by an extended cam shaft formed in a shape of which a valve opening section changes in an axial direction, and a drive portion of the extended cam shaft for the intake valve. An internal combustion engine provided with a drive unit moving means for moving in an axial direction.
【請求項4】 吸気工程、圧縮工程、膨張工程及び排気
工程の4サイクルで稼働し、相互に逆位相で稼働する複
数の気筒を有する内燃機関において、吸気工程中の所定
期間及びこれに対応する圧縮工程中の所定期間にそれぞ
れ開放されるように構成された調整弁を各気筒に設け、
各気筒の調整弁の出口側を相互に連通させた内燃機関。
4. An internal combustion engine having a plurality of cylinders that operate in four cycles of an intake stroke, a compression stroke, an expansion stroke, and an exhaust stroke, and operate in mutually opposite phases, and a predetermined period during the intake stroke and corresponding thereto. Each cylinder is provided with a regulating valve configured to be opened during a predetermined period during the compression process,
An internal combustion engine in which the outlet sides of the adjustment valves of each cylinder are in communication with each other.
【請求項5】 請求項1又は請求項4において、ピスト
ンに接続されたクランク機構の位置をピストンの摺動方
向に移動させるクランク機構移動手段を設けた内燃機
関。
5. The internal combustion engine according to claim 1, further comprising crank mechanism moving means for moving a position of a crank mechanism connected to the piston in a sliding direction of the piston.
【請求項6】 請求項5において、前記クランク機構か
ら歯車列を介して回転出力を伝達される固定出力軸を設
け、前記クランク機構移動手段は、固定出力軸に連動す
る歯車の周面に沿って前記クランク機構を移動させるよ
うに構成した内燃機関。
6. The fixed output shaft according to claim 5, wherein a fixed output shaft for transmitting a rotation output from the crank mechanism via a gear train is provided, and the crank mechanism moving means is provided along a peripheral surface of the gear that is interlocked with the fixed output shaft. An internal combustion engine configured to move the crank mechanism.
JP5199286A 1993-07-15 1993-07-15 Internal combustion engine Pending JPH0734913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5199286A JPH0734913A (en) 1993-07-15 1993-07-15 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5199286A JPH0734913A (en) 1993-07-15 1993-07-15 Internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0734913A true JPH0734913A (en) 1995-02-03

Family

ID=16405277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5199286A Pending JPH0734913A (en) 1993-07-15 1993-07-15 Internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0734913A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980074003A (en) * 1997-03-21 1998-11-05 김영귀 Intake system of vehicle engine
JP2008213637A (en) * 2007-03-02 2008-09-18 Daihatsu Motor Co Ltd Hybrid engine
WO2013088886A1 (en) * 2011-12-13 2013-06-20 いすゞ自動車株式会社 Faulty combustion prevention system for diesel engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980074003A (en) * 1997-03-21 1998-11-05 김영귀 Intake system of vehicle engine
JP2008213637A (en) * 2007-03-02 2008-09-18 Daihatsu Motor Co Ltd Hybrid engine
WO2013088886A1 (en) * 2011-12-13 2013-06-20 いすゞ自動車株式会社 Faulty combustion prevention system for diesel engine
JP2013124549A (en) * 2011-12-13 2013-06-24 Isuzu Motors Ltd Abnormal combustion preventive system for diesel engine

Similar Documents

Publication Publication Date Title
US4174683A (en) High efficiency variable expansion ratio engine
KR101032012B1 (en) Premixed compression ignition type engine and method of controlling the same
US7472685B2 (en) Control method and control apparatus of internal combustion engine
US7481199B2 (en) Start control apparatus of internal combustion engine
JP2002276446A (en) Starting control device for internal combustion engine
US5020487A (en) Internal combustion engine with load-responsive valve control for combustion chamber scavenging
US5220890A (en) Variable compression device for two cycle diesel engine
JP2002285898A (en) Control device for internal combustion engine
JPH0225005B2 (en)
Lenz et al. Variable valve timing—A possibility to control engine load without throttle
US5694890A (en) Internal combustion engine with sliding valves
US8950376B2 (en) Multilink-type internal combustion engine
US6990938B2 (en) Valve mechanism for internal combustion engines
JP2001263099A (en) Controller for internal combustion engine
JP2009523962A (en) Two-cycle internal combustion engine with variable compression ratio and exhaust port shutter
JP2003314315A (en) Control device for internal combustion engine
JPH0734913A (en) Internal combustion engine
JPH0388907A (en) Adjustable valve system of internal combustion engine
US7685993B2 (en) Low cost variable swirl
JP2007239553A (en) Two-stroke engine
JPH09209725A (en) Internal combustion engine
JPH0580561B2 (en)
JPH0531659B2 (en)
JP2001263108A (en) Intake valve driving control device for internal combustion engine
JP2003161129A (en) Valve timing control device for engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees