JPH0734898A - Energy recovery device of high pressure hydrogen gas - Google Patents

Energy recovery device of high pressure hydrogen gas

Info

Publication number
JPH0734898A
JPH0734898A JP18387193A JP18387193A JPH0734898A JP H0734898 A JPH0734898 A JP H0734898A JP 18387193 A JP18387193 A JP 18387193A JP 18387193 A JP18387193 A JP 18387193A JP H0734898 A JPH0734898 A JP H0734898A
Authority
JP
Japan
Prior art keywords
hydrogen gas
expander
pressure
pressure hydrogen
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18387193A
Other languages
Japanese (ja)
Inventor
Kichinosuke Hanawa
吉之助 塙
Hiroshi Nishio
洋 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP18387193A priority Critical patent/JPH0734898A/en
Publication of JPH0734898A publication Critical patent/JPH0734898A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To almost eliminate the thrust force working on a drive shaft, and to remove a thrust bearing or to drastically reduce the size of the thrust bearing. CONSTITUTION:A double flow expander 8 for carrying out gas expansion from the intermediate part in the direction of a shaft to the both sides, is provided on a drive shaft 4 connected to a power generator 3, and an introduction tube 9 for introducing a high pressure hydrogen gas 2 is connected to the inlet 8a of the expander, while exhaust tubes 11 for exhausting a low pressure hydrogen gas 2' through a freezer/cooler 10 for cooling a heat exchanging medium 12, are connected to the outlets 8b, 8b of the expander 8. When the expander 8 is rotated and driven by introducing the high pressure hydrogen gas 2 cooler while the high pressure hydrogen gas 2 is expanded, the respective thrust forces generated from the inlet 8a of the expander 8 to the both outlets 8b, 8b work in the separating directions and are thus offset, and the thrust force working on the drive shaft 4 is thus almost eliminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高圧水素ガスのエネル
ギー回収装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy recovery system for high pressure hydrogen gas.

【0002】[0002]

【従来の技術】近年、次世代のエネルギー源として水素
ガスが注目されており、実際に水素ガスを燃料等として
利用する場合を想定すると、タンクやパイプ等の供給源
から水素ガスを導くことになると考えられるが、このと
き導かれる水素ガスは前記タンクの貯蔵効率やパイプの
輸送効率等を勘案すると当然高圧となり、そのまま燃料
等として利用するには圧力が高すぎる。
2. Description of the Related Art In recent years, hydrogen gas has been attracting attention as a next-generation energy source, and assuming that hydrogen gas is actually used as fuel, etc., it is necessary to introduce hydrogen gas from a supply source such as a tank or a pipe. However, the hydrogen gas introduced at this time naturally has a high pressure in consideration of the storage efficiency of the tank, the transportation efficiency of the pipe, etc., and the pressure is too high to be used as it is as fuel or the like.

【0003】そこで、図3に示す如く、タンクやパイプ
等の供給源から導入管1を介して導いた高圧水素ガス2
を発電機3の駆動軸4上に設けたエキスパンダ5の入口
5aに導入し、該導入した高圧水素ガス2をエキスパン
ダ5を回転駆動させる為の圧力源として利用しつつ膨張
させ、前記高圧水素ガス2の有する圧力エネルギーを電
力エネルギーとして有効に回収しながら高圧水素ガス2
を所望の圧力まで減圧し、前記エキスパンダ5の出口5
bに接続した排出管6より低圧水素ガス2’として図示
しない燃焼設備等へ供給するエネルギー回収装置が考え
られた。
Therefore, as shown in FIG. 3, high-pressure hydrogen gas 2 introduced from a supply source such as a tank or a pipe through an introduction pipe 1.
Is introduced into the inlet 5a of the expander 5 provided on the drive shaft 4 of the generator 3, and the high-pressure hydrogen gas 2 introduced is expanded while being used as a pressure source for rotationally driving the expander 5, High pressure hydrogen gas 2 while effectively recovering the pressure energy of hydrogen gas 2 as electric energy
To a desired pressure, and the outlet 5 of the expander 5
An energy recovery device that supplies low-pressure hydrogen gas 2'from a discharge pipe 6 connected to b to a combustion facility (not shown) has been considered.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た如きエネルギー回収装置では、エキスパンダ5により
高圧水素ガス2を膨張させる際に前記エキスパンダ5の
入口5a側から出口5b側に向けて大きなスラスト力が
作用する為、駆動軸4上の所要位置に大型のスラスト軸
受7を設けなければならず、これによって、エネルギー
回収装置の製作に手間を要すると共に製作コストが高騰
するという問題があった。
However, in the energy recovery device as described above, when the high pressure hydrogen gas 2 is expanded by the expander 5, a large thrust force is applied from the inlet 5a side to the outlet 5b side of the expander 5. Therefore, a large thrust bearing 7 has to be provided at a required position on the drive shaft 4, which causes a problem in that the energy recovery device requires time and labor and the manufacturing cost rises.

【0005】また、高圧水素ガス2を膨張させる際のス
ラスト力を極力抑制する為に図示の如き単段式のエキス
パンダ5とした場合は、高圧水素ガス2の膨張度合いを
大きくとることができなくなり、膨張前の高圧水素ガス
2と膨張後の低圧水素ガス2’との圧力比が制限される
という問題もあった。
Further, when the single-stage expander 5 shown in the drawing is used to suppress the thrust force when expanding the high-pressure hydrogen gas 2 as much as possible, the expansion degree of the high-pressure hydrogen gas 2 can be made large. There is also a problem that the pressure ratio between the high pressure hydrogen gas 2 before expansion and the low pressure hydrogen gas 2'after expansion is limited.

【0006】更に、高圧水素ガス2をエキスパンダ5に
より膨張させると、水素ガス温度は著しく低下してしま
うので、これを下流側の設備において燃料等として利用
しようとした場合に温度が低すぎて使い勝手が悪いとい
う不具合があった。
Further, when the high-pressure hydrogen gas 2 is expanded by the expander 5, the temperature of the hydrogen gas is remarkably lowered. Therefore, when the hydrogen gas is used as fuel or the like in the equipment on the downstream side, the temperature is too low. There was a problem that it was not easy to use.

【0007】本発明は斯かる実情に鑑みてなしたもの
で、前述した全ての問題を同時に解決し得る高圧水素ガ
スのエネルギー回収装置を提供することを目的としてい
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an energy recovery device for high-pressure hydrogen gas that can solve all the problems described above at the same time.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1に記載
の発明は、発電機に接続した駆動軸上に、軸方向中間部
から両側に向け或いは軸方向両側から中間部に向けガス
膨張を行うダブルフローエキスパンダを設け、該ダブル
フローエキスパンダの入口に高圧水素ガスを導く導入管
を接続し、前記ダブルフローエキスパンダの出口に熱交
換媒体を冷却する為の冷凍冷却器を経由して低圧水素ガ
スを排出する排出管を接続したことを特徴とする高圧水
素ガスのエネルギー回収装置、に係るものであり、本発
明の請求項2に記載の発明は、発電機に接続した駆動軸
上に、互に逆向きにガス膨張を行う高圧エキスパンダと
低圧エキスパンダを夫々設け、前記高圧エキスパンダの
入口に高圧水素ガスを導く導入管を接続し、前記高圧エ
キスパンダの出口と低圧エキスパンダの入口とを熱交換
媒体を冷却する為の再冷式冷凍冷却器を経由する連絡管
を介して接続し、前記低圧エキスパンダの出口に前記再
冷式冷凍冷却器を経由して低圧水素ガスを排出する排出
管を接続したことを特徴とする高圧水素ガスのエネルギ
ー回収装置、に係るものである。
According to a first aspect of the present invention, there is provided gas expansion on a drive shaft connected to a generator from an axially intermediate portion to both sides or from axially both sides to an intermediate portion. A double-flow expander for performing the above is provided, an inlet pipe for introducing high-pressure hydrogen gas is connected to the inlet of the double-flow expander, and the outlet of the double-flow expander is passed through a refrigerating cooler for cooling the heat exchange medium. The invention relates to a high-pressure hydrogen gas energy recovery device, characterized in that a discharge pipe for discharging low-pressure hydrogen gas is connected, and the invention according to claim 2 of the present invention is a drive shaft connected to a generator. A high-pressure expander and a low-pressure expander, which perform gas expansion in opposite directions to each other, are provided respectively, and an inlet pipe for introducing high-pressure hydrogen gas to the inlet of the high-pressure expander is connected to the outlet of the high-pressure expander. The low-pressure expander inlet is connected via a connecting pipe through a re-cooling type refrigerating cooler for cooling the heat exchange medium, and the low-pressure expander outlet is connected via the re-cooling type refrigerating cooler. The present invention relates to a high-pressure hydrogen gas energy recovery device, which is connected to a discharge pipe for discharging low-pressure hydrogen gas.

【0009】[0009]

【作用】従って本発明の請求項1に記載の発明では、導
入管を介して導いた高圧水素ガスをダブルフローエキス
パンダの入口に導入すると、前記高圧水素ガスの有する
圧力エネルギーによりダブルフローエキスパンダが回転
駆動され、その回転力が駆動軸を介して発電機に伝達さ
れて発電が行われると共に、前記高圧水素ガスは前記ダ
ブルフローエキスパンダにより膨張され、低圧水素ガス
となってダブルフローエキスパンダの出口から排出管に
排出される。
Therefore, according to the first aspect of the present invention, when the high-pressure hydrogen gas introduced through the introduction pipe is introduced into the inlet of the double-flow expander, the double-flow expander is generated by the pressure energy of the high-pressure hydrogen gas. Is rotationally driven, and its rotational force is transmitted to a generator via a drive shaft to generate electric power, and the high-pressure hydrogen gas is expanded by the double-flow expander to become low-pressure hydrogen gas and double-flow expander. It is discharged to the discharge pipe from the outlet of.

【0010】このとき、前記ダブルフローエキスパンダ
のガス膨張を行う方向に夫々発生するスラスト力は互に
逆方向に作用して相殺されるので、駆動軸に作用するス
ラスト力はほぼ喪失される。
At this time, the thrust forces generated in the gas expansion direction of the double flow expander act in opposite directions to cancel each other, so that the thrust force acting on the drive shaft is almost lost.

【0011】更に、前記排出管に排出された低圧水素ガ
スは、冷凍冷却器を経由する間に熱交換媒体との熱交換
により膨張直後の温度より昇温されて燃焼設備等へ供給
され、一方、前記冷凍冷却器内で膨張直後の低圧水素ガ
スと熱交換された熱交換媒体は、低温の冷却媒体として
低温熱需要のある設備へと供給される。
Further, the low-pressure hydrogen gas discharged to the discharge pipe is heated to a temperature immediately after expansion by heat exchange with the heat exchange medium while passing through the refrigerating cooler and supplied to the combustion equipment or the like. The heat exchange medium that has undergone heat exchange with the low-pressure hydrogen gas immediately after expansion in the refrigerating cooler is supplied to equipment having low-temperature heat demand as a low-temperature cooling medium.

【0012】また、本発明の請求項2に記載の発明で
は、導入管を介して導いた高圧水素ガスを高圧エキスパ
ンダの入口に導入すると、前記高圧水素ガスの有する圧
力エネルギーにより高圧エキスパンダが回転駆動される
と共に、該高圧エキスパンダにより前記高圧水素ガスが
膨張される。
According to the second aspect of the present invention, when the high-pressure hydrogen gas introduced through the introduction pipe is introduced into the inlet of the high-pressure expander, the high-pressure hydrogen gas causes the high-pressure expander to operate. While being driven to rotate, the high-pressure expander expands the high-pressure hydrogen gas.

【0013】更に、前記膨張された水素ガスは高圧エキ
スパンダの出口から連絡管に導かれ、再冷式冷凍冷却器
を経由する間に熱交換媒体との熱交換により高圧エキス
パンダでの膨張直後の温度より昇温されて低圧エキスパ
ンダの入口に導入され、該導入された水素ガスの有する
圧力エネルギーにより低圧エキスパンダが回転駆動され
ると共に、該低圧エキスパンダにより前記水素ガスは更
に膨張され、低圧水素ガスとなって低圧エキスパンダの
出口より排出管に排出される。
Further, the expanded hydrogen gas is introduced into the connecting pipe from the outlet of the high pressure expander, and immediately after expansion in the high pressure expander by heat exchange with the heat exchange medium while passing through the recooling type refrigerating cooler. Is introduced into the inlet of the low-pressure expander is raised from the temperature of, the low-pressure expander is rotationally driven by the pressure energy of the introduced hydrogen gas, the hydrogen gas is further expanded by the low-pressure expander, It becomes low-pressure hydrogen gas and is discharged to the discharge pipe from the outlet of the low-pressure expander.

【0014】このとき、前記高圧エキスパンダに発生す
るスラスト力と低圧エキスパンダに発生するスラスト力
は互に逆方向に作用して相殺されるので、駆動軸に作用
するスラスト力はほぼ喪失される。
At this time, the thrust force generated in the high-pressure expander and the thrust force generated in the low-pressure expander act in opposite directions to cancel each other, so that the thrust force acting on the drive shaft is almost lost. .

【0015】更に、前記排出管に排出された低圧水素ガ
スは、前記再冷式冷凍冷却器を再度経由される間に熱交
換媒体との熱交換により膨張直後の温度より昇温されて
燃焼設備等へ供給され、一方、前記再冷式冷凍冷却器内
で高圧エキスパンダからの膨張直後の水素ガス、及び低
圧エキスパンダからの膨張直後の低圧水素ガスに対し二
度に亘って熱交換された熱交換媒体は、極低温の冷却媒
体として極低温熱需要のある設備へと供給される。
Further, the low-pressure hydrogen gas discharged to the discharge pipe is heated from the temperature immediately after expansion due to heat exchange with the heat exchange medium while passing through the recooling type refrigerating cooler again, and the combustion equipment is heated. Etc., on the other hand, in the re-cooling type refrigeration cooler, heat was exchanged twice with hydrogen gas immediately after expansion from the high pressure expander and low pressure hydrogen gas immediately after expansion from the low pressure expander. The heat exchange medium is supplied as a cryogenic cooling medium to equipment that has a cryogenic heat demand.

【0016】[0016]

【実施例】以下本発明の実施例を図面を参照しつつ説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は本発明の請求項1に記載の発明の一
実施例を示すもので、図3と同一の符号を付した部分は
同一物を表わしている。
FIG. 1 shows an embodiment of the invention described in claim 1 of the present invention, and the portions denoted by the same reference numerals as those in FIG. 3 represent the same things.

【0018】図示する如く、発電機3に接続した駆動軸
4上に、軸方向中間部から両側に向けガス膨張を行うダ
ブルフローエキスパンダ8を設け、該ダブルフローエキ
スパンダ8の軸方向中間部の入口8aに、図示しないタ
ンクやパイプ等の供給源から高圧水素ガス2を導く導入
管9を接続し、前記ダブルフローエキスパンダ8の軸方
向両側の出口8b,8bには、熱交換媒体12を冷却す
る為の冷凍冷却器10を経由して低圧水素ガス2’を図
示しない燃焼設備等へと排出する排出管11を接続す
る。
As shown in the figure, a double flow expander 8 for expanding gas from the axially intermediate portion to both sides is provided on the drive shaft 4 connected to the generator 3, and the axially intermediate portion of the double flow expander 8 is provided. An inlet pipe 9 for guiding the high-pressure hydrogen gas 2 from a supply source such as a tank or a pipe (not shown) is connected to the inlet 8a of the double-flow expander 8 at the outlets 8b and 8b on both sides in the axial direction. A discharge pipe 11 for discharging the low-pressure hydrogen gas 2 ′ to a combustion facility or the like (not shown) is connected via a refrigerating / cooling device 10 for cooling the.

【0019】而して、タンクやパイプ等の供給源から導
入管9を介して導いた高圧水素ガス2をダブルフローエ
キスパンダ8の入口8aに導入すると、前記高圧水素ガ
ス2の有する圧力エネルギーによりダブルフローエキス
パンダ8が回転駆動され、その回転力が駆動軸4を介し
て発電機3に伝達されて発電が行われると共に、前記高
圧水素ガス2は前記ダブルフローエキスパンダ8の軸方
向両側に分岐されて夫々膨張され、低圧水素ガス2’と
なって各出口8b,8bから排出管11に排出される。
When the high-pressure hydrogen gas 2 introduced from the supply source such as a tank or a pipe through the introduction pipe 9 is introduced into the inlet 8a of the double flow expander 8, the pressure energy of the high-pressure hydrogen gas 2 causes The double flow expander 8 is rotationally driven, the rotational force is transmitted to the generator 3 via the drive shaft 4 to generate electric power, and the high-pressure hydrogen gas 2 is applied to both sides of the double flow expander 8 in the axial direction. It is branched and expanded, respectively, and becomes low-pressure hydrogen gas 2 ', which is discharged from the outlets 8b, 8b to the discharge pipe 11.

【0020】このとき、前記ダブルフローエキスパンダ
8の入口8aから両出口8b,8bに向けて夫々発生す
るスラスト力は互に離反する方向に作用して相殺される
ので、駆動軸4に作用するスラスト力はほぼ喪失され
る。
At this time, the thrust forces generated from the inlet 8a of the double flow expander 8 toward both outlets 8b, 8b act in directions away from each other and cancel each other out, so that they act on the drive shaft 4. The thrust force is almost lost.

【0021】更に、前記排出管11に排出された低圧水
素ガス2’は、冷凍冷却器10を経由する間に熱交換媒
体12との熱交換により膨張直後の温度より昇温されて
燃焼設備等へ供給され、一方、前記冷凍冷却器10内で
膨張直後の低圧水素ガス2’と熱交換された熱交換媒体
12は、低温の冷却媒体12’として低温熱需要のある
設備へと供給される。
Further, the low-pressure hydrogen gas 2'exhausted into the exhaust pipe 11 is heated to a temperature immediately after expansion due to heat exchange with the heat exchange medium 12 while passing through the refrigerating cooler 10, and combustion equipment, etc. On the other hand, the heat exchange medium 12 that has been heat-exchanged with the low-pressure hydrogen gas 2 ′ immediately after expansion in the refrigerating cooler 10 is supplied as a low-temperature cooling medium 12 ′ to equipment with low-temperature heat demand. .

【0022】従って本実施例によれば、高圧水素ガス2
の有する圧力エネルギーを電力エネルギーとして有効に
回収しながら高圧水素ガス2を所望の圧力まで減圧する
ことができ、しかも駆動軸4に作用するスラスト力をほ
ぼ喪失させることができるので、スラスト軸受7(図3
参照)を撤去若しくは著しく小型化することができ、製
作上の手間を著しく軽減することができると共に製作コ
ストを大幅に削減することができる。
Therefore, according to this embodiment, the high-pressure hydrogen gas 2
Since the high-pressure hydrogen gas 2 can be depressurized to a desired pressure while effectively recovering the pressure energy possessed by the electric power energy, and the thrust force acting on the drive shaft 4 can be almost lost, the thrust bearing 7 ( Figure 3
(Refer to FIG. 4) can be removed or the size can be remarkably reduced, the labor for manufacturing can be remarkably reduced, and the manufacturing cost can be significantly reduced.

【0023】また、ダブルフローエキスパンダ8の入口
8aから両出口8b,8bに向けて夫々発生するスラス
ト力のバランスが保持されていれば特に制約なくダブル
フローエキスパンダ8の大型化を図ることができるの
で、従来の単段式のエキスパンダ5(図3参照)と比較
して高圧水素ガス2の膨張度合いを大きくすることがで
き、膨張前の高圧水素ガス2と膨張後の低圧水素ガス
2’との圧力比の制限を大幅に緩和することができる。
If the balance of the thrust forces generated from the inlet 8a of the double flow expander 8 toward both outlets 8b, 8b is maintained, the size of the double flow expander 8 can be increased without any particular limitation. Therefore, the expansion degree of the high-pressure hydrogen gas 2 can be increased as compared with the conventional single-stage expander 5 (see FIG. 3), and the high-pressure hydrogen gas 2 before expansion and the low-pressure hydrogen gas 2 after expansion can be obtained. 'The pressure ratio restriction with can be greatly relaxed.

【0024】更に、ダブルフローエキスパンダ8により
膨張されて温度低下した低圧水素ガス2’を、排出管1
1により冷凍冷却器10を経由させる間に熱交換媒体1
2との熱交換により昇温することができるので、下流側
の燃焼設備等に供給することにより燃料等として温度的
な支障なく良好に利用することができる。
Further, the low pressure hydrogen gas 2'expanded by the double flow expander 8 and lowered in temperature is discharged from the exhaust pipe 1.
1, the heat exchange medium 1 while passing through the refrigerating cooler 10
Since the temperature can be raised by exchanging heat with 2, it can be used favorably as a fuel or the like without a temperature problem by supplying it to a downstream combustion facility or the like.

【0025】一方、前記冷凍冷却器10内において膨張
直後の低圧水素ガス2’と熱交換された熱交換媒体12
は、低温熱需要のある設備へ低温の冷却媒体12’とし
て供給することにより有効に利用することができる。
On the other hand, the heat exchange medium 12 that has exchanged heat with the low-pressure hydrogen gas 2 ′ immediately after expansion in the refrigerating and cooling device 10.
Can be effectively used by supplying it as a low-temperature cooling medium 12 'to equipment with low-temperature heat demand.

【0026】図2は本発明の請求項2に記載の発明の一
実施例を示すもので、発電機3に接続した駆動軸4上
に、互に逆向きにガス膨張を行う高圧エキスパンダ13
と低圧エキスパンダ14を夫々設け、前記高圧エキスパ
ンダ13の入口13aに高圧水素ガス2を導く導入管1
5を接続し、前記高圧エキスパンダ13の出口13bと
低圧エキスパンダ14の入口14aとを熱交換媒体12
を冷却する為の再冷式冷凍冷却器16を経由する連絡管
17を介して接続し、前記低圧エキスパンダ14の出口
14bに前記再冷式冷凍冷却器16を経由して低圧水素
ガス2’を排出する排出管18を接続してある。
FIG. 2 shows an embodiment of the invention according to claim 2 of the present invention, in which a high pressure expander 13 for performing gas expansion in opposite directions on a drive shaft 4 connected to a generator 3 is provided.
And a low-pressure expander 14, respectively, and an introduction pipe 1 for introducing high-pressure hydrogen gas 2 to the inlet 13a of the high-pressure expander 13.
5, the outlet 13b of the high-pressure expander 13 and the inlet 14a of the low-pressure expander 14 are connected to each other by the heat exchange medium 12
The low pressure hydrogen gas 2 ′ is connected to the outlet 14 b of the low pressure expander 14 via the recooling refrigerating cooler 16 and is connected via a communication pipe 17 passing through the recooling refrigerating cooler 16. A discharge pipe 18 for discharging the is connected.

【0027】この実施例の場合には、タンクやパイプ等
の供給源から導入管15を介して導いた高圧水素ガス2
を高圧エキスパンダ13の入口13aに導入すると、前
記高圧水素ガス2の有する圧力エネルギーにより高圧エ
キスパンダ13が回転駆動されると共に、該高圧エキス
パンダ13により前記高圧水素ガス2が膨張される。
In the case of this embodiment, the high-pressure hydrogen gas 2 introduced from a supply source such as a tank or a pipe through the introduction pipe 15
Is introduced into the inlet 13a of the high-pressure expander 13, the high-pressure expander 13 is rotationally driven by the pressure energy of the high-pressure hydrogen gas 2, and the high-pressure hydrogen gas 2 is expanded by the high-pressure expander 13.

【0028】更に、前記膨張された水素ガスは高圧エキ
スパンダ13の出口13bから連絡管17に導かれ、再
冷式冷凍冷却器16を経由する間に熱交換媒体12との
熱交換により高圧エキスパンダ13での膨張直後の温度
より昇温されて低圧エキスパンダ14の入口14aに導
入され、該導入された水素ガス2の有する圧力エネルギ
ーにより低圧エキスパンダ14が回転駆動されると共
に、該低圧エキスパンダ14により前記水素ガス2は更
に膨張され、低圧水素ガス2’となって低圧エキスパン
ダ14の出口14bより排出管18に排出される。
Further, the expanded hydrogen gas is introduced from the outlet 13b of the high-pressure expander 13 to the connecting pipe 17, and while passing through the re-cooling type refrigerating cooler 16, the high-pressure extract is obtained by heat exchange with the heat exchange medium 12. The temperature is raised from the temperature immediately after expansion in the panda 13 and introduced into the inlet 14a of the low-pressure expander 14, and the low-pressure expander 14 is rotationally driven by the pressure energy of the introduced hydrogen gas 2, and the low-pressure expander is also driven. The hydrogen gas 2 is further expanded by the expander 14 to become low-pressure hydrogen gas 2 ', which is discharged from the outlet 14b of the low-pressure expander 14 to the discharge pipe 18.

【0029】このとき、前記高圧エキスパンダ13に発
生するスラスト力と低圧エキスパンダ14に発生するス
ラスト力は互に離反する方向に作用して相殺されるの
で、駆動軸4に作用するスラスト力はほぼ喪失される。
At this time, the thrust force generated in the high-pressure expander 13 and the thrust force generated in the low-pressure expander 14 act in directions in which they are separated from each other and cancel each other, so that the thrust force acting on the drive shaft 4 is Almost lost.

【0030】更に、前記排出管18に排出された低圧水
素ガス2’は、前記再冷式冷凍冷却器16を再度経由さ
れる間に熱交換媒体12との熱交換により膨張直後の温
度より昇温されて燃焼設備等へ供給され、一方、前記再
冷式冷凍冷却器16内で高圧エキスパンダ13からの膨
張直後の水素ガス2、及び低圧エキスパンダ14からの
膨張直後の低圧水素ガス2’に対し二度に亘って熱交換
された熱交換媒体12は、極低温の冷却媒体12’とし
て極低温熱需要のある設備へと供給される。
Further, the low-pressure hydrogen gas 2 ′ discharged to the discharge pipe 18 rises above the temperature immediately after expansion due to heat exchange with the heat exchange medium 12 while passing through the recooling type refrigerating cooler 16 again. The gas is heated and supplied to a combustion facility or the like, while the hydrogen gas 2 immediately after expansion from the high-pressure expander 13 and the low-pressure hydrogen gas 2 ′ immediately after expansion from the low-pressure expander 14 in the re-cooling type refrigerating cooler 16 are supplied. On the other hand, the heat exchange medium 12 that has been heat-exchanged twice is supplied to the equipment having a cryogenic heat demand as the cryogenic cooling medium 12 '.

【0031】従って、本実施例によれば、前述した図1
の実施例と同様に、高圧水素ガス2の有する圧力エネル
ギーを電力エネルギーとして有効に回収しながら高圧水
素ガス2を所望の圧力まで減圧することができ、しかも
駆動軸4に作用するスラスト力をほぼ喪失させることが
できるので、スラスト軸受7(図3参照)を撤去若しく
は著しく小型化することができ、製作上の手間を著しく
軽減することができると共に製作コストを大幅に削減す
ることができる。
Therefore, according to this embodiment, as shown in FIG.
Similarly to the embodiment described above, the high-pressure hydrogen gas 2 can be depressurized to a desired pressure while effectively recovering the pressure energy of the high-pressure hydrogen gas 2 as electric power energy, and the thrust force acting on the drive shaft 4 can be substantially reduced. Since it can be lost, the thrust bearing 7 (see FIG. 3) can be removed or remarkably downsized, the labor for production can be remarkably reduced, and the production cost can be remarkably reduced.

【0032】また、高圧エキスパンダ13と低圧エキス
パンダ14に夫々発生するスラスト力のバランスが保持
されていれば特に制約なく高圧エキスパンダ13と低圧
エキスパンダ14の大型化を図ることができるので、従
来の単段式のエキスパンダ5(図3参照)と比較して高
圧水素ガス2の膨張度合いを大きくすることができ、膨
張前の高圧水素ガス2と膨張後の低圧水素ガス2’との
圧力比の制限を大幅に緩和することができる。
Further, if the balance of the thrust forces generated in the high pressure expander 13 and the low pressure expander 14 is maintained, the high pressure expander 13 and the low pressure expander 14 can be increased in size without any particular limitation. Compared with the conventional single-stage expander 5 (see FIG. 3), the expansion degree of the high-pressure hydrogen gas 2 can be increased, and the high-pressure hydrogen gas 2 before expansion and the low-pressure hydrogen gas 2'after expansion The pressure ratio limitation can be significantly eased.

【0033】更に、高圧エキスパンダ13により膨張さ
れて温度低下した水素ガス2を、連絡管17により再冷
式冷凍冷却器16を経由させる間に熱交換媒体12との
熱交換により昇温することができるので、高圧エキスパ
ンダ13により膨張された水素ガス2を用いても低圧エ
キスパンダ14を良好に回転駆動して十分な出力(発電
機による電力エネルギー)を得ることができ、しかも、
低圧エキスパンダ14により膨張されて温度低下した低
圧水素ガス2’を、排出管18により再冷式冷凍冷却器
16を再度経由させる間に熱交換媒体12との熱交換に
より昇温することができるので、下流側の燃焼設備等に
供給することにより燃料等として温度的な支障なく良好
に利用することができる。
Further, the temperature of the hydrogen gas 2 expanded by the high-pressure expander 13 and lowered in temperature is raised by heat exchange with the heat exchange medium 12 while passing through the re-cooling type refrigerating cooler 16 by the connecting pipe 17. Therefore, even if the hydrogen gas 2 expanded by the high-pressure expander 13 is used, the low-pressure expander 14 can be rotatably driven well and a sufficient output (electric power energy by the generator) can be obtained.
The low-pressure hydrogen gas 2'expanded by the low-pressure expander 14 and lowered in temperature can be heated by heat exchange with the heat-exchange medium 12 while the exhaust pipe 18 re-passes through the recooling type refrigerating cooler 16. Therefore, by supplying it to the combustion equipment on the downstream side, it can be favorably used as fuel or the like without a temperature problem.

【0034】一方、前記再冷式冷凍冷却器16内におい
て高圧エキスパンダ13からの膨張直後の水素ガス2、
及び低圧エキスパンダ14からの膨張直後の低圧水素ガ
ス2’に対し熱交換媒体12を二度に亘って熱交換する
ことができるので、極低温の冷却媒体12’を得ること
ができ、これを極低温熱需要のある設備へと供給するこ
とにより有効に利用することができる。
On the other hand, in the recooling type refrigerating cooler 16, the hydrogen gas 2 immediately after expansion from the high pressure expander 13
And since the heat exchange medium 12 can be heat-exchanged twice with the low pressure hydrogen gas 2 ′ immediately after expansion from the low pressure expander 14, a cryogenic cooling medium 12 ′ can be obtained. It can be effectively used by supplying it to equipment with a demand for cryogenic heat.

【0035】尚、本発明の高圧水素ガスのエネルギー回
収装置は、上述の実施例にのみ限定されるものではな
く、図1では軸方向中間部から両側に向けガス膨張を行
うようにしたダブルフローエキスパンダを図示したが、
軸方向両側から中間部に向けガス膨張を行うようにした
ダブルフローエキスパンダを用いても良いこと、また図
2では高圧エキスパンダと低圧エキスパンダのガス膨張
を行う向きを互に離反する方向に向けて図示したが、図
示とは逆に高圧エキスパンダと低圧エキスパンダのガス
膨張を行う向きを互に相対する方向に向けても良いこ
と、その他、本発明の要旨を逸脱しない範囲内において
種々変更を加え得ることは勿論である。
The high-pressure hydrogen gas energy recovery apparatus of the present invention is not limited to the above-described embodiment, and in FIG. 1, a double flow is adapted to perform gas expansion from the axial middle portion to both sides. I've shown the expander,
It is also possible to use a double flow expander that expands gas from both sides in the axial direction toward the middle part, and in FIG. 2, the directions in which the high pressure expander and the low pressure expander perform gas expansion are separated from each other. Although shown for the sake of illustration, the directions of gas expansion of the high-pressure expander and the low-pressure expander may be opposite to each other in the opposite direction to each other, and in addition, variously within a range not departing from the gist of the present invention. Of course, changes can be made.

【0036】[0036]

【発明の効果】上記した本発明の高圧水素ガスのエネル
ギー回収装置によれば、下記の如き種々の優れた効果を
奏し得る。
According to the energy recovery system for high-pressure hydrogen gas of the present invention described above, various excellent effects as described below can be obtained.

【0037】(I) 高圧水素ガスの有する圧力エネル
ギーを電力エネルギーとして有効に回収しながら高圧水
素ガスを所望の圧力まで減圧することができ、しかも駆
動軸に作用するスラスト力をほぼ喪失させることができ
るので、スラスト軸受を撤去若しくは著しく小型化する
ことができ、製作上の手間を著しく軽減することができ
ると共に製作コストを大幅に削減することができる。
(I) The high-pressure hydrogen gas can be decompressed to a desired pressure while effectively recovering the pressure energy of the high-pressure hydrogen gas as electric power energy, and the thrust force acting on the drive shaft can be almost lost. Therefore, the thrust bearing can be removed or the size can be remarkably reduced, the labor for manufacturing can be remarkably reduced, and the manufacturing cost can be remarkably reduced.

【0038】(II) 従来の単段式のエキスパンダと
比較して高圧水素ガスの膨張度合いを大きくすることが
でき、膨張前の高圧水素ガスと膨張後の低圧水素ガスと
の圧力比の制限を大幅に緩和することができる。
(II) The expansion degree of the high-pressure hydrogen gas can be increased as compared with the conventional single-stage expander, and the pressure ratio between the high-pressure hydrogen gas before expansion and the low-pressure hydrogen gas after expansion is limited. Can be significantly eased.

【0039】(III) 膨張されて温度低下した低圧
水素ガスを、排出管により冷凍冷却器を経由させる間に
熱交換媒体との熱交換により昇温することができるの
で、下流側の燃焼設備等に供給することにより燃料等と
して温度的な支障なく良好に利用することができる。
(III) Since the low-pressure hydrogen gas that has been expanded and decreased in temperature can be heated by heat exchange with the heat exchange medium while passing through the refrigerating cooler through the discharge pipe, combustion equipment on the downstream side, etc. Can be used favorably as a fuel or the like without causing a temperature problem.

【0040】(IV) 冷凍冷却器内において膨張直後
の低圧水素ガスと熱交換された熱交換媒体は、低温熱需
要のある設備へ低温の冷却媒体として供給することによ
り有効に利用することができる。
(IV) The heat exchange medium, which has been heat-exchanged with the low-pressure hydrogen gas immediately after expansion in the refrigerating cooler, can be effectively used by supplying it as a low-temperature cooling medium to equipment having low-temperature heat demand. .

【0041】(V) 特に請求項2に記載の発明によれ
ば、高圧エキスパンダにより膨張されて温度低下した水
素ガスを、連絡管により再冷式冷凍冷却器を経由させる
間に熱交換媒体との熱交換により昇温することができる
ので、高圧エキスパンダにより膨張された水素ガスを用
いても低圧エキスパンダを良好に回転駆動して十分な出
力(発電機による電力エネルギー)を得ることができ
る。
(V) In particular, according to the invention described in claim 2, the hydrogen gas expanded by the high-pressure expander and lowered in temperature is used as a heat exchange medium while passing through the re-cooling type refrigerating cooler through the connecting pipe. Since the temperature can be raised by the heat exchange of the low pressure expander, the low pressure expander can be rotatably driven well and sufficient output (electric power energy from the generator) can be obtained even if hydrogen gas expanded by the high pressure expander is used. .

【0042】(VI) 特に請求項2に記載の発明によ
れば、前記再冷式冷凍冷却器内において高圧エキスパン
ダからの膨張直後の水素ガス、及び低圧エキスパンダか
らの膨張直後の低圧水素ガスに対し熱交換媒体を二度に
亘って熱交換することができるので、極低温の冷却媒体
を得ることができ、これを極低温熱需要のある設備へと
供給することにより有効に利用することができる。
(VI) Particularly, according to the invention described in claim 2, hydrogen gas immediately after expansion from the high-pressure expander and low-pressure hydrogen gas immediately after expansion from the low-pressure expander in the recooling type refrigerating cooler. On the other hand, since the heat exchange medium can be heat-exchanged twice, a cryogenic cooling medium can be obtained, and it can be effectively used by supplying it to equipment with cryogenic heat demand. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1に記載の発明の一実施例を示
す概略図である。
FIG. 1 is a schematic view showing an embodiment of the invention described in claim 1 of the present invention.

【図2】本発明の請求項2に記載の発明の一実施例を示
す概略図である。
FIG. 2 is a schematic view showing an embodiment of the invention described in claim 2 of the present invention.

【図3】従来例を示す概略図である。FIG. 3 is a schematic view showing a conventional example.

【符号の説明】[Explanation of symbols]

2 高圧水素ガス 2’ 低圧水素ガス 3 発電機 4 駆動軸 8 ダブルフローエキスパンダ 8a 入口 8b 出口 9 導入管 10 冷凍冷却器 11 排出管 12 熱交換媒体 13 高圧エキスパンダ 13a 入口 13b 出口 14 低圧エキスパンダ 14a 入口 14b 出口 15 導入管 16 再冷式冷凍冷却器 17 連絡管 18 排出管 2 high-pressure hydrogen gas 2'low-pressure hydrogen gas 3 generator 4 drive shaft 8 double-flow expander 8a inlet 8b outlet 9 introduction pipe 10 refrigerating cooler 11 discharge pipe 12 heat exchange medium 13 high-pressure expander 13a inlet 13b outlet 14 low-pressure expander 14a Inlet 14b Outlet 15 Introducing pipe 16 Recooling type refrigerating cooler 17 Connecting pipe 18 Discharging pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 発電機に接続した駆動軸上に、軸方向中
間部から両側に向け或いは軸方向両側から中間部に向け
ガス膨張を行うダブルフローエキスパンダを設け、該ダ
ブルフローエキスパンダの入口に高圧水素ガスを導く導
入管を接続し、前記ダブルフローエキスパンダの出口に
熱交換媒体を冷却する為の冷凍冷却器を経由して低圧水
素ガスを排出する排出管を接続したことを特徴とする高
圧水素ガスのエネルギー回収装置。
1. A double flow expander is provided on a drive shaft connected to a generator, the gas expands from an axially intermediate portion toward both sides or from both axial directions toward an intermediate portion, and an inlet of the double flow expander. A high-pressure hydrogen gas is connected to an inlet pipe, and a discharge pipe for discharging low-pressure hydrogen gas via a refrigerating cooler for cooling the heat exchange medium is connected to the outlet of the double flow expander. High-pressure hydrogen gas energy recovery device.
【請求項2】 発電機に接続した駆動軸上に、互に逆向
きにガス膨張を行う高圧エキスパンダと低圧エキスパン
ダを夫々設け、前記高圧エキスパンダの入口に高圧水素
ガスを導く導入管を接続し、前記高圧エキスパンダの出
口と低圧エキスパンダの入口とを熱交換媒体を冷却する
為の再冷式冷凍冷却器を経由する連絡管を介して接続
し、前記低圧エキスパンダの出口に前記再冷式冷凍冷却
器を経由して低圧水素ガスを排出する排出管を接続した
ことを特徴とする高圧水素ガスのエネルギー回収装置。
2. A high-pressure expander and a low-pressure expander, which perform gas expansion in opposite directions, are provided on a drive shaft connected to a generator, and an introduction pipe for introducing high-pressure hydrogen gas to the inlet of the high-pressure expander is provided. Connected, the outlet of the high-pressure expander and the inlet of the low-pressure expander are connected via a connecting pipe passing through a recooling type refrigeration cooler for cooling the heat exchange medium, and the outlet of the low-pressure expander An energy recovery device for high-pressure hydrogen gas, characterized in that a discharge pipe for discharging low-pressure hydrogen gas is connected via a recooling type refrigeration cooler.
JP18387193A 1993-07-26 1993-07-26 Energy recovery device of high pressure hydrogen gas Pending JPH0734898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18387193A JPH0734898A (en) 1993-07-26 1993-07-26 Energy recovery device of high pressure hydrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18387193A JPH0734898A (en) 1993-07-26 1993-07-26 Energy recovery device of high pressure hydrogen gas

Publications (1)

Publication Number Publication Date
JPH0734898A true JPH0734898A (en) 1995-02-03

Family

ID=16143291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18387193A Pending JPH0734898A (en) 1993-07-26 1993-07-26 Energy recovery device of high pressure hydrogen gas

Country Status (1)

Country Link
JP (1) JPH0734898A (en)

Similar Documents

Publication Publication Date Title
US5634340A (en) Compressed gas energy storage system with cooling capability
EP2035711B1 (en) Multistage compressor device
JP6781166B2 (en) Regenerative thermodynamic power cycle system and how to operate it
US9976448B2 (en) Regenerative thermodynamic power generation cycle systems, and methods for operating thereof
US11408648B2 (en) Refrigeration device and method
JP3114005B2 (en) Gas turbine intake cooling system and operation method thereof
GB2065284A (en) Method of and system for refrigerating a fluid to bi cooled down to a low temperature
WO2017073433A1 (en) Heat pump
US5555745A (en) Refrigeration system
JPH0792323B2 (en) How to liquefy a permanent gas stream
JP4041036B2 (en) Supercritical cooling system
JPH0734898A (en) Energy recovery device of high pressure hydrogen gas
JPH1019402A (en) Low temperature refrigeration system by gas turbine
JP2001090509A (en) Cryogenic power generating system using liquid air
JP2004012110A (en) Air conditioner
JPS6079125A (en) Closed cycle power transmission system utilizing isothermal compressor
US11384768B2 (en) Compression device and method and refrigeration machine
AU2018350939B2 (en) Compression device and method
JP2003056312A (en) Closed-cycle gas turbine and power generation system using the gas turbine
JP2003097859A (en) Method and device for generating cold
US20240068400A1 (en) Electrical power producing device
JPH07139829A (en) Refrigeration cycle
KR20230144567A (en) Devices and methods for liquefying fluids such as hydrogen and/or helium
JP2023537492A (en) Simple cryogenic refrigeration system
JPH07190523A (en) Refrigerating cycle