JPH0734825A - Intake/exhaust valve drive control device of internal combustion engine - Google Patents

Intake/exhaust valve drive control device of internal combustion engine

Info

Publication number
JPH0734825A
JPH0734825A JP18358093A JP18358093A JPH0734825A JP H0734825 A JPH0734825 A JP H0734825A JP 18358093 A JP18358093 A JP 18358093A JP 18358093 A JP18358093 A JP 18358093A JP H0734825 A JPH0734825 A JP H0734825A
Authority
JP
Japan
Prior art keywords
cam
shaft
drive shaft
intake
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18358093A
Other languages
Japanese (ja)
Inventor
Yoshihiko Yamada
吉彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Unisia Jecs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unisia Jecs Corp filed Critical Unisia Jecs Corp
Priority to JP18358093A priority Critical patent/JPH0734825A/en
Publication of JPH0734825A publication Critical patent/JPH0734825A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the control range of the valve timing by efficiently transferring the movement of a moving means to a disk housing, secure the required output according to the operational condition of the engine, and improve the fuel consumption. CONSTITUTION:The changes in the angular velocity of a disk housing 34 which is interposed between a driving shaft 21 and a cam shaft 22, and swayed by the rotation of an eccentric cam 41 and the cam shaft 22 where the center (Y) is made eccentric from the axial center (X) of the driving shaft 21 accompanied by the swaying of the disk housing 34 are obtained. The rotational direction of the eccentric cam 41 is set to be approximately parallel to the moving direction (the arrow direction) of the disk housing 34.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の運転状態に
応じて吸気・排気弁の開閉時期を可変制御する吸排気弁
駆動制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an intake / exhaust valve drive control device for variably controlling the opening / closing timing of intake / exhaust valves according to the operating state of an internal combustion engine.

【0002】[0002]

【従来の技術】この種の従来の装置としては種々提供さ
れているが、その一つとして例えば本出願人が先に出願
した特願平4−157909号に記載されたものがあ
る。
2. Description of the Related Art Various conventional devices of this type have been provided, and one of them is described, for example, in Japanese Patent Application No. 4-157909 filed by the present applicant.

【0003】図10に基づいて概略を説明すれば、機関
のクランク軸からスプロケットを介して回転駆動する駆
動軸1と、該駆動軸1の外周に相対回転自在に設けら
れ、かつ気筒毎に分割形成された複数のカムシャフト2
と、該各カムシャフト2の間に配置され、駆動軸1の軸
心Xに対して略径方向へ揺動自在に設けられた複数の環
状ディスクハウジング3と、該各ディスクハウジング3
の内周支持孔4に回転自在に支持され、かつ駆動軸1と
カムシャフト2とを一対のピン10,11を介して連繋
しつつディスクハウジング3の揺動に伴い中心Yが駆動
軸1の軸心Xと偏心動するディスク5とを備えている。
The outline will be described with reference to FIG. 10. A drive shaft 1 is rotatably driven from a crankshaft of an engine through a sprocket, and is provided on the outer periphery of the drive shaft 1 so as to be rotatable relative to each other and divided into cylinders. Formed camshafts 2
And a plurality of annular disc housings 3 arranged between the camshafts 2 and swingable in a substantially radial direction with respect to the axis X of the drive shaft 1, and the disc housings 3
Is rotatably supported in the inner peripheral support hole 4 of the drive shaft 1, and while the drive shaft 1 and the cam shaft 2 are connected via a pair of pins 10 and 11, the center Y of the drive shaft 1 is the center of the drive shaft 1 as the disc housing 3 swings. It has an axis X and an eccentric disk 5.

【0004】前記カムシャフト2は、外周に1気筒当た
り2つ設けられた吸気弁をバルブスプリングのばね力に
抗して開作動させる一対のカム2aが一体に設けられて
いる。
The camshaft 2 is integrally provided with a pair of cams 2a for opening and operating two intake valves per cylinder on the outer circumference against the spring force of a valve spring.

【0005】前記ディスクハウジング3は、上端のボス
部3a一端に形成されたU字溝6内に係合した支軸7に
よって図中矢印方向へ揺動自在に支持されている一方、
ボス部3a他端に形成されたカム孔8内に保持された偏
心カム9の回転によって揺動するようになっている。ま
た、この偏心カム9には、図外の油圧アクチュエータか
ら回転力が付与される制御シャフト12が連結固定され
ている。
The disk housing 3 is swingably supported in the direction of the arrow in the figure by a support shaft 7 engaged in a U-shaped groove 6 formed at one end of the boss portion 3a at the upper end.
The eccentric cam 9 held in a cam hole 8 formed at the other end of the boss portion 3a swings by rotation. A control shaft 12 to which a rotational force is applied from a hydraulic actuator (not shown) is connected and fixed to the eccentric cam 9.

【0006】そして、機関運転状態の変化に伴い前記油
圧アクチュエータによって制御シャフト12を所定角度
まで回転させると、偏心カム9が一方向へ所定の角度範
囲θで回転する。したがって、ディスクハウジング3
は、U字溝6の内周面が支軸7の外周面を摺接しつつ該
支軸7を支点として、図中矢印方向に揺動する。これに
伴いディスク5も同様に揺動して、図示のようにその中
心Yが駆動軸1の軸心Xから偏心する。
Then, when the control shaft 12 is rotated by a predetermined angle by the hydraulic actuator in accordance with a change in engine operating state, the eccentric cam 9 rotates in one direction within a predetermined angle range θ. Therefore, the disc housing 3
Of the U-shaped groove 6 swings in the direction of the arrow in the drawing with the inner peripheral surface of the U-shaped groove 6 slidingly contacting the outer peripheral surface of the support shaft 7 with the support shaft 7 as the fulcrum. Along with this, the disk 5 also swings, and the center Y thereof is eccentric from the axis X of the drive shaft 1 as shown in the figure.

【0007】依って、駆動軸1の1回転毎に、ディスク
5の回転位相が駆動軸1に対して変化し、同時にカムシ
ャフト2のカム2aの回転位相もディスク5に対して変
化する。したがって、カム2aは、駆動軸に対して、デ
ィスク5の駆動軸1に対する位相差の2倍の位相差で回
転し角速度が変化する。この結果、バルブタイミング
を、カム2aの角速度の変化に応じて可変にすることが
可能になる。
Therefore, the rotation phase of the disk 5 changes with respect to the drive shaft 1 at each rotation of the drive shaft 1, and at the same time, the rotation phase of the cam 2a of the camshaft 2 also changes with respect to the disk 5. Therefore, the cam 2a rotates with a phase difference twice the phase difference with respect to the drive shaft 1 of the disk 5 with respect to the drive shaft, and the angular velocity changes. As a result, the valve timing can be made variable according to the change in the angular velocity of the cam 2a.

【0008】[0008]

【発明が解決しようとする課題】然し乍ら、前記先願に
係る装置にあっては、前記偏心カム8の回転方向がディ
スクハウジング3の揺動方向に対して直角方向になって
いる。即ち、ディスクハウジング3は、前述のように図
中矢印方向に揺動し、つまり支軸7の軸心Q1と制御シ
ャフト12の軸心Q2とを結ぶ結線Z1と略平行な線上
を揺動するようになっているが、偏心カム8は前記結線
Z1に対して直交する方向へ回転するようになってい
る。
However, in the device according to the prior application, the rotation direction of the eccentric cam 8 is perpendicular to the swing direction of the disc housing 3. That is, the disk housing 3 swings in the direction of the arrow in the figure as described above, that is, it swings on a line substantially parallel to the connection Z1 connecting the axis Q1 of the support shaft 7 and the axis Q2 of the control shaft 12. However, the eccentric cam 8 is adapted to rotate in a direction orthogonal to the connection Z1.

【0009】このため、斯かる偏心カム8の回転に伴う
中心Oの偏心移動量ε1がディスクハウジング3に効率
良く伝達されず、ディスクハウジング3は、中心Yの駆
動軸1の軸心Xに対する揺動量(偏心量)ε2が偏心カ
ム8の偏心移動量ε1よりも十分に小さくなってしま
う。この結果、前記駆動軸1とカムシャフト2との角速
度変化を大きくすることができず、弁の作動角変化量も
小さくなる。したがって、バルブタイミング制御巾も小
さくなってしまい、機関運転状態に応じた要求出力や燃
費の低下等が得られなくなる惧れがある。
Therefore, the eccentric movement amount ε1 of the center O due to the rotation of the eccentric cam 8 is not efficiently transmitted to the disk housing 3, and the disk housing 3 swings with respect to the axis X of the drive shaft 1 of the center Y. The movement amount (eccentricity amount) ε2 becomes sufficiently smaller than the eccentric movement amount ε1 of the eccentric cam 8. As a result, the change in the angular velocity between the drive shaft 1 and the camshaft 2 cannot be increased, and the change in the operating angle of the valve also becomes small. Therefore, the valve timing control width also becomes small, and there is a possibility that the required output or the reduction in fuel consumption depending on the engine operating state cannot be obtained.

【0010】[0010]

【課題を解決するための手段】本発明は、前記先願に係
る装置の実情に鑑みて案出されたもので、機関によって
回転駆動する駆動軸と、該駆動軸の同軸上に相対回転自
在に設けられて、外周に吸排気弁を開作動させるカムを
有するカムシャフトと、駆動軸とカムシャフトとの間に
配置されて、一端部に係合した支軸を支点として前記駆
動軸の略径方向へ移動自在に設けられたディスクハウジ
ングと、該ディスクハウジングを機関運転状態に応じて
駆動機構を介して移動させる移動手段と、前記ディスク
ハウジングの支持孔内に回転自在に支持され、かつ前記
駆動軸とカムシャフトとを連繋しつつディスクハウジン
グの揺動に伴い中心が駆動軸の軸心と偏心動するディス
クを備え、該ディスクの偏心動に伴い前記カムシャフト
の角速度の変化を得て前記吸排気弁の作動角を可変制御
する吸排気弁駆動制御装置において、前記移動手段の作
動方向を、ディスクハウジングの移動方向に対して略平
行に設定したことを特徴としている。
SUMMARY OF THE INVENTION The present invention has been devised in view of the actual situation of the device according to the above-mentioned prior application, and is relatively rotatable coaxially with the drive shaft that is rotationally driven by the engine. And a cam shaft having a cam for opening and closing the intake and exhaust valves on the outer circumference, and a drive shaft disposed between the drive shaft and the cam shaft and having a support shaft engaged at one end as a fulcrum. A disk housing movably provided in the radial direction, a moving means for moving the disk housing via a drive mechanism according to an engine operating state, and a rotatably supported inside a support hole of the disk housing, The drive shaft and the cam shaft are connected to each other, and a disc is provided, the center of which is eccentric with the axial center of the drive shaft as the disc housing swings, and the change in the angular velocity of the cam shaft is caused by the eccentric movement of the disc. In the intake and exhaust valves drive control device for variably controlling the operating angle of the intake and exhaust valves Te, the actuation direction of the moving means, is characterized in that set substantially parallel to the moving direction of the disc housing.

【0011】[0011]

【作用】前記構成の本発明によれば、移動手段である偏
心カム等の軸心の作動方向が、ディスクハウジングの移
動方向に対して直交する方向ではなく平行線に略沿った
方向となるため、偏心カムの軸心移動量がそのままディ
スクハウジングの移動量となり、効率の良い揺動伝達性
が得られる。
According to the present invention having the above-described structure, the operating direction of the shaft center of the eccentric cam or the like, which is the moving means, is not a direction orthogonal to the moving direction of the disk housing but a direction substantially along a parallel line. The axial center movement amount of the eccentric cam becomes the movement amount of the disc housing as it is, and efficient swing transmission can be obtained.

【0012】[0012]

【実施例】図1〜図7は請求項1及び2の発明に係る吸
排気弁駆動制御装置を多気筒機関に適用した一実施例を
示し、図3の21は図外の機関のクランク軸からスプロ
ケットを介して回転駆動する駆動軸、22は該駆動軸2
1の外周に一定の隙間をもって配置され、かつ駆動軸2
1の中心Xと同軸上に設けられたカムシャフトであっ
て、前記駆動軸21は、機関前後方向に延設されている
と共に、軽量化等の要請から内部中空状に形成されてい
る。
1 to 7 show an embodiment in which the intake / exhaust valve drive control device according to the invention of claims 1 and 2 is applied to a multi-cylinder engine, and 21 in FIG. 3 is a crankshaft of the engine not shown. Drive shaft which is rotationally driven from the drive shaft through a sprocket, and 22 is the drive shaft 2
1 is arranged with a constant gap on the outer periphery of 1 and the drive shaft 2
1. The cam shaft is provided coaxially with the center X of the drive shaft 1. The drive shaft 21 extends in the longitudinal direction of the engine, and is formed into an internal hollow shape in order to reduce the weight.

【0013】前記カムシャフト22は、中空状に形成さ
れ、シリンダヘッド43上端部に有する後述のカム軸受
に回転自在に支持されていると共に、図2に示すように
外周の所定位置に吸気弁23をバルブスプリング24の
ばね力に抗してバルブリフター25を介して開作動させ
る複数のカム26…が一体に設けられている。また、カ
ムシャフト22は、長手方向の所定位置で軸直角方向か
ら各気筒毎に分割形成されていると共に、一方側の分割
端部にフランジ部27が設けられている。
The cam shaft 22 is formed in a hollow shape, is rotatably supported by a cam bearing (described later) provided at the upper end of the cylinder head 43, and as shown in FIG. A plurality of cams 26 that open the valve via the valve lifter 25 against the spring force of the valve spring 24 are integrally provided. Further, the camshaft 22 is divided and formed for each cylinder from a direction perpendicular to the axis at a predetermined position in the longitudinal direction, and a flange portion 27 is provided at a divided end portion on one side.

【0014】また、この両分割端部間にスリーブ28と
環状ディスク29が配置されている。前記フランジ部2
7は、図5にも示すように中空部から半径方向に沿った
細長い矩形状の係合溝30が形成されていると共に、そ
の外周面の円周方向に環状ディスク29の一側面に摺接
する突起面27aが一体に設けられている。
A sleeve 28 and an annular disk 29 are arranged between the divided ends. The flange portion 2
As shown in FIG. 5, the elongated groove 7 has an elongated rectangular engaging groove 30 extending in the radial direction from the hollow portion, and slidably contacts one side surface of the annular disk 29 in the circumferential direction of the outer peripheral surface thereof. The protruding surface 27a is integrally provided.

【0015】前記スリーブ28は、小径な一端部28b
がカムシャフト22の前記他方側の分割端部内に回転自
在に挿入している共に、略中央位置に直径方向に貫通し
た連結軸31を介して駆動軸21に連結固定されてい
る。また、スリーブ28の他端部に設けられたフランジ
部32は、図6にも示すように前記係止溝30と反対側
に半径方向に沿った細長い矩形状の係合溝33が形成さ
れていると共に、外周面に環状ディスク29の他側面に
摺接する突起面28aが一体に設けられている。
The sleeve 28 has a small diameter one end portion 28b.
Is rotatably inserted into the other end of the camshaft 22 on the other side, and is fixedly connected to the drive shaft 21 via a connecting shaft 31 penetrating diametrically at a substantially central position. Further, as shown in FIG. 6, the flange portion 32 provided at the other end of the sleeve 28 has an elongated rectangular engaging groove 33 formed in the radial direction on the side opposite to the engaging groove 30. At the same time, the outer peripheral surface is integrally provided with a protruding surface 28a that is in sliding contact with the other side surface of the annular disk 29.

【0016】前記環状ディスク29は、略ドーナツ板状
を呈し、内径がカムシャフト22の内径と略同径に形成
されて、駆動軸21の外周面との間に環状の隙間部Sが
形成されていると共に、小巾の外周部29aが環状のデ
ィスクハウジング34の内周面34aに回転自在に支持
されている。また、直径線上の対向位置に貫通形成され
たピン孔29b,29cには、各係合溝30,33に係
入する一対のピン36,37が設けられている。この各
ピン36,37は、互いにカムシャフト軸方向へ逆向き
に突出しており、基部がピン孔29b,29c内に回転
自在に支持されていると共に、先端部の両側縁に図5及
び図6に示すように前記係合溝30,33の対向内面3
0a,30b、33a,33bと当接する2面巾状の平
面部36a,36b、37a,37bが形成されてい
る。
The annular disc 29 has a substantially toroidal plate shape, an inner diameter of which is substantially the same as the inner diameter of the cam shaft 22, and an annular gap S is formed between the annular disc 29 and the outer peripheral surface of the drive shaft 21. In addition, the outer peripheral portion 29a having a small width is rotatably supported by the inner peripheral surface 34a of the annular disc housing 34. In addition, a pair of pins 36 and 37 that engage with the engagement grooves 30 and 33 are provided in the pin holes 29b and 29c that are formed at the opposite positions on the diameter line. The pins 36 and 37 project in opposite directions to each other in the axial direction of the camshaft, the base portions are rotatably supported in the pin holes 29b and 29c, and the pins 36 and 37 are provided on both side edges of the tip portion as shown in FIGS. As shown in FIG.
Flat portions 36a, 36b, 37a, 37b having a width across flats are formed so as to come into contact with 0a, 30b, 33a, 33b.

【0017】前記ディスクハウジング34は、図1及び
図2に示すように略円環状を呈し、外周の上端部に有す
るボス部35の一端部外端縁に略U字形の支持溝38が
形成されていると共に、ボス部35の他端部にカム孔3
9が貫通形成されている。そして、前記支持溝38内に
挿通した支軸40によってディスクハウジング34の一
端部が回動及びスライド移動自在に支持されていると共
に、前記カム孔39内に挿通された偏心カム41の回動
によってディスクハウジング34が矢印方向へ揺動する
ようになっている。即ち、このディスクハウジング34
は、中心Yが支軸40の軸心Q1と偏心カム41に連結
された後述する駆動機構52の制御シャフト42の軸心
Q2とを結ぶ直線Z1と略平行な線Z2上を移動するよ
うになっている。
As shown in FIGS. 1 and 2, the disk housing 34 has a substantially annular shape, and a boss portion 35 provided at the upper end of the outer periphery has a substantially U-shaped support groove 38 formed at the outer edge of one end portion. And the cam hole 3 is provided at the other end of the boss portion 35.
9 is formed through. Then, one end of the disk housing 34 is rotatably and slidably supported by the support shaft 40 inserted into the support groove 38, and the eccentric cam 41 inserted into the cam hole 39 is rotated. The disc housing 34 swings in the direction of the arrow. That is, this disc housing 34
Is such that the center Y moves on a line Z2 that is substantially parallel to a straight line Z1 that connects the axis Q1 of the support shaft 40 and the axis Q2 of the control shaft 42 of the drive mechanism 52, which will be described later, connected to the eccentric cam 41. Has become.

【0018】前記支軸40は、図1及び図4に示すよう
に、機関前後方向に沿って延設され、所定部位が枠体4
5の横梁部45bに形成された軸孔45cに回転自在に
支持されていると共に、ディスクハウジング34に対応
した部位の両端縁に形成された平坦な当接面40a,4
0bが支持溝38の対向面38a,38bに面接触状態
で当接している。
As shown in FIGS. 1 and 4, the support shaft 40 is extended along the longitudinal direction of the engine, and a predetermined portion of the support shaft 40 is provided in the frame body 4.
5 is rotatably supported in a shaft hole 45c formed in the lateral beam portion 45b of the horizontal beam portion 45b, and has flat contact surfaces 40a, 4a formed at both end edges of a portion corresponding to the disk housing 34.
0b is in contact with the facing surfaces 38a and 38b of the support groove 38 in a surface contact state.

【0019】前記偏心カム41は、リング状を呈し、外
径がカム孔39の内径より若干小さく設定されていると
共に、周方向の肉厚が薄肉部41aから漸次厚肉部41
bに変化おり、また、軸方向に貫通形成された貫通孔4
1cを介して中空状の制御シャフト42に連結固定され
ている。また、この偏心カム41は、図2にも示すよう
に回転角度θが約110°に設定されていると共に、そ
の回転方向が前記両軸心Q1,Q2を結ぶ直線Z1に略
沿った円弧軌跡を描く方向に設定されており、この円弧
軌跡は、直線Z1に直交する線Z3を中心とした左右略
対称になっている。
The eccentric cam 41 has a ring shape, the outer diameter is set to be slightly smaller than the inner diameter of the cam hole 39, and the wall thickness in the circumferential direction is gradually increased from the thin portion 41a to the thick portion 41.
b, and the through hole 4 is formed through the axial direction.
It is connected and fixed to the hollow control shaft 42 via 1c. The eccentric cam 41 has a rotation angle θ set to about 110 ° as shown in FIG. 2, and its rotation direction is an arc locus substantially along a straight line Z1 connecting the two axial centers Q1 and Q2. Is set in the direction of drawing, and the arcuate locus is substantially symmetric with respect to a line Z3 orthogonal to the straight line Z1.

【0020】前記駆動機構51は、図7に示すように前
記制御シャフト42と、該制御シャフト42の一端部に
設けられた油圧アクチュエータ52と、油圧アクチュエ
ータ52に油圧を給排する油圧回路53とを備えてい
る。
As shown in FIG. 7, the drive mechanism 51 includes the control shaft 42, a hydraulic actuator 52 provided at one end of the control shaft 42, and a hydraulic circuit 53 for supplying and discharging hydraulic pressure to and from the hydraulic actuator 52. Is equipped with.

【0021】前記制御シャフト42は、図3及び図4に
示すように、機関の前後方向に沿って延設されていると
共に、シリンダヘッド43の上端部にボルト44で固定
された枠体45の軸受溝46とベアリングキャップ47
との間に軸受されている。前記ベアリングキャップ47
は、ボルト48によって枠体45上に固定されている。
前記枠体45は、図1及び図3,図4に示すようにロッ
カカバー49の内側に配置されて機関前後方向に沿って
延設された両側の支持部45a,45aと、該支持部4
5a,45a間に直角方向から連結されて上面に前記軸
受溝46と下面にカムシャフト22のカム軸受溝50が
形成されたつまりカム軸受用ブラケットを兼用する複数
の横梁部45b…とから構成されている。
As shown in FIGS. 3 and 4, the control shaft 42 extends along the longitudinal direction of the engine, and has a frame 45 fixed to the upper end of the cylinder head 43 with bolts 44. Bearing groove 46 and bearing cap 47
Is bearing between and. The bearing cap 47
Are fixed on the frame body 45 by bolts 48.
As shown in FIGS. 1, 3, and 4, the frame body 45 is disposed inside the rocker cover 49 and is provided with support portions 45a, 45a on both sides extending along the longitudinal direction of the engine and the support portion 4
5a, 45a are connected at right angles to each other, and the upper surface is formed with the bearing groove 46 and the lower surface is formed with the cam bearing groove 50 of the camshaft 22, that is, a plurality of horizontal beam portions 45b which also serve as cam bearing brackets. ing.

【0022】前記油圧アクチュエータ52は、筒状ハウ
ジング54内に2枚羽根の回転ベーン55が対角線上に
位置する各第1油室56,56及び第2油室57,57
を隔成しつつ回動自在に設けられていると共に、該回転
ベーン55が制御シャフト42に連結されている。
In the hydraulic actuator 52, the first oil chambers 56, 56 and the second oil chambers 57, 57 in which the two-blade rotary vanes 55 are located on the diagonal line in the cylindrical housing 54.
The rotary vane 55 is connected to the control shaft 42 while being rotatably provided.

【0023】前記油圧回路53は、第1,第2油室5
6,57に油圧を給排する一対の第1,第2油通路58
a,58bと、該両油通路58a,58bの端部に設け
られた4ポート2位置型の電磁切換弁59と、オイルメ
インギャラリ60の上流端に設けられたオイルポンプ6
1と、各油通路58a,58bと適宜連通してオイルパ
ン62内に作動油を戻すドレン通路63と、ポンプ吐出
圧を一定圧に制御するリリーフバルブ64とを備えてい
る。
The hydraulic circuit 53 includes the first and second oil chambers 5.
A pair of first and second oil passages 58 for supplying and discharging hydraulic pressure to and from
a, 58b, a 4-port 2-position electromagnetic switching valve 59 provided at the ends of the oil passages 58a, 58b, and an oil pump 6 provided at the upstream end of the oil main gallery 60.
1, a drain passage 63 that appropriately communicates with the oil passages 58a and 58b to return the working oil into the oil pan 62, and a relief valve 64 that controls the pump discharge pressure to a constant pressure.

【0024】更に、前記電磁切換弁59は、機関回転数
や吸気空気量等の信号に基づいて現在の機関運転状態を
検出するコントローラ65からのON−OFF信号によ
って切り換え作動し、OFF信号によってオイルポンプ
61と第1油通路58aとを連通させると共に、第2油
通路58bとドレン通路63を連通させ、ON信号によ
って前記とは逆に連通させるようになっている。
Further, the electromagnetic switching valve 59 is switched by an ON-OFF signal from the controller 65 which detects the current engine operating state based on signals such as the engine speed and the intake air amount, and the OFF signal causes the oil to change. The pump 61 and the first oil passage 58a are communicated with each other, the second oil passage 58b and the drain passage 63 are communicated with each other, and an ON signal is communicated in the opposite direction.

【0025】以下、本実施例の作用について説明する。
まず、機関低速低負荷時には、コントローラ65から電
磁切換弁59にON信号が出力されてオイルポンプ61
から吐出された油圧が第1油室56,56内に流入する
一方、第2油室57,57内の作動油がドレン通路63
からオイルパン62内に排出される。このため、回転ベ
ーン55が図中反時計方向に回転して制御シャフト42
を図1の反時計方向に回転させる。したがって、偏心カ
ム41は、図2に示すように、破線位置から図中反時計
方向へ回転して、θ角度位置まで最大に回転し、最大厚
肉部41bが上部側に移動する。即ち、最大厚肉部41
bが前記結線Z1に略沿って所定量ε1だけ偏心回動す
る。依って、ディスクハウジング34は、支持溝38を
介して支軸40を支点として矢印方向に沿ってスライド
しながら揺動する。したがって、環状ディスク29も同
方向に揺動して、その中心Yが駆動軸21(カムシャフ
ト22)の中心Xと偏心する。つまり、偏心カム41の
回動に伴いボス部35のカム孔39側が左上方向へ引き
上げられると、支持溝38の対向面38a,38bが支
軸40の当接面40a,40b上をスライドしつつ全体
が反時計方向へ揺動して前記偏心カム41の偏心回動量
ε1と略一の移動量ε3で偏心する。このため、スリー
ブ28側の係止溝33とピン37並びにカムシャフト2
1側の係止溝30とピン36との摺動位置が駆動軸21
の1回転毎に移動し、環状ディスク29の角速度が変化
して不等角速度回転になる。
The operation of this embodiment will be described below.
First, when the engine speed is low and the load is low, an ON signal is output from the controller 65 to the electromagnetic switching valve 59, and the oil pump 61
The hydraulic oil discharged from the first oil chambers 56, 56 flows into the first oil chambers 56, 56, while the hydraulic oil in the second oil chambers 57, 57 is discharged from the drain passage 63.
Is discharged into the oil pan 62. For this reason, the rotary vane 55 rotates counterclockwise in the drawing to rotate the control shaft 42.
Is rotated counterclockwise in FIG. Therefore, as shown in FIG. 2, the eccentric cam 41 rotates counterclockwise from the position of the broken line to the maximum angle position of θ, and the maximum thick portion 41b moves to the upper side. That is, the maximum thick portion 41
b is eccentrically rotated by a predetermined amount ε1 substantially along the connection Z1. Accordingly, the disk housing 34 swings while sliding along the arrow direction with the support shaft 40 as a fulcrum through the support groove 38. Therefore, the annular disc 29 also swings in the same direction, and its center Y is eccentric with the center X of the drive shaft 21 (cam shaft 22). In other words, when the cam hole 39 side of the boss portion 35 is pulled up in the upper left direction as the eccentric cam 41 rotates, the facing surfaces 38a and 38b of the support groove 38 slide on the contact surfaces 40a and 40b of the support shaft 40. The whole swings in the counterclockwise direction and is eccentric by an eccentric rotation amount ε1 of the eccentric cam 41 and a movement amount ε3 which is substantially equal to the moving amount ε3. Therefore, the engagement groove 33 on the sleeve 28 side, the pin 37, and the camshaft 2
The sliding position between the locking groove 30 and the pin 36 on the first side is the drive shaft 21.
, And the angular velocity of the annular disk 29 changes, resulting in unequal angular velocity rotation.

【0026】即ち、係止溝30とピン36の摺動位置が
駆動軸21の中心Xに接近する場合は、係止溝33とピ
ン37の摺動位置が中心Xから離れる関係になる。この
場合は、環状ディスク29は、駆動軸21に対して角速
度が大きくなり、環状ディスク29に対しカムシャフト
22の角速度も大きくなる。したがって、カムシャフト
22は、駆動軸21に対して、部分的に2重に増速され
た状態になる。
That is, when the sliding position of the locking groove 30 and the pin 36 approaches the center X of the drive shaft 21, the sliding position of the locking groove 33 and the pin 37 moves away from the center X. In this case, the annular disc 29 has a large angular velocity with respect to the drive shaft 21, and the angular velocity of the camshaft 22 also becomes large with respect to the annular disc 29. Therefore, the camshaft 22 is partially doubled in speed with respect to the drive shaft 21.

【0027】一方、機関が高速高負荷域に移行した場合
は、コントローラ65から電磁切換弁59にOFF信号
が出力されて、第1油室56,56内の作動油がドレン
通路63から排出されると共に、第2油室57,57内
にオイルポンプ61から油圧が圧送され、回転ベーン5
5が逆に時計方向に回転する。したがって、偏心カム4
1は、時計方向に回転して、図1に示す原状位置に戻
り、これによってディスクハウジング34も元の位置に
揺動して、環状ディスク29の中心Yが駆動軸21の中
心Xと合致する。依って、この場合は、環状ディスク2
9と駆動軸21との間に回転位相は生じず、またカムシ
ャフト22の中心と環状ディスク29の中心Yも合致し
ているため、両者22,29間の回転位相差も生じな
い。したがって、駆動軸21の回転に伴い連結軸31を
介してスリーブ28が同期回転すると共に、スリーブ側
の係止溝33とピン37,環状ディスク29,ピン3
6,カムシャフト22側の係止溝30を介してカムシャ
フト22も同期回転する。
On the other hand, when the engine shifts to the high speed and high load range, an OFF signal is output from the controller 65 to the electromagnetic switching valve 59, and the working oil in the first oil chambers 56, 56 is discharged from the drain passage 63. At the same time, the oil pressure is sent from the oil pump 61 into the second oil chambers 57, 57, and the rotating vanes 5
5 reversely rotates in the clockwise direction. Therefore, the eccentric cam 4
1 rotates clockwise and returns to the original position shown in FIG. 1, whereby the disc housing 34 also swings to the original position, and the center Y of the annular disc 29 coincides with the center X of the drive shaft 21. . Therefore, in this case the annular disc 2
No rotational phase is generated between the drive shaft 21 and the drive shaft 21, and since the center of the camshaft 22 and the center Y of the annular disk 29 are aligned with each other, the rotational phase difference between the two 22 and 29 does not occur. Therefore, as the drive shaft 21 rotates, the sleeve 28 rotates synchronously via the connecting shaft 31, and the locking groove 33 on the sleeve side, the pin 37, the annular disk 29, and the pin 3 are rotated.
6. The camshaft 22 also rotates synchronously via the locking groove 30 on the camshaft 22 side.

【0028】この結果、該夫々の角速度の変化に基づき
カムシャフト22及びカム26と駆動軸21との回転位
相差は、図8Aに示すように変化し、バルブタイミング
は同図Bに示すようにバルブリフトを一定のままカムシ
ャフト22の位相差に応じて変化する。
As a result, the rotational phase difference between the camshaft 22 and the cam 26 and the drive shaft 21 changes as shown in FIG. 8A, and the valve timing changes as shown in FIG. The valve lift changes according to the phase difference of the cam shaft 22 with the valve lift kept constant.

【0029】つまり、カムシャフト22の角速度が相対
的に大きい場合は、駆動軸21に対する回転位相は両者
21,22が等速になるまで進み、やがてカムシャフト
22の角速度が相対的に小さくなると回転位相は両者2
1,22が等速になるまで遅れる。そして、図8Aで示
すように回転位相差の最大,最小点の途中に同位相点
(P点)が存在し、同図の破線で示す回転位相の変化で
は、P点よりも前の吸気弁23の開弁時期が遅れ、P点
より後の閉弁時期は進み、図8Bの破線で示すように弁
の作動角が小さくなる。したがって、前記のように機関
低速低負荷域では、吸気弁23のバルブタイミングが図
8Bの破線で示すように作動角が小さくなり、開時期が
少し遅れ、閉時期が早くなる。これによって、吸排気弁
のバルブオーバラップが小さくなり、燃焼室の残留ガス
が減少し、安定した燃焼により燃費の向上が図れる。ま
た、早い閉時期により、吸気充填効率が向上し、低速ト
ルクを高めることができる。
That is, when the angular velocity of the camshaft 22 is relatively high, the rotational phase with respect to the drive shaft 21 advances until the two speeds 21 and 22 become uniform, and eventually when the angular velocity of the camshaft 22 relatively decreases. Phase is both 2
Delay until 1 and 22 become constant speed. Then, as shown in FIG. 8A, the same phase point (point P) exists in the middle of the maximum and minimum points of the rotational phase difference, and in the change of the rotational phase shown by the broken line in the figure, the intake valve before point P is changed. The valve opening timing of 23 is delayed, the valve closing timing after point P is advanced, and the operating angle of the valve is reduced as shown by the broken line in FIG. 8B. Therefore, as described above, in the engine low speed and low load region, the valve timing of the intake valve 23 becomes small as shown by the broken line in FIG. 8B, the opening timing is slightly delayed, and the closing timing is advanced. As a result, the valve overlap of the intake and exhaust valves is reduced, the residual gas in the combustion chamber is reduced, and stable combustion improves fuel efficiency. Further, the early closing timing improves the intake charging efficiency and can increase the low speed torque.

【0030】一方、高速高負荷域では、図8Bの実線で
示すように作動角が大きくなり、同時期が早くなると共
に、閉時期が遅くなるため、吸気慣性力を利用した吸気
充填効率が向上し、高出力化が図れる。
On the other hand, in the high-speed and high-load range, the operating angle becomes large as shown by the solid line in FIG. 8B, the same timing is advanced and the closing timing is delayed, so the intake charging efficiency utilizing the intake inertial force is improved. However, high output can be achieved.

【0031】このように、本実施例では、機関運転変化
に応じてバルブタイミングを高精度に可変制御できるこ
とは勿論のこと、特に、ディスクハウジング34を、偏
心カム41を用いて揺動させるようにしたため、カムシ
ャフト22の回転トルク変動に起因するディスクハウジ
ング34の交番荷重による打音や摩耗等の発生を確実に
防止できる。
As described above, in this embodiment, the valve timing can be variably controlled with high accuracy in accordance with the change in engine operation, and in particular, the disc housing 34 is swung by using the eccentric cam 41. As a result, it is possible to reliably prevent the occurrence of hammering noise, abrasion, etc. due to the alternating load of the disk housing 34 due to the fluctuation of the rotational torque of the camshaft 22.

【0032】しかも、前述のように、偏心カム41をデ
ィスクハウジング34の移動方向と略平行な結線Z1に
沿って回転させるようにしたため、該偏心カム41の偏
心回動量ε1をディスクハウジング34に効率良く伝達
することが可能となり、ディスクハウジング34も前記
偏心回動量ε1と略等しい移動量ε3が得られる。この
結果、駆動軸21とカムシャフト22との回転位相差を
可及的に大きくすることが可能になり、吸気弁23の作
動角変化量も大きくなる。したがって、バルブタイミン
グ制御巾の拡大化が図れる。
Moreover, as described above, since the eccentric cam 41 is rotated along the connection line Z1 which is substantially parallel to the moving direction of the disc housing 34, the eccentric rotation amount ε1 of the eccentric cam 41 is efficiently applied to the disc housing 34. Good transmission is possible, and the disc housing 34 also obtains a movement amount ε3 that is substantially equal to the eccentric rotation amount ε1. As a result, the rotational phase difference between the drive shaft 21 and the cam shaft 22 can be increased as much as possible, and the operating angle change amount of the intake valve 23 is also increased. Therefore, the valve timing control width can be expanded.

【0033】図9は請求項1及び3の発明に係る実施例
を示し、ディスクハウジング34は、雨滴状を呈し、略
円環状のハウジング本体34bと、該ハウジング本体3
4bの上端部外周に径方向へ突設された延出部34cと
を備え、前記ハウジング本体34aは、中央に有する支
持孔34a内にディスク29を回転自在に支持してい
る。一方、延出部34cは、先端部に切欠された略U字
形の支持溝38内にディスクハウジング34を図中左方
向(矢印方向)へ揺動支持する支軸40が係合している
と共に、支持溝38と支持孔34aとの間、つまり該支
持溝38の軸心Q2と支持孔34aの中心(ディスク2
9の中心Y)を結ぶ結線上に穿設されたカム孔39内に
偏心カム41が回転自在に保持されている。
FIG. 9 shows an embodiment according to the inventions of claims 1 and 3, wherein the disk housing 34 is raindrop-shaped, and has a substantially annular housing main body 34b and the housing main body 3
4b is provided with an extending portion 34c which is provided on the outer circumference of the upper end portion in the radial direction, and the housing main body 34a rotatably supports the disk 29 in a support hole 34a provided at the center. On the other hand, the extending portion 34c is engaged with a support shaft 40 that swings and supports the disc housing 34 in the left direction (arrow direction) in the drawing in a substantially U-shaped support groove 38 that is cut out at the tip. , Between the support groove 38 and the support hole 34a, that is, the axis Q2 of the support groove 38 and the center of the support hole 34a (the disk 2
An eccentric cam 41 is rotatably held in a cam hole 39 formed on a connection line connecting the centers Y of 9).

【0034】この偏心カム41は、厚肉部41bが上側
に位置していると共に、下側の偏心した位置に有する貫
通孔41cに前記実施例と同様に油圧アクチュエータに
より回転する制御シャフト42が固定されている。ま
た、この偏心カム41は、該制御シャフト42の軸心Q
1を中心に約90°の角度範囲で回転するようになって
いると共に、その回転方向がディスクハウジング34の
揺動方向に対してり略平行に設定されている。即ち、デ
ィスクハウジング34の揺動方向Z2と平行な直線Z1
に略沿って回転し、この円弧軌跡が前記直線Z1に直交
する線Z3を中心とした左右略対称形状になっている。
In the eccentric cam 41, the thick portion 41b is located on the upper side, and the control shaft 42 which is rotated by the hydraulic actuator is fixed to the through hole 41c provided at the eccentric position on the lower side as in the above embodiment. Has been done. In addition, the eccentric cam 41 has an axial center Q of the control shaft 42.
The rotation is about 90 ° in an angle range of about 90 °, and the rotation direction is set substantially parallel to the swinging direction of the disc housing 34. That is, a straight line Z1 parallel to the swinging direction Z2 of the disk housing 34
The arc locus has a substantially left-right symmetrical shape about a line Z3 orthogonal to the straight line Z1.

【0035】したがって、機関低負荷時に油圧アクチュ
エータによって制御シャフト42が時計方向に回転する
と、偏心カム41も破線で示すように同方向に回転し、
その軸心Q1が所定量ε1だけ偏心動する。このため、
ディスクハウジング34は、支軸40を中心に反時計方
向へ揺動するが、このディスクハウジング34の中心Y
が支軸40の軸心Q2からの距離が偏心カム41よりも
離れているため、その揺動量ε4は偏心カム41の偏心
回転量ε1よりも大きくなる。
Therefore, when the control shaft 42 is rotated clockwise by the hydraulic actuator when the engine load is low, the eccentric cam 41 also rotates in the same direction as indicated by the broken line,
The axis Q1 is eccentrically moved by a predetermined amount ε1. For this reason,
The disc housing 34 swings counterclockwise around the support shaft 40, but the center Y of the disc housing 34
Since the distance from the shaft center Q2 of the support shaft 40 is larger than that of the eccentric cam 41, its swing amount ε4 is larger than the eccentric rotation amount ε1 of the eccentric cam 41.

【0036】依って、この実施例では、前述の実施例と
同様な作用効果が得られることは勿論のこと、ディスク
ハウジング34の揺動量ε4が偏心カム41の偏心回転
量ε1よりも大きくなるため、吸気弁の作動角変化量が
大きくなり、バルブタイミングの制御巾を一層大きくす
ることができる。
Therefore, in this embodiment, not only the same effects as the above-described embodiments can be obtained, but the swing amount ε4 of the disc housing 34 becomes larger than the eccentric rotation amount ε1 of the eccentric cam 41. The amount of change in the operating angle of the intake valve is increased, and the control range of valve timing can be further increased.

【0037】尚、本発明は、前記実施例の構成に限定さ
れるものではなく、ディスクハウジング34の移動手段
としては偏心カム41に代えて、リンクを用いることも
可能である。即ち、リンクの一端部をディスクハウジン
グ34の一端側に回動自在に連結し、他端部に制御シャ
フト42に連結して、該リンクの回動に伴いディスクハ
ウジング34を支軸40を支点として揺動させるように
することも可能である。この際、リンクの回動方向をデ
ィスクハウジング34の揺動方向と略平行に設定するこ
とはいうまでもない。
The present invention is not limited to the configuration of the above embodiment, and a link can be used as the moving means of the disc housing 34 instead of the eccentric cam 41. That is, one end of the link is rotatably connected to one end of the disk housing 34, and the other end is connected to the control shaft 42. With the rotation of the link, the disk housing 34 uses the support shaft 40 as a fulcrum. It is also possible to make it rock. At this time, it goes without saying that the rotation direction of the link is set substantially parallel to the swing direction of the disk housing 34.

【0038】また、偏心カム41の回転角度を結線Z1
を基準として180°に設定することも可能であり、こ
のようにすれば、さらにディスクハウジング34の揺動
量を大きくすることができ、弁作動角を図8Bの一点鎖
線で示すようにさらに大きくすることができる。
Further, the rotation angle of the eccentric cam 41 is set to the connection Z1.
Can be set to 180 ° as a reference, and by doing so, the swing amount of the disc housing 34 can be further increased, and the valve operating angle is further increased as shown by the one-dot chain line in FIG. 8B. be able to.

【0039】[0039]

【発明の効果】以上の説明で明らかなように、本発明に
よれば、とりわけ移動手段の作動方向を、ディスクハウ
ジングの移動方向に対して略平行に設定したため、移動
手段の作動量をそのままディスクハウジングに効率良く
伝達することができる。つまり、移動手段の作動量が先
願と同一であっても、ディスクハウジングの移動量が先
願に比較して十分に拡大する。この結果、ディスクハウ
ジングの移動に伴う駆動軸とカムシャフトの回転位相差
を可及的に大きくすることが可能となり、吸排気弁の作
動角変化量も大きくすることができる。したがって、バ
ルブタイミング制御巾も大きくなり、機関運転状態に応
じて要求出力や燃費の向上が図れる。
As is apparent from the above description, according to the present invention, in particular, the operating direction of the moving means is set substantially parallel to the moving direction of the disc housing, so that the operating amount of the moving means remains unchanged. It can be efficiently transmitted to the housing. That is, even if the movement amount of the moving means is the same as that of the prior application, the movement amount of the disk housing is sufficiently expanded as compared with the prior application. As a result, the rotational phase difference between the drive shaft and the cam shaft due to the movement of the disc housing can be increased as much as possible, and the operating angle change amount of the intake and exhaust valves can also be increased. Therefore, the valve timing control range is increased, and the required output and fuel consumption can be improved according to the engine operating state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す図3のA−A線断面図。FIG. 1 is a sectional view taken along line AA of FIG. 3 showing an embodiment of the present invention.

【図2】本実施例の作用を示す図3のA−A線断面図。FIG. 2 is a sectional view taken along the line AA of FIG. 3 showing the operation of this embodiment.

【図3】本実施例の要部断面図。FIG. 3 is a sectional view of a main part of this embodiment.

【図4】本実施例の要部平面図。FIG. 4 is a plan view of a main portion of this embodiment.

【図5】図4のB−B線断面図。5 is a cross-sectional view taken along the line BB of FIG.

【図6】図4のC−C線断面図。FIG. 6 is a sectional view taken along line CC of FIG.

【図7】本実施例に供される駆動機構を示す概略図。FIG. 7 is a schematic view showing a drive mechanism used in this embodiment.

【図8】本実施例の駆動軸とカムシャフトとの回転位相
差とバルブタイミング特性図。
FIG. 8 is a valve timing characteristic diagram of the rotational phase difference between the drive shaft and the cam shaft of the present embodiment.

【図9】請求項3の発明に係る実施例を示す要部断面
図。
FIG. 9 is a cross-sectional view of an essential part showing an embodiment according to the invention of claim 3;

【図10】先願に係る装置の要部断面図。FIG. 10 is a cross-sectional view of a main part of the device according to the prior application.

【符号の説明】[Explanation of symbols]

21…駆動軸 22…カムシャフト 29…環状ディスク 34…ディスクハウジング 34b…ハウジング本体 34c…延出部 41…偏心カム(移動手段) 42…制御シャフト 51…駆動機構 21 ... Drive shaft 22 ... Cam shaft 29 ... Annular disk 34 ... Disk housing 34b ... Housing body 34c ... Extension part 41 ... Eccentric cam (moving means) 42 ... Control shaft 51 ... Drive mechanism

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 機関によって回転駆動する駆動軸と、該
駆動軸の同軸上に相対回転自在に設けられて、外周に吸
排気弁を開作動させるカムを有するカムシャフトと、駆
動軸とカムシャフトとの間に配置されて、一端部に係合
した支軸を支点として前記駆動軸の略径方向へ移動自在
に設けられたディスクハウジングと、該ディスクハウジ
ングを機関運転状態に応じて駆動機構を介して移動させ
る移動手段と、前記ディスクハウジングの支持孔内に回
転自在に支持され、かつ前記駆動軸とカムシャフトとを
連繋しつつディスクハウジングの揺動に伴い中心が駆動
軸の軸心と偏心動するディスクを備え、該ディスクの偏
心動に伴い前記カムシャフトの角速度の変化を得て前記
吸排気弁の作動角を可変制御する吸排気弁駆動制御装置
において、 前記移動手段の作動方向を、ディスクハウジングの移動
方向に対して略平行に設定したことを特徴とする内燃機
関の吸排気弁駆動制御装置。
1. A drive shaft which is rotationally driven by an engine, a cam shaft which is provided coaxially with the drive shaft and is rotatable relative to the drive shaft, and a cam having a cam for opening and closing an intake / exhaust valve on the outer periphery, the drive shaft and the cam shaft. And a disk housing that is provided so as to be movable in a substantially radial direction of the drive shaft with a support shaft that is engaged with one end as a fulcrum, and a drive mechanism that drives the disk housing according to an engine operating state. Through a moving means for moving the disk housing through a support hole rotatably in the support hole of the disk housing, and while linking the drive shaft and the camshaft, the center of the drive shaft is offset from the axis of the drive shaft as the disk housing swings. An intake / exhaust valve drive control device, comprising: a disc that moves in a moving manner, and variably controlling an operating angle of the intake / exhaust valve by obtaining a change in an angular velocity of the camshaft in accordance with an eccentric movement of the disc. The operating direction of the means, intake and exhaust valves drive control apparatus for an internal combustion engine, characterized in that set substantially parallel to the moving direction of the disc housing.
【請求項2】 前記移動手段を、ディスクハウジングの
端部に形成されたカム孔内に回転自在に保持された偏心
カムで形成したことを特徴とする請求項1記載の内燃機
関の吸排気弁駆動制御装置。
2. The intake / exhaust valve for an internal combustion engine according to claim 1, wherein the moving means is an eccentric cam rotatably held in a cam hole formed at an end of the disk housing. Drive controller.
【請求項3】 前記ディスクハウジングを、中央の支持
孔内にディスクを回転自在に支持する略円環状のハウジ
ング本体と、該ハウジング本体の外周面に径方向へ突設
された延出部とから形成し、該延出部の先端部に前記支
軸を係合すると共に、延出部の前記支持孔側の基端部に
形成されたカム孔内に偏心カムを回転自在に保持したこ
とを特徴とする前記請求項1及び請求項2記載の内燃機
関の吸排気弁駆動制御装置。
3. The disk housing comprises a substantially annular housing body that rotatably supports the disk in a central support hole, and an extending portion that is radially provided on an outer peripheral surface of the housing body. The eccentric cam is rotatably held in a cam hole formed at the base end portion of the extending portion on the side of the support hole, while the support shaft is engaged with the distal end portion of the extending portion. The intake / exhaust valve drive control device for an internal combustion engine according to claim 1 or claim 2, characterized in that.
JP18358093A 1993-07-26 1993-07-26 Intake/exhaust valve drive control device of internal combustion engine Pending JPH0734825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18358093A JPH0734825A (en) 1993-07-26 1993-07-26 Intake/exhaust valve drive control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18358093A JPH0734825A (en) 1993-07-26 1993-07-26 Intake/exhaust valve drive control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0734825A true JPH0734825A (en) 1995-02-03

Family

ID=16138307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18358093A Pending JPH0734825A (en) 1993-07-26 1993-07-26 Intake/exhaust valve drive control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0734825A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09242520A (en) * 1996-03-06 1997-09-16 Unisia Jecs Corp Intake and exhaust valve drive control device for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09242520A (en) * 1996-03-06 1997-09-16 Unisia Jecs Corp Intake and exhaust valve drive control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JPH06185321A (en) Suction and exhaust valve drive control device of internal combustion engine
JPH05202718A (en) Intake and exhaust valve driving control device for internal combustion engine
JP3355225B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH10220209A (en) Variable valve mechanism and internal combustion engine therewith
JPH0734825A (en) Intake/exhaust valve drive control device of internal combustion engine
JP5119180B2 (en) Variable valve operating device for internal combustion engine
JPH09242520A (en) Intake and exhaust valve drive control device for internal combustion engine
JPH07238815A (en) Suction and exhaust valve drive control device for internal combustion engine
JP3347419B2 (en) Camshaft phase change device
JP3181986B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3283905B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3386236B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP2601060Y2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3205058B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP2004150301A (en) Adjustable valve system for internal combustion engine
JP2004340106A (en) Variable valve system in internal combustion engine
JP3143272B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH06323114A (en) Driving control device for intake and exhaust valves of internal combustion engine
JP3347860B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JP3355226B2 (en) Intake and exhaust valve drive control device for internal combustion engine
JPH08254110A (en) Intake-and exhaust valves drive-control device for internal combustion engine
JP3832014B2 (en) Variable valve mechanism
JPH0734822A (en) Intake/exhaust valve drive control device of internal combustion engine
JPH0734821A (en) Intake/exhaust valve drive control device of internal combustion engine
JPH09166007A (en) Intake-exhaust valve driving control device for internal combustion engine