JPH073454A - Substrate heater - Google Patents
Substrate heaterInfo
- Publication number
- JPH073454A JPH073454A JP5145998A JP14599893A JPH073454A JP H073454 A JPH073454 A JP H073454A JP 5145998 A JP5145998 A JP 5145998A JP 14599893 A JP14599893 A JP 14599893A JP H073454 A JPH073454 A JP H073454A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- heating
- electrode
- holder
- metal plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、金属、半導体など各種
の薄膜を形成する際に必要となる基板の加熱装置に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating device for a substrate which is required when forming various thin films such as metal and semiconductor.
【0002】[0002]
【従来の技術】金属、半導体などの薄膜形成方法は多岐
にわたっており、スパッタリング法、プラズマCVD
法、MOCVD法、分子線エピタキシー(MBE)法、
並びにこれらの応用、組み合わせど各種の方法が実用と
なっている。いずれも真空を利用した製膜法であり、高
純度で良質の膜形成に適したものである。製膜の高速
化、膜の結晶性および特性の向上のためには形成時に基
板を加熱することが不可欠である。基板加熱方法として
はヒーターを利用するなどして輻射により間接的に加熱
する方法と、基板に電流を流すことによる発熱を利用す
る直接加熱法に大別される。大型基板を使用する場合あ
るいは頻繁に異なる大きさの基板を用いる場合など多く
の場合には間接加熱のほうが便利であるためよく使われ
ている。一方、原料を気体状態で成膜室に供給する方法
においては直接加熱法を利用しなければならない場合が
ある。輻射加熱用のヒーターが基板の近くに設置されて
いると、原料気体の分解が基板表面上または近傍のみな
らずヒーター付近でも起こってしまい、必要とする製膜
の制御に悪影響を与えてしまう。それに対し、直接加熱
であれば原料気体が基板近傍以外で分解されてしまうこ
とがないため、CVD法、ガスソースMBE法などにお
いて有効な加熱方法である。2. Description of the Related Art There are various methods for forming thin films of metals and semiconductors, such as sputtering method and plasma CVD.
Method, MOCVD method, molecular beam epitaxy (MBE) method,
In addition, various methods such as application and combination of these are in practical use. Both are film forming methods using vacuum, and are suitable for forming a high-quality film with high purity. It is indispensable to heat the substrate during formation in order to speed up film formation and improve the crystallinity and characteristics of the film. Substrate heating methods are roughly classified into a method of indirectly heating by radiation using a heater and a direct heating method of utilizing heat generated by passing an electric current through the substrate. In many cases, such as when using a large substrate or when using substrates of different sizes frequently, indirect heating is often used because it is more convenient. On the other hand, in the method of supplying the raw material in a gas state to the film forming chamber, there are cases where the direct heating method must be used. When the heater for radiant heating is installed near the substrate, decomposition of the raw material gas occurs not only on or near the surface of the substrate but also near the heater, which adversely affects the required film formation control. On the other hand, the direct heating is an effective heating method in the CVD method, the gas source MBE method, etc., because the source gas is not decomposed except in the vicinity of the substrate.
【0003】基板に通電するための電極の構造は様々な
ものが可能であり、主として用いられているものは基板
ホルダーに平面的に固定する、またはクリップ状の金属
片ではさむような構造のものなどである。基本的に
(1)基板全体が均一に加熱されるように電流を流し得
ること、(2)基板に対し不要な歪を与えないことが必
要である。There are various possible electrode structures for energizing the substrate, and the ones that are mainly used are those that are flatly fixed to the substrate holder or sandwiched by a clip-shaped metal piece. And so on. Basically, (1) it is necessary to allow an electric current to flow so that the entire substrate is heated uniformly, and (2) it is necessary not to give unnecessary strain to the substrate.
【0004】従来、基板にはシリコン(Si)など半導
体がもっとも一般的に用いられる。図4(a)の模式図
のごとく半導体基板41と電極を兼ねる基板ホルダー4
2とが面的に接触している。Conventionally, semiconductors such as silicon (Si) are most commonly used for substrates. As shown in the schematic view of FIG. 4A, a semiconductor substrate 41 and a substrate holder 4 which also serves as an electrode
2 is in surface contact.
【0005】[0005]
【発明が解決しようとする課題】しかしながら前記図4
の場合、電流は比較的容易に流せるが、電極接触部分か
ら基板の熱が逃げてしまう。図4(b)は600℃を目
標に加熱した場合の図であるが、ここに示すごとく基板
の温度分布が不均一になってしまうという問題を生じて
いる。また、面的接触といっても微視的に見れば接触し
ている部分はその一部であり、かつその接触部分の大き
さおよび位置などは不規則であり制御不可能である。そ
のために実際には基板を装着する度に温度分布の再現が
得られない。また、基板を安定に固定することが必要で
はあるが、完全に固定してしまうと基板と基板ホルダー
との熱膨張係数の差や固定の際のわずかな基板のねじれ
などによる歪のために基板表面に形成される薄膜の物性
に悪影響を及ぼしてしまう。一方、電極をピンのように
鋭い点接触をする構成にした場合には、電気的接触の再
現性は確実であるが、基板を流れる電流経路が基板全体
にわたって均一にならず、図5に示すごとく電極接触部
51に対し高温部分52と低温部分53を生じてしま
う。この対策として基板裏面に導電性薄膜を形成するこ
とにより基板全体に均等に電流が流れやすくするなどの
などの工夫がなされているが、工程数の増加および本来
の目的とする基板表面への薄膜形成時の不純物混入の原
因となるなど問題が多い。いずれの場合においても基板
の不均一温度分布は膜厚ムラ、抵抗、結晶性の不均一な
ど様々な物性の面内ばらつきを生じてしまう。However, the above-mentioned FIG.
In this case, the current can flow relatively easily, but the heat of the substrate escapes from the electrode contact portion. FIG. 4B is a diagram in the case of heating at 600 ° C. as a target, but as shown here, there is a problem that the temperature distribution of the substrate becomes non-uniform. Further, even if it is called a surface contact, the contacting portion is a part of it from a microscopic point of view, and the size and position of the contacting portion are irregular and uncontrollable. Therefore, in reality, the temperature distribution cannot be reproduced every time the substrate is mounted. In addition, it is necessary to fix the board stably, but if it is completely fixed, the board may be distorted due to a difference in coefficient of thermal expansion between the board and the board holder and a slight twist of the board when fixing. The physical properties of the thin film formed on the surface are adversely affected. On the other hand, when the electrode is configured to make a point contact like a pin, the reproducibility of electrical contact is sure, but the current path flowing through the substrate is not uniform over the entire substrate, and as shown in FIG. As described above, a high temperature portion 52 and a low temperature portion 53 are generated in the electrode contact portion 51. As a countermeasure against this, measures such as forming a conductive thin film on the back surface of the substrate to make it easier for current to flow evenly over the entire substrate have been taken. There are many problems such as mixing of impurities during formation. In any case, the uneven temperature distribution of the substrate causes various in-plane variations in physical properties such as film thickness unevenness, resistance, and uneven crystallinity.
【0006】本発明は、前記従来の問題を解決するた
め、基板に通電する事による直接加熱において、加熱時
の基板表面の温度分布を均一にし、かつ基板にかかる歪
を低減するための基板加熱装置を提供することを目的と
する。In order to solve the above-mentioned conventional problems, the present invention is directed to heating a substrate in order to make the temperature distribution on the substrate surface uniform during heating and reduce strain applied to the substrate in direct heating by energizing the substrate. The purpose is to provide a device.
【0007】[0007]
【課題を解決するための手段】前記目的を達成するた
め、本発明の基板加熱装置は、基板の一方の端部より他
方の端部に電流を流すことにより基板を加熱する装置で
あって、通電のために基板に接触する電極が、金属製基
板ホルダーの一部分に固定した波状金属板からなり、前
記波状金属板は複数の頂上部分を有することを特徴とす
る。In order to achieve the above object, a substrate heating device of the present invention is a device for heating a substrate by passing a current from one end of the substrate to the other end thereof. The electrode contacting the substrate for energizing is made of a corrugated metal plate fixed to a part of a metallic substrate holder, and the corrugated metal plate has a plurality of top portions.
【0008】前記構成においては、基板が非導電性物質
によって固定されていることが好ましい。また前記構成
においては、電極となる金属板が、非導電性物質製の薄
板を介して装着されていることが好ましい。In the above structure, it is preferable that the substrate is fixed by a non-conductive substance. Further, in the above structure, it is preferable that the metal plate serving as an electrode is attached via a thin plate made of a non-conductive material.
【0009】[0009]
【作用】前記した本発明の構成によれば、通電のために
基板に接触する電極が、金属製基板ホルダーの一部分に
固定した波状金属板からなり、前記波状金属板は複数の
頂上部分を有することにより、加熱時の基板表面の温度
分布を均一にし、かつ基板にかかる歪を低減するするこ
とができる。すなわち、前記のような構成の基板加熱装
置は基板と電極との接触面積が限られているために基板
から電極または基板ホルダーへの熱の逃げが最小限です
み、また接触位置が複数であるために基板の大きさに応
じて突起の個数および間隔などの位置関係を制御できる
ため、基板に均一な電流経路すなわち均一な温度分布を
得ることを可能にするものである。According to the above-mentioned structure of the present invention, the electrode contacting the substrate for energization is composed of the corrugated metal plate fixed to a part of the metallic substrate holder, and the corrugated metal plate has a plurality of top portions. As a result, the temperature distribution on the substrate surface during heating can be made uniform, and the strain applied to the substrate can be reduced. That is, in the substrate heating device having the above-mentioned configuration, the contact area between the substrate and the electrode is limited, so that the heat escape from the substrate to the electrode or the substrate holder is minimal, and the contact position is plural. Therefore, since the positional relationship such as the number and intervals of the protrusions can be controlled according to the size of the substrate, it is possible to obtain a uniform current path in the substrate, that is, a uniform temperature distribution.
【0010】[0010]
【実施例】以下に、図面を用いて本発明を具体的に説明
する。図1(a)は本発明の一実施例の基板ホルダーお
よび電極の構成を示す概念図、(b)は基板を装着した
状態を示す図である。ここでは長方形に切った基板(1
cm×2cm)を用いる場合を取り上げる。基板ホルダ
ー1は高融点金属、たとえばモリブデン(Mo)、タン
タル(Ta)、タングステン(W)などでつくられる。
このブロックに基板を装着できる溝2を設ける。基板は
同図において表面が上方を向くものとし、電極となる波
板状金属部品3をこの溝の底部に非導電性プレート4を
介し、基板ホルダー1と同じ材料でできたビス5を用い
て装着する。この電極上に図1(b)のように、厚さ例
えば0.3〜0.5mmのシリコン基板6を基板固定用
プレート7および基板ホルダー1と同じ材料でできたビ
ス8を用いて装着する。前記波板状金属部品3は、M
o,Ta,Wなどで作成するが、Taの場合、例えば5
0〜100μmの厚さで、波の頂部と頂部1ピッチ長さ
が例えば2mm、頂部の数5個、長さ10mm、高さ5
mmのものを用いることができる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to the drawings. FIG. 1A is a conceptual diagram showing the configuration of a substrate holder and electrodes according to an embodiment of the present invention, and FIG. 1B is a diagram showing a state in which a substrate is mounted. Here, a rectangular substrate (1
cm x 2 cm) is used. The substrate holder 1 is made of a refractory metal such as molybdenum (Mo), tantalum (Ta), or tungsten (W).
A groove 2 on which a substrate can be mounted is provided in this block. The surface of the board faces upward in the figure, and the corrugated metal part 3 serving as an electrode is placed at the bottom of this groove via a non-conductive plate 4 and a screw 5 made of the same material as the board holder 1 is used. Mounting. As shown in FIG. 1B, a silicon substrate 6 having a thickness of, for example, 0.3 to 0.5 mm is mounted on this electrode by using screws 8 made of the same material as the substrate fixing plate 7 and the substrate holder 1. . The corrugated metal part 3 is M
It is created with o, Ta, W, etc., but in the case of Ta, for example, 5
With a thickness of 0 to 100 μm, the wave top and the top 1 pitch length is, for example, 2 mm, the number of tops is 5, the length is 10 mm, and the height is 5.
mm can be used.
【0011】これを真空製膜装置内に導入し、基板に通
電することにより加熱する。シリコン(Si)のような
半導体材料は室温においては電気抵抗が高く、高温にな
るに従って抵抗が下がり、電流が急激に流れやすくなる
ために加熱の初期においては高電圧をかけることにより
電流を流し始め、ひとたび電流が流れはじめた後には高
電圧は不要であり、一定電流を流すよう制御することが
必要である。本実施例の大きさのSi基板では数V〜数
十V程度の初期電圧を要する。基板の大きさが一定であ
れば温度と電流は再現性のよい相関関係があり、試験基
板を用いてあらかじめ更正曲線を求めておけばよい。This is introduced into a vacuum film forming apparatus, and the substrate is heated by energizing it. A semiconductor material such as silicon (Si) has a high electric resistance at room temperature, and the resistance decreases as the temperature rises, and the current easily flows rapidly. Therefore, at the beginning of heating, a high voltage is applied to start the current flow. The high voltage is not necessary once the current starts flowing, and it is necessary to control so that a constant current flows. The Si substrate having the size of this embodiment requires an initial voltage of several V to several tens of V. If the size of the substrate is constant, the temperature and the current have a good reproducible correlation, and the calibration curve may be obtained in advance using the test substrate.
【0012】図2に本実施例の基板加熱装置を用いた場
合の温度分布を示す。従来は図4(b)に示すように基
板中心部と端部で100℃以上の温度差があったもの
が、ほぼ均一になっている。このように温度分布を均一
化した条件でSiO2 薄膜を形成したときの膜厚分布を
図3に示す。基板中心部から固定用プレートのエッジ近
くまでほぼ均一な膜厚が得られている。また、従来の基
板を完全に固定してしまうタイプのホルダーを用いた場
合に見られる応力歪およびそれによる不規則な膜厚ムラ
などは解消された。FIG. 2 shows the temperature distribution when the substrate heating apparatus of this embodiment is used. Conventionally, there is a temperature difference of 100 ° C. or more between the central portion and the end portion of the substrate as shown in FIG. FIG. 3 shows the film thickness distribution when the SiO 2 thin film is formed under the condition that the temperature distribution is made uniform. A nearly uniform film thickness is obtained from the center of the substrate to near the edge of the fixing plate. In addition, the stress strain and the irregular film thickness irregularity caused by the conventional type of holder that completely fixes the substrate were eliminated.
【0013】[0013]
【発明の効果】本発明の基板加熱装置を用いれば、基板
の中心部分と端部での大きな温度差を生ずるような温度
不均一を解消でき、そのために基板裏面に金属薄膜を形
成するような工程は不要になる。また、電極が波状金属
板であることから、その弾性を利用して基板裏面との電
気的接触を確実なものとし、基板に歪をあたえることな
く固定できる。このことにより基板表面に形成される薄
膜は基板上全面にわたって膜厚、抵抗、屈折率、結晶
性、その他重要な物性値が均一となり、良質な所望の薄
膜形成が可能となる。By using the substrate heating apparatus of the present invention, it is possible to eliminate the temperature non-uniformity which causes a large temperature difference between the central portion and the end portion of the substrate, and therefore a metal thin film is formed on the back surface of the substrate. The process becomes unnecessary. Further, since the electrode is a corrugated metal plate, its elasticity can be used to ensure electrical contact with the back surface of the substrate, and the electrode can be fixed without giving strain to the substrate. As a result, the thin film formed on the surface of the substrate has uniform film thickness, resistance, refractive index, crystallinity, and other important physical property values over the entire surface of the substrate, so that a desired thin film of good quality can be formed.
【図1】本発明の一実施例に用いる基板ホルダーおよび
電極構造を示す図。FIG. 1 is a diagram showing a substrate holder and an electrode structure used in an embodiment of the present invention.
【図2】本発明の一実施例による基板加熱の際の温度分
布を示す図。FIG. 2 is a diagram showing a temperature distribution when heating a substrate according to an embodiment of the present invention.
【図3】本発明の一実施例の膜厚分布を示す図。FIG. 3 is a diagram showing a film thickness distribution of an example of the present invention.
【図4】従来例の基板と電極が面的に接触している様子
を示す図(a)およびそのときの不均一な温度分布を示
す図(b)。FIG. 4 is a diagram showing a state where a substrate and an electrode are in surface contact with each other in a conventional example (a) and a diagram showing a non-uniform temperature distribution at that time (b).
【図5】従来例の鋭い先端を有する電極を用いた場合に
生ずる不均一な温度分布を示す図。FIG. 5 is a diagram showing a non-uniform temperature distribution that occurs when an electrode having a sharp tip of a conventional example is used.
1 基板ホルダー 2 基板を設置する溝 3 波板状金属部品(電極) 4 非導電性薄板 5 電極固定用ビス 6 基板 7 基板固定用プレート 8 ビス 41 半導体基板 42 基板ホルダー 51 点電極接触部 52 高温部分 53 低温部分 1 substrate holder 2 groove for installing substrate 3 corrugated plate-shaped metal component (electrode) 4 non-conductive thin plate 5 electrode fixing screw 6 substrate 7 substrate fixing plate 8 screw 41 semiconductor substrate 42 substrate holder 51 point electrode contact portion 52 high temperature Part 53 Low temperature part
Claims (3)
を流すことにより基板を加熱する装置であって、通電の
ために基板に接触する電極が、金属製基板ホルダーの一
部分に固定した波状金属板からなり、前記波状金属板は
複数の頂上部分を有することを特徴とする基板加熱装
置。1. A device for heating a substrate by passing an electric current from one end of the substrate to the other end, wherein an electrode contacting the substrate for energization is fixed to a part of a metal substrate holder. And a corrugated metal plate, the corrugated metal plate having a plurality of top portions.
いる請求項1に記載の基板加熱装置。2. The substrate heating apparatus according to claim 1, wherein the substrate is fixed by a non-conductive substance.
薄板を介して装着されている請求項1に記載の基板加熱
装置。3. The substrate heating apparatus according to claim 1, wherein the metal plate serving as an electrode is attached via a thin plate made of a non-conductive material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5145998A JPH073454A (en) | 1993-06-17 | 1993-06-17 | Substrate heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5145998A JPH073454A (en) | 1993-06-17 | 1993-06-17 | Substrate heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH073454A true JPH073454A (en) | 1995-01-06 |
Family
ID=15397795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5145998A Pending JPH073454A (en) | 1993-06-17 | 1993-06-17 | Substrate heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH073454A (en) |
-
1993
- 1993-06-17 JP JP5145998A patent/JPH073454A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1852907B1 (en) | Method for holding and processing SOS or SOI wafers | |
CN101582388B (en) | Substrate holding apparatus | |
JP3892609B2 (en) | Hot plate and method for manufacturing semiconductor device | |
JP3856293B2 (en) | Heating device | |
KR100709536B1 (en) | Systems for heating wafers | |
KR100402299B1 (en) | Arrangement for processing a substrate wafer, and method for operating it | |
KR101928626B1 (en) | Substrate mounting table and substrate processing apparatus | |
JP3077582B2 (en) | Plasma CVD apparatus and cleaning method therefor | |
US11150142B2 (en) | Thermocouple-fixing jig | |
JPH09320799A (en) | Plasma processor and plasma processing method | |
JPH07310187A (en) | Plasma treating device | |
US7115839B2 (en) | Heaters | |
JPH073454A (en) | Substrate heater | |
US6623563B2 (en) | Susceptor with bi-metal effect | |
JPS63216283A (en) | Heater | |
JPH06321684A (en) | Device for heating substrate | |
JP2024507450A (en) | Temperature controlled/electrically biased wafer periphery | |
JP3267371B2 (en) | Wafer heating method and apparatus | |
JP2004311592A (en) | Substrate cleaning device and method of manufacturing electronic device | |
KR20200064278A (en) | Electrostatic chuck with multi-zone heater | |
JPS622544A (en) | Noiseless discharge type gas plasma treating device | |
JP3233482B2 (en) | Vapor phase growth equipment | |
JPH0620965A (en) | Holder for heating under vacuum condition and cvd apparatus | |
JP3317385B2 (en) | Trimming blade | |
KR0116246Y1 (en) | Voltage supply device of an annealing furnace |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080611 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090611 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100611 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110611 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110611 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120611 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |