JPH0734104A - Treatment vessel for dehydrogenation of titanium hydride powder and dehydrogenation method - Google Patents

Treatment vessel for dehydrogenation of titanium hydride powder and dehydrogenation method

Info

Publication number
JPH0734104A
JPH0734104A JP18166593A JP18166593A JPH0734104A JP H0734104 A JPH0734104 A JP H0734104A JP 18166593 A JP18166593 A JP 18166593A JP 18166593 A JP18166593 A JP 18166593A JP H0734104 A JPH0734104 A JP H0734104A
Authority
JP
Japan
Prior art keywords
powder
dehydrogenation
titanium
titanium hydride
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18166593A
Other languages
Japanese (ja)
Inventor
Hideki Fujii
秀樹 藤井
Noboru Takaku
昇 高久
Masao Yamamiya
昌夫 山宮
Michio Tamura
道夫 田村
Wataru Kagohashi
亘 籠橋
Ryoji Murayama
良治 村山
Hidekazu Fukazawa
英一 深澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Toho Titanium Co Ltd
Original Assignee
Nippon Steel Corp
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Toho Titanium Co Ltd filed Critical Nippon Steel Corp
Priority to JP18166593A priority Critical patent/JPH0734104A/en
Publication of JPH0734104A publication Critical patent/JPH0734104A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To provide a treatment vessel for dehydrogenation of titanium hydride powder capable of preventing powder to be treated from sticking to the vessel and to provide a dehydrogenation method. CONSTITUTION:When titanium powder is produced by a hydrogenationdehydrogenation method, the inside of a treatment vessel 3 used in a dehydrogenation process is coated with a releasing agent 4 or this agent 4 is laid on the inside of the vessel 3 and titanium hydride powder 2 is housed in the vessel 3. This vessel 3 is then put in a furnace heated to a high temp. and the titanium hydride powder 2 is dehydrogenated by heat treatment in vacuum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金原料としての
チタン粉末を水素化脱水素法(HDH法)により製造す
る場合において、水素化チタン粉末を脱水素化熱処理に
使用する容器及び脱水素化熱処理法に関するものであ
る。
FIELD OF THE INVENTION The present invention relates to a container and a dehydrogenation container for using a titanium hydride powder in a dehydrogenation heat treatment when the titanium powder as a powder metallurgy raw material is produced by the hydrodehydrogenation method (HDH method). The present invention relates to a chemical heat treatment method.

【0002】[0002]

【従来の技術】チタン合金は比強度が高く、耐熱性、耐
蝕性に優れており、航空機等の材料として極めて有効な
特性を具備しているが、溶解、鍛造、切削等の加工性に
難点がある。このため、加工費の低減、歩留りの向上の
観点から最終形状に近い半製品を直接製造する技術とし
て、粉末冶金法が有望になっている。粉末冶金によって
チタン合金を製造する場合、原料として純チタン粉末と
チタン母合金粉末の混合粉末を用いる方法、およびチタ
ン合金粉末を用いる方法がある。前者の方法は両粉末の
混合比を変えることにより種々の組成の合金を安価に製
造できることから有利な方法とされている。
2. Description of the Related Art Titanium alloys have high specific strength, excellent heat resistance and corrosion resistance, and have properties that are extremely effective as materials for aircraft, etc., but have difficulty in workability such as melting, forging, and cutting. There is. Therefore, the powder metallurgy method is promising as a technique for directly manufacturing a semi-finished product having a final shape from the viewpoint of reducing the processing cost and improving the yield. In the case of producing a titanium alloy by powder metallurgy, there are a method of using a mixed powder of pure titanium powder and a titanium mother alloy powder as a raw material, and a method of using a titanium alloy powder. The former method is considered to be an advantageous method because alloys of various compositions can be manufactured at low cost by changing the mixing ratio of both powders.

【0003】純チタン粉末の製造方法としては、一般に
金属チタンを得るスポンジチタンを機械的に直接粉砕し
て粉末とする方法もあるが、スポンジチタンは展延性に
富むためこれを直接粉砕して微粉末を得るのは困難であ
り、また、得られたとしても塩素分が多いため粉末冶金
用としては好ましくない。一方、溶融チタンをガスで吹
き飛ばして粉末を作るアトマイズ法、或いは、チタン電
極を回転させ、その電極をプラズマ等で溶融し、遠心力
で吹き飛ばして粉末にする回転電極法がある。これらの
方法によれば、比較的純度の高いチタンが得られるが、
粉末形状、粒度、コスト等に難点がある。
As a method of producing pure titanium powder, there is generally a method of mechanically directly crushing sponge titanium to obtain metallic titanium to obtain powder, but since sponge titanium is rich in spreadability, it is directly crushed and finely divided. It is difficult to obtain a powder, and even if it is obtained, it has a large chlorine content, which is not preferable for powder metallurgy. On the other hand, there is an atomizing method in which molten titanium is blown off with a gas to produce powder, or a rotating electrode method in which a titanium electrode is rotated and the electrode is melted by plasma or the like and blown off by a centrifugal force to obtain powder. According to these methods, titanium of relatively high purity can be obtained,
There are problems in powder shape, particle size, cost, etc.

【0004】このため、原料チタンを水素化処理して脆
弱なチタン水素化物とし、これを機械的に粉砕して粉末
とした後、真空加熱等により脱水素してチタン粉末を得
るHDH法による方法が一般的に採用されている。すな
わち、このHDH法では、スポンジチタン、チタン製品
の切屑、端切れなどのスクラップ材を熱処理炉に装入
し、減圧下水素雰囲気で高温加熱して水素化し、さらに
水素雰囲気で冷却する。この様にして得た水素化したチ
タンは極めて脆化しており、ボールミル等の機械的粉砕
法によって所望の粒度に粉砕する。その後この水素化チ
タン粉末からチタンと化合している水素を除去する脱水
素処理が施される。
For this reason, the raw material titanium is hydrotreated to give a brittle titanium hydride, which is mechanically pulverized into powder and then dehydrogenated by vacuum heating or the like to obtain titanium powder by the HDH method. Is generally adopted. That is, in the HDH method, scrap materials such as titanium sponge, chips of titanium products, and scraps are charged into a heat treatment furnace, hydrogenated at a high temperature in a hydrogen atmosphere under reduced pressure, and further cooled in a hydrogen atmosphere. The hydrogenated titanium thus obtained is extremely brittle and is crushed to a desired particle size by a mechanical crushing method such as a ball mill. After that, a dehydrogenation treatment is performed to remove hydrogen combined with titanium from the titanium hydride powder.

【0005】[0005]

【発明が解決しようとする課題】上記脱水素処理工程で
は、水素化チタン粉末を皿状の容器に収納し、これを処
理炉に装入して真空中で高温(好ましくは600〜80
0℃)加熱および冷却する。この際、処理用容器は加工
上或いは取扱い上の便利さから鉄製或いはステンレス製
のものが使用されるが、この熱処理中に、上記収納した
処理粉末の焼結が進行し、その結果として処理粉末と容
器との間に凝着が起こり、工程後に処理粉末を容器から
剥離するのが困難となる。そのため、凝着した処理粉や
容器を機械的に打撃するなどして強制的に剥離させるこ
とになり、これにより次のような問題が生じている。 剥離工程に手数がかかるため生産性が低く、コスト高
になる。 打撃により容器に変形が起こり、その寿命が短い。 凝着した容器材が処理粉末に混入するため、処理粉末
の品質が低下する。
In the above dehydrogenation treatment step, titanium hydride powder is stored in a dish-shaped container, charged into a treatment furnace, and heated to a high temperature (preferably 600 to 80) in vacuum.
Heat and cool. At this time, a processing container made of iron or stainless steel is used for convenience of processing or handling. During the heat treatment, sintering of the stored processing powder proceeds, and as a result, the processing powder is processed. Cohesion occurs between the container and the container, making it difficult to peel the treated powder from the container after the process. Therefore, the treated powder and the container that have adhered are forcedly peeled off by mechanically striking them, which causes the following problems. Since the peeling process is troublesome, the productivity is low and the cost is high. The container is deformed by impact and its life is short. The quality of the treated powder deteriorates because the coagulated container material is mixed with the treated powder.

【0006】本発明はこの様な問題を解消するものであ
って、熱処理用容器に被処理粉末が付着するのを防止し
うる水素化チタン粉末の脱水素化処理用容器および脱水
素化処理法を提供することを目的とする。
The present invention solves such a problem, and is a container for dehydrogenation treatment of titanium hydride powder and a dehydrogenation treatment method capable of preventing the powder to be treated from adhering to the container for heat treatment. The purpose is to provide.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に本発明は、水素化脱水素法によりチタン粉末を製造す
る方法において、以下の構成を要旨とする。すなわち、
(1)脱水素化工程で使用し、水素化チタン粉末を収容す
る処理容器であって、該処理容器の内面に離形材を被覆
或いは敷設してなることを特徴とする水素化チタン粉末
の脱水素化用処理容器。および、(2)チタン粉末を製造
する水素化脱水素法の脱水素化工程において、内面に離
形材を被覆或いは敷設した処理容器に水素化チタン粉末
を収容し、高温加熱される炉内に装入して真空下で熱処
理することを特徴とする水素化チタン粉末の脱水素化処
理方法である。上記本発明において、処理容器の内面に
は耐火金属よりなる離形材を敷設し、または、高融点材
料よりなる離形材を塗布或いは溶射することができる。
In order to achieve the above object, the present invention has the following features in a method for producing titanium powder by a hydrodehydrogenation method. That is,
(1) A titanium hydride powder used in a dehydrogenation step, which is a processing container containing titanium hydride powder, characterized in that the inner surface of the processing container is coated or laid with a release material. Dehydrogenation treatment container. And (2) in the dehydrogenation step of the hydrodehydrogenation method for producing titanium powder, the titanium hydride powder is housed in a processing container whose inner surface is coated or laid with a mold release material, and the furnace is heated to a high temperature. A method for dehydrogenating titanium hydride powder, which comprises charging and heat treating under vacuum. In the present invention, a mold release material made of a refractory metal may be laid on the inner surface of the processing container, or a mold release material made of a high melting point material may be applied or sprayed.

【0008】[0008]

【作用】以下に本発明を詳細に説明する。チタン粉末を
容器に充填し高温にて熱処理すると、疑似焼結化し粉末
同志が凝着して塊になり、または粉末が塊状態になり更
に塊状態の粉末が処理容器に凝着して取れなくなる。一
般に、高温(500℃以上)熱処理を行う鉄またはステ
ンレス製容器では、凝着した粉末は容易に剥離せず、機
械的に殴打するなどの強制的な手段が必要となるが、予
め処理容器の被処理粉末と接触する内面に離形(剥離)
材を敷設或いは塗布しておけば、被処理粉末と容器の凝
着を防止でき、すなわち剥離が容易にできるため、容器
の損傷や生産性の低下を起こすことがなくなる。
The present invention will be described in detail below. When titanium powder is filled in a container and heat-treated at a high temperature, pseudo-sintering occurs and the powders adhere to each other to form an agglomerate, or the powder becomes an agglomerate and the agglomerate powder adheres to the treatment container and cannot be removed. . Generally, in an iron or stainless steel container that is subjected to a high-temperature (500 ° C. or higher) heat treatment, the adhered powder does not easily separate, and a mechanical means such as beating is required, but it is necessary to use Demolding (peeling) on the inner surface that comes in contact with the powder to be treated
If the material is laid or applied, the powder to be treated and the container can be prevented from adhering to each other, that is, they can be easily peeled off, so that the container is not damaged and the productivity is not lowered.

【0009】図1は脱水素処理炉を摸式的に示したもの
で、外筒1の内部に、水素化チタン粉末2を収納した処
理容器(トレイ)3が複数個段積みされている。図示し
ていないが外筒1には内部を真空にするための吸引管が
接続し、また、外筒外部には電気ヒーター等の間接加熱
手段が設けられていることは従来の炉構成と同様であ
る。図2は本発明の処理容器(トレイ)3を示す断面図
であり、トレイ3の内面には離形材4が設置されてい
る。
FIG. 1 schematically shows a dehydrogenation treatment furnace. Inside an outer cylinder 1, a plurality of treatment vessels (trays) 3 containing titanium hydride powder 2 are stacked. Although not shown, the outer tube 1 is connected to a suction tube for creating a vacuum inside, and an indirect heating means such as an electric heater is provided outside the outer tube as in the conventional furnace configuration. Is. FIG. 2 is a cross-sectional view showing the processing container (tray) 3 of the present invention, and a mold release material 4 is installed on the inner surface of the tray 3.

【0010】離形材4としては高融点材料を用い、その
設置方法は例えばMo,Nb等の耐火金属、或いはAl
2 3 等の酸化物,BN等の窒化物からなるセラミック
スを板状にし、これをトレイ3の内面に敷設或いは内張
し、または溶射等で直接ライニングする。更に上記セラ
ミックスの粉末をスプレー等で塗布する方法も採用でき
る。この際、溶剤はチタン粉末加熱温度で揮発するか、
チタン粉末中に混入しても品質に問題がないものを選定
する必要がある。チタン粉末と鉄またはステンレス製容
器との凝着は、双方の固相拡散に起因しているが、上記
した材料はチタンとの固相拡散が鉄またはステンレスに
比較して著しく低く、使用する熱処理温度でのチタンと
の凝着はほとんど起きない。
A high melting point material is used as the mold release material 4, and the installation method is, for example, a refractory metal such as Mo or Nb, or Al.
Ceramics composed of oxides such as 2 O 3 and nitrides such as BN are formed into a plate shape, which is laid or lined on the inner surface of the tray 3, or directly lined by thermal spraying or the like. Further, a method of applying the above-mentioned ceramic powder by spraying or the like can also be adopted. At this time, the solvent volatilizes at the heating temperature of the titanium powder,
It is necessary to select a material that does not have a quality problem even if it is mixed in titanium powder. The adhesion between the titanium powder and the iron or stainless steel container is due to the solid phase diffusion of both. However, the above-mentioned materials have a significantly lower solid phase diffusion with titanium than iron or stainless steel, and the heat treatment to be used. Almost no adhesion with titanium occurs at temperature.

【0011】以上本発明を脱水素化処理に用いる場合を
主体に説明したが、本発明はこれに限定されるものでな
く、チタン粉末の他の熱処理にも適用できる。
Although the present invention has been mainly described above in the case of being used for dehydrogenation treatment, the present invention is not limited to this and can be applied to other heat treatments of titanium powder.

【0012】[0012]

【実施例1】直径400mmφ、深さ50mmの皿状ステン
レス容器の内面に高純度ボロンナイトライド(BN)の
スプレー剤を容器内面に均一に塗布した後、この容器に
45μmの篩を通過した水素化チタン粉5kgを均一な厚
みになるように充填した。同容器を真空加熱炉内に装入
した後、炉内を10-3torr以下に真空引きした。その
後、処理粉末温度を約700℃に保持しながら真空下で
脱水素を行った。脱水素中の炉内には水素が発生するた
め真空度は低下するが徐々に回復し約8時間後には炉内
が10-2torr以下となった。この時点で加熱を停止し、
炉内にArガスを導入して炉内圧を大気圧に保持しなが
ら室温まで冷却した。冷却後に取り出した処理粉末は塊
状態に疑似焼結していたが、容器との付着は殆どなく、
多少あっても軽く叩く程度で容易に容器から剥離させる
ことができた。
Example 1 A high-purity boron nitride (BN) spray agent was uniformly applied to the inner surface of a dish-shaped stainless steel container having a diameter of 400 mm and a depth of 50 mm, and then hydrogen was passed through a 45 μm sieve into the container. 5 kg of titanium oxide powder was filled so as to have a uniform thickness. After charging the container into a vacuum heating furnace, the inside of the furnace was evacuated to 10 −3 torr or less. Then, dehydrogenation was performed under vacuum while maintaining the treated powder temperature at about 700 ° C. The degree of vacuum was lowered because hydrogen was generated in the furnace during dehydrogenation, but it gradually recovered and after about 8 hours, the inside of the furnace became 10 -2 torr or less. Stop heating at this point,
Ar gas was introduced into the furnace to cool it to room temperature while maintaining the furnace pressure at atmospheric pressure. The treated powder taken out after cooling was pseudo-sintered into a lump state, but there was almost no adhesion to the container,
Even if there was some, it could be easily peeled from the container by tapping.

【0013】[0013]

【比較例】一方、容器内面を無塗布として同様に処理し
たものは、容器内に処理粉末が塊状態に疑似焼結してい
ると共に、容器との凝着も強く、これを剥離するために
手動でハンマーなどで付着物および容器を打撃しながら
剥離しなければならなかった。
[Comparative Example] On the other hand, in the case of the same treatment without coating the inner surface of the container, the treated powder was pseudo-sintered into a lump state in the container and the adhesion with the container was strong, so that the It had to be manually peeled off by hitting the deposit and the container with a hammer or the like.

【0014】[0014]

【実施例2】実施例1と同様の容器の内面に厚さ0.2
mmの純Mo薄膜を敷設し実施例1と同様の脱水素処理を
実施した。冷却後に取り出した処理粉末は塊状態に疑似
焼結していたが、容器との付着は殆ど認められず、手で
容易に容器から剥離させることができた。
Example 2 A container similar to that in Example 1 has a thickness of 0.2 on the inner surface.
A pure Mo thin film of mm was laid and the same dehydrogenation treatment as in Example 1 was performed. The treated powder taken out after cooling was pseudo-sintered in a lump state, but almost no adhesion to the container was observed, and it could be easily peeled from the container by hand.

【0015】[0015]

【発明の効果】以上説明したように、本発明は、処理容
器を改良することにとり、高温処理したチタン粉末の容
器への凝着がほとんどなくなり、そのため、機械的剥離
工程の省略により生産性が向上し、剥離工程の省略およ
び処理容器の寿命の向上により生産コストが低減する。
また、処理容器構成元素のチタン粉末中のへ拡散が防止
できるため処理粉末の品質が向上する。
As described above, according to the present invention, by improving the processing container, the adhesion of the high-temperature-treated titanium powder to the container is almost eliminated. Therefore, the mechanical peeling step can be omitted to improve the productivity. The production cost is reduced by eliminating the peeling process and extending the life of the processing container.
Further, since the constituent elements of the processing container can be prevented from diffusing into the titanium powder, the quality of the processing powder is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】脱水素化処理炉の要部を模式的に示した断面
図。
FIG. 1 is a sectional view schematically showing a main part of a dehydrogenation treatment furnace.

【図2】本発明処理容器の一例を示す断面説明図。FIG. 2 is a sectional explanatory view showing an example of the processing container of the present invention.

【符号の説明】[Explanation of symbols]

1:外筒 2:チタン粉末 3:処理容器 4:離形材 1: Outer cylinder 2: Titanium powder 3: Processing container 4: Release material

フロントページの続き (72)発明者 山宮 昌夫 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 田村 道夫 兵庫県姫路市広畑区富士町1番地 新日本 製鐵株式会社広畑製鐵所内 (72)発明者 籠橋 亘 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 (72)発明者 村山 良治 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内 (72)発明者 深澤 英一 神奈川県茅ヶ崎市茅ヶ崎3−3−5 東邦 チタニウム株式会社内Front page continuation (72) Inventor Masao Yamamiya 2-6-3 Otemachi, Chiyoda-ku, Tokyo Within Nippon Steel Corporation (72) Inventor Michio Tamura 1 Fuji-cho, Hirohata-ku, Himeji-shi, Hyogo Shin Nippon Steel Hirohata Works Ltd. (72) Inventor Wataru Kagohashi 3-3-5 Chigasaki, Chigasaki City, Kanagawa Prefecture Toho Titanium Co., Ltd. (72) Ryoji Murayama 3-3-5 Chigasaki City, Kanagawa Prefecture Toho Titanium Co., Ltd. (72) Inventor Eiichi Fukasawa 3-5-5 Chigasaki, Chigasaki, Kanagawa Toho Titanium Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水素化脱水素法の脱水素化工程で使用
し、水素化チタン粉末を収容する処理容器であって、該
処理容器の内面に離形材を被覆或いは敷設してなること
を特徴とする水素化チタン粉末の脱水素化用処理容器。
1. A processing container which is used in the dehydrogenation step of a hydrodehydrogenation method and which contains titanium hydride powder, wherein the inner surface of the processing container is coated or laid with a release material. A characteristic treatment container for dehydrogenation of titanium hydride powder.
【請求項2】 内面に耐火金属よりなる離形材を敷設し
たことを特徴とする請求項1記載の水素化チタン粉末の
脱水素化用処理容器。
2. The processing container for dehydrogenation of titanium hydride powder according to claim 1, wherein a release material made of refractory metal is laid on the inner surface.
【請求項3】 内面に高融点材料よりなる離形材を塗布
したことを特徴とする請求項1記載の水素化チタン粉末
の脱水素化用処理容器。
3. The processing container for dehydrogenation of titanium hydride powder according to claim 1, wherein a release agent made of a high melting point material is applied to the inner surface.
【請求項4】 内面に高融点材料よりなる離形材を溶射
したことを特徴とする請求項3記載の水素化チタン粉末
の脱水素化用処理容器。
4. The processing container for dehydrogenation of titanium hydride powder according to claim 3, wherein a release material made of a high melting point material is sprayed on the inner surface.
【請求項5】 チタン粉末を製造する水素化脱水素法の
脱水素化工程において、内面に離形材を被覆或いは敷設
した処理容器に水素化チタン粉末を収容し、高温加熱さ
れる炉内に装入して真空下で熱処理することを特徴とす
る水素化チタン粉末の脱水素化処理方法。
5. In the dehydrogenation step of the hydrodehydrogenation method for producing titanium powder, the titanium hydride powder is housed in a processing vessel whose inner surface is coated or laid with a mold release material, and is placed in a furnace heated at a high temperature. A method for dehydrogenating titanium hydride powder, which comprises charging and performing heat treatment under vacuum.
JP18166593A 1993-07-22 1993-07-22 Treatment vessel for dehydrogenation of titanium hydride powder and dehydrogenation method Withdrawn JPH0734104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18166593A JPH0734104A (en) 1993-07-22 1993-07-22 Treatment vessel for dehydrogenation of titanium hydride powder and dehydrogenation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18166593A JPH0734104A (en) 1993-07-22 1993-07-22 Treatment vessel for dehydrogenation of titanium hydride powder and dehydrogenation method

Publications (1)

Publication Number Publication Date
JPH0734104A true JPH0734104A (en) 1995-02-03

Family

ID=16104732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18166593A Withdrawn JPH0734104A (en) 1993-07-22 1993-07-22 Treatment vessel for dehydrogenation of titanium hydride powder and dehydrogenation method

Country Status (1)

Country Link
JP (1) JPH0734104A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430759A (en) * 2011-12-03 2012-05-02 常州六九新材料科技有限公司 Preparation method of high-purity titanium powder for large-scale integrated circuit
CN104289709A (en) * 2014-10-31 2015-01-21 中南大学 Preparation method for superfine zirconium powder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430759A (en) * 2011-12-03 2012-05-02 常州六九新材料科技有限公司 Preparation method of high-purity titanium powder for large-scale integrated circuit
CN104289709A (en) * 2014-10-31 2015-01-21 中南大学 Preparation method for superfine zirconium powder

Similar Documents

Publication Publication Date Title
CA2607091C (en) Coating process for manufacture or reprocessing of sputter targets and x-ray anodes
US6056857A (en) Cryogenic annealing of sputtering targets
US5087297A (en) Aluminum target for magnetron sputtering and method of making same
US20110303535A1 (en) Sputtering targets and methods of forming the same
WO2019024421A1 (en) Method for preparing target material and target material
JP4851672B2 (en) Improved sputtering target and process and use thereof
CN114774865B (en) Aluminum scandium alloy target and preparation method thereof
CN106567048B (en) A kind of manufacturing method of large size High-Purity Molybdenum alloy rotary target material
JPH06346232A (en) Target for sputtering and its production
JPH0734104A (en) Treatment vessel for dehydrogenation of titanium hydride powder and dehydrogenation method
JP3200935B2 (en) Manufacturing method of aluminum alloy
JP4578704B2 (en) W-Ti target and manufacturing method thereof
CN114231917B (en) Preparation method of high-purity rare earth and alloy target material
JPH05452B2 (en)
JPH04232260A (en) W-ti alloy target and its manufacture
JPH0119448B2 (en)
JPH0770613A (en) Dehydrogenation in production of titanium powder
CN115255373B (en) Method for preparing topological structure titanium-based composite material based on 3D printing and composite material
CN116675998B (en) High-temperature heat treatment anti-lithium release coating for aluminum lithium alloy and preparation method thereof
JP2003226960A (en) MgO VAPOR DEPOSITION MATERIAL AND PRODUCTION METHOD THEREFOR
JP2000199055A (en) Cr TARGET MATERIAL AND ITS PRODUCTION
JP2610575B2 (en) W-Ti alloy target
CN117265489A (en) Titanium-aluminum alloy target and preparation method thereof
WO2004016823A1 (en) Silicon substrate or silicon sputtering target and method for preparation thereof
JPS62256902A (en) Intermetallic al3ti powder and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003