JPH0734006A - Primer coating composition - Google Patents

Primer coating composition

Info

Publication number
JPH0734006A
JPH0734006A JP19920793A JP19920793A JPH0734006A JP H0734006 A JPH0734006 A JP H0734006A JP 19920793 A JP19920793 A JP 19920793A JP 19920793 A JP19920793 A JP 19920793A JP H0734006 A JPH0734006 A JP H0734006A
Authority
JP
Japan
Prior art keywords
solid content
vinyl chloride
coating
molecular weight
content ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19920793A
Other languages
Japanese (ja)
Other versions
JP3092767B2 (en
Inventor
Yasuhiko Yoshida
靖彦 吉田
Norihiko Yoshioka
典彦 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Kaken Co Ltd filed Critical SK Kaken Co Ltd
Priority to JP05199207A priority Critical patent/JP3092767B2/en
Publication of JPH0734006A publication Critical patent/JPH0734006A/en
Application granted granted Critical
Publication of JP3092767B2 publication Critical patent/JP3092767B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:To obtain the subject composition comprising a specific high mol.wt. acrylic resin and a vinyl chloride resin produced by copolymerizing vinyl chlo ride with vinylidene chloride in a specific solid content ratio, capable of control ling the absorbability of a substrate and of reducing the coating number of finishing coating films, and good in durability. CONSTITUTION:This primer coating composition capable of controlling the absorbability of a substrate in the coating of a finishing coating material on a porous material as a substrate, capable of reducing the coating number of finishing coating films, enhanced in curability, and capable of being used for general purposes without selecting the kind of the finishing coating material contains (A) 100 pts.wt. (as solid content) of a high mol.wt. acrylic resin obtained by copolymerizing a monomer of formula I (R<1> is H, CH3, C2H4OH) with a monomer of formula II [R<2> is C3H7, CH2CH(C2H5)C4H9] in a solid content ratio of 1:(0.3-0.6) and (B) 50-400 pts.wt. (as solid content) of a vinyl chloride resin obtained by copolymreizing vinyl chloride with vinylidene chloride in a solid content ratio of 1:(0.1-1).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は各種仕上塗材と密着し、
コンクリート、モルタル、PC板、ALC等の無機質基
材の防水性、非透水性、アルカリシール性、耐溶剤性を
格段に向上させる下塗材組成物に関するものである。
FIELD OF THE INVENTION The present invention adheres to various finishing coating materials,
The present invention relates to an undercoat material composition which markedly improves waterproofness, water impermeability, alkali sealability and solvent resistance of an inorganic base material such as concrete, mortar, PC board and ALC.

【0002】[0002]

【従来技術】従来より、コンクリート、モルタル、PC
板、ALC等の無機質基材に仕上塗材を塗付する際に
は、下塗材が用いられてきた。これは、多孔質で吸収性
の大きい基材面に直接仕上塗材を塗付すると、塗材中の
ビヒクルのみが基材に吸収されて塗膜の耐久力を阻害す
るのに対して、下塗材を塗付してビヒクルの吸収を減少
させるためである。また新しいコンクリートの場合に
は、仕上塗膜が直接コンクリートのアルカリに触れて変
質するのを防ぐこともできる。このような下塗材には、
ウレタン系、エポキシ系、アクリル系等各種のものがあ
るが、その目的は前述のシール効果以外に、その上に塗
る塗材との密着性が必要である。ここで一般に塗膜の付
着機構については投錨説、界面化学理論、SP理
論、拡散理論、静電気理論等がある。の投錨説
は、固体表面に深い細隙があるとき、塗料ビヒクルがそ
の内部に浸透し、錨のように固体表面に根をおろすこと
により付着するものである。の界面化学理論は、付着
するA、B両相の表面張力γが等しいときに、界面張力
が極小のゼロになり付着が最大になるというものであ
る。のSP理論はA、B両相の溶解性パラメーターが
等しいときに付着が最大になるというものである。の
拡散理論はポリマー同士の付着の場合、界面を越えた分
子の拡散が起こると、付着は平面現象ではなく、ある深
さを有する体積現象となるという考え方である。の静
電気理論は付着力の本質は正負の電気力によるものとす
る考え方である。下塗材とその上にくる仕上塗膜との付
着性を向上させる場合においてもこれらの理論があては
まることになる。しかしながらの投錨説は下塗材乾燥
硬化後に、その上に塗付する仕上塗膜との間では問題と
ならない。また、界面化学理論、SP理論、拡散
理論については、上にくる塗膜が各種ある場合にはその
つど下塗材を変更しなければならないことになる。特に
上にくる塗膜が、例えば JIS A 6909 可とう形、JIS A
6910防水形及びこれに類する材料のような弾性を有する
場合には、硬質の塗膜におけるほどこれらの付着機構が
当てはまらないことが多く、の機構では密着性を
高めることができなかった。これに対して、塩素基を側
鎖に導入したポリプロピレンを用い、この塩素基の電気
陰性度の高さからくる塗膜全体の静電気的な効果を利用
して、弾性塗膜であっても密着性を向上させられるよう
になった。
2. Description of the Related Art Conventionally, concrete, mortar, PC
An undercoat material has been used when applying a finish coating material to an inorganic substrate such as a plate or ALC. This is because when a finish coating material is applied directly to the surface of a porous and highly absorbent base material, only the vehicle in the coating material is absorbed by the base material, which impairs the durability of the coating film. This is because the material is applied to reduce the absorption of the vehicle. Further, in the case of new concrete, it is possible to prevent the finish coating film from directly contacting the alkali of the concrete and deteriorating. Such undercoat materials include
There are various types such as urethane type, epoxy type, and acrylic type, but the purpose thereof is not only the above-mentioned sealing effect but also the adhesiveness with the coating material to be applied thereon. Here, generally, there are anchoring theory, surface chemistry theory, SP theory, diffusion theory, electrostatic theory, etc., regarding the adhesion mechanism of the coating film. The anchoring theory is that when there is a deep gap in the solid surface, the paint vehicle penetrates inside and sticks to the solid surface by rooting like a anchor. The theory of interfacial chemistry is that when the surface tensions γ of both the adhering A and B phases are equal, the interfacial tension becomes a minimum of zero and the adhering becomes maximum. The SP theory is that the maximum adhesion occurs when the solubility parameters of both A and B phases are equal. The theory of diffusion is that, in the case of adhesion between polymers, when the diffusion of molecules across the interface occurs, the adhesion does not become a planar phenomenon but a volume phenomenon having a certain depth. The electrostatic theory of is that the essence of adhesive force is due to positive and negative electric forces. These theories also apply in the case of improving the adhesion between the undercoat material and the finish coating film on it. However, the anchoring theory does not cause a problem with the finish coating film to be applied thereon after the undercoating material is dried and cured. Further, regarding the surface chemistry theory, SP theory, and diffusion theory, if there are various kinds of coating films that come on, the undercoat material must be changed each time. Especially, the coating film on the top is, for example, JIS A 6909 flexible shape, JIS A
In the case where the 6910 waterproof type and similar materials have elasticity, these adhesion mechanisms are often not as applicable as in a hard coating film, and the mechanism cannot improve the adhesion. On the other hand, polypropylene with a chlorine group introduced into the side chain is used, and the electrostatic effect of the entire coating film due to the high electronegativity of this chlorine group is used to adhere even an elastic coating film. It has become possible to improve the sex.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、塩素化
ポリプロピレンはその製造過程において、四塩化炭素を
使用する。この四塩化炭素は毒性が高く、最近の環境保
護の政策から塩素系有機溶剤の各種法規制により使用が
制限されており、また将来的には全廃の方向となってい
る。さらに、この塩素化ポリプロピレンを下塗材として
使用した場合に、その上に塗付する仕上塗材として溶剤
系のものを使用した場合には、塩素化ポリプロピレンの
耐溶剤性の低さから、下塗材塗膜が膨潤して密着不良や
塗膜の膨れ剥がれ等の問題を生じていた。したがって、
依然として上に塗装する仕上塗材の種類により下塗材を
適宜変更し使用しているのが実情である。このように、
上に塗付する仕上材の種類を選ばず優れた密着性を示
し、特に弾性系仕上塗材とも密着するとともに、下地基
材のコンクリート、モルタルなど無機質基材の防水性、
非透水性、アルカリシール性、耐溶剤性を格段に向上さ
せる汎用の下塗材組成物は今までなく産業界から切望さ
れていた。本発明が解決しようとする問題点はこのよう
な下塗材組成物を製造することにある。
However, chlorinated polypropylene uses carbon tetrachloride in its manufacturing process. This carbon tetrachloride is highly toxic, and its use has been restricted by various laws and regulations for chlorine-based organic solvents due to recent environmental protection policies, and it will be totally abolished in the future. Furthermore, when this chlorinated polypropylene is used as an undercoating material, if a solvent-based one is used as the finishing coating material to be applied on it, the solvent resistance of the chlorinated polypropylene is low, The coating film swelled to cause problems such as poor adhesion and swelling and peeling of the coating film. Therefore,
The actual situation is that the undercoat material is appropriately changed and used depending on the type of the finish coating material to be applied on top. in this way,
It shows excellent adhesion regardless of the type of finishing material to be applied on top, and in particular it adheres to elastic finishing coating material as well as waterproofing of inorganic base materials such as concrete base material and mortar,
A general-purpose undercoating material composition that remarkably improves water impermeability, alkali sealability, and solvent resistance has long been desired by the industrial world. The problem to be solved by the present invention is to produce such an undercoat material composition.

【0004】[0004]

【課題を解決するための手段】このような問題点を解決
するために本発明者らは、塩素化ポリプロピレンの代わ
りに、塩化ビニル、塩化ビニリデンを共重合した樹脂
(以下、単に「塩ビ系樹脂」という。)を利用すること
で、密着性および耐溶剤性の問題が解決できるのではな
いかと考え、鋭意研究の結果、特定の高分子量アクリル
樹脂と該塩ビ系樹脂との複合により、目的とする下塗材
組成物を発明するに至った。すなわち、(A)重量平均
分子量が150000〜300000の高分子量アクリ
ル樹脂、(B)塩化ビニル、塩化ビニリデンを固形分比
率1:0.1〜1で共重合した塩ビ系樹脂とし、(A)
の固形分100重量部に対して(B)を固形分換算で5
0〜400重量部配合するのである。ここで(A)の高
分子量アクリルで重量平均分子量が150000より小
さいときは、シール性、耐溶剤性が劣り、300000
より大きいときは粘度が非常に高くなり塗料化が困難と
なってしまう。また、(A)の高分子量アクリル樹脂の
モノマー組成は、(B)成分と混合できる程度の粘性と
なるものであれば特に限定されないが、望ましくは化
1、化2で表される単量体を固形分比率1:0.3〜
0.6で共重合したものが良い。
In order to solve such a problem, the present inventors have developed a resin (hereinafter simply referred to as "vinyl chloride resin") obtained by copolymerizing vinyl chloride and vinylidene chloride instead of chlorinated polypropylene. I think that the problems of adhesion and solvent resistance can be solved by using the above-mentioned ".", And as a result of earnest research, by combining a specific high molecular weight acrylic resin and the vinyl chloride-based resin, The present invention has led to the invention of a primer coating composition. That is, (A) a high molecular weight acrylic resin having a weight average molecular weight of 150,000 to 300,000, (B) a vinyl chloride resin obtained by copolymerizing vinyl chloride and vinylidene chloride at a solid content ratio of 1: 0.1 to 1,
5 parts by weight of (B) based on 100 parts by weight of solid content
The amount is 0 to 400 parts by weight. When the weight average molecular weight of the high molecular weight acrylic resin (A) is less than 150,000, the sealing properties and solvent resistance are inferior.
When it is larger, the viscosity becomes so high that it becomes difficult to make it into a paint. The monomer composition of the high molecular weight acrylic resin (A) is not particularly limited as long as it has a viscosity that allows it to be mixed with the component (B), but is preferably a monomer represented by Chemical Formula 1 or Chemical Formula 2. The solid content ratio is 1: 0.3
Copolymerized with 0.6 is preferable.

【化1】[Chemical 1]

【化2】つぎに(B)成分の塩化ビニル、塩化ビニリデ
ンの固形分比率が上記の範囲を超える場合は、塩化ビニ
リデンが0.1より小さくなると、密着性が劣り、1よ
り大きくなると、重合度が低くなる結果、分子量が低く
なるため基材への吸い込みが大きくなりシール性が低下
する。また(B)成分の分子量は、塩化ビニル、塩化ビ
ニリデン固形分比率が上記範囲に入っていれば特に限定
されないが、シール性の問題を考慮すると2万以上は必
要である。(A)成分、(B)成分共にその製造には溶
液重合等の一般的な方法を用ればよく特に限定されるも
のではない。また、その重合の際に使用される有機溶剤
も(A)成分、(B)成分を混合した際に、ソルベント
ショックにより樹脂がゲル化したり、両成分に使用され
ている溶剤そのものの相溶性が悪い場合を除けば特に限
定されるものではない。さらに、(A)成分にはスチレ
ン等、(B)成分には、マレイン酸、酢酸ビニル等のモ
ノマーを共重合しても良い。
## STR00002 ## Next, when the solid content ratio of vinyl chloride and vinylidene chloride as the component (B) exceeds the above range, when the vinylidene chloride is less than 0.1, the adhesion is poor, and when it is more than 1, the polymerization is As a result, the molecular weight becomes low, so that the material is more sucked into the substrate and the sealing property is deteriorated. Further, the molecular weight of the component (B) is not particularly limited as long as the vinyl chloride / vinylidene chloride solid content ratio is within the above range, but it is necessary to be 20,000 or more in consideration of the problem of sealing property. Both the component (A) and the component (B) may be produced by a general method such as solution polymerization, and are not particularly limited. In addition, the organic solvent used during the polymerization also causes the resin to gel due to solvent shock when the components (A) and (B) are mixed, and the compatibility of the solvent itself used for both components is There is no particular limitation except for bad cases. Further, the component (A) may be copolymerized with styrene or the like, and the component (B) may be copolymerized with a monomer such as maleic acid or vinyl acetate.

【0005】[0005]

【実施例】【Example】

(実施例1)表1に示した分子量、モノマー組成の高分
子アクリル樹脂のキシレン溶液および、塩ビ系樹脂の酢
酸エチル−トルエン溶液を記載の比率にて配合した下塗
材組成物に対して、弾性塗材との密着性試験、透水性試
験、アルカリシール性試験、フクレ性試験を下記のよう
な方法で行った。結果を表3に示した。 (試験方法) (1)弾性塗材との密着性試験 モルタル板に各種下塗材を膜厚0.125μmになるよ
うに塗付し、24時間標準状態で乾燥させた上に、弾性
塗材を膜厚0.125μmになるように塗付し、72時
間標準状態で乾燥させたものを、50℃温水に16時間
浸漬した後24時間標準状態で乾燥させたものを用い
て、JIS K 5400 8.5.2碁盤目テープ法
に準じて試験を行う。評価方法は、碁盤目テープ試験に
おける0点〜10点で行った。 (2)透水性試験 JIS K 5400 8.16 透水度の試験方法に
準じて、樹脂固形分で20g/m2 の塗付量となるよう
に試験体を作製し試験を行った。評価方法は、24時間
後における透水量をml単位で表現した。 (3)アルカリシール性試験 透水性試験に用いる脱イオン水に、フェノールフタレイ
ン溶液を0.01wt%になるように混合してアルカリ
溶出の有無を確認する。評価方法は、フェノールフタレ
インの変色があるものは、アルカリ溶出有とし、変色の
ないものはアルカリ溶出無しとした。 (4)フクレ性試験 「弾性塗材との密着性試験」にて使用する試験体と同様
のものを50℃温水に72時間浸漬し、目視により下塗
材と弾性塗材との界面にフクレの有無を確認する。 (実施例2〜4)表1に示した分子量、モノマー組成の
高分子アクリル樹脂キシレン溶液および塩ビ系樹脂酢酸
エチル−トルエン溶液を記載の比率にて配合した下塗材
組成物に対して、実施例1と同様にして試験を行った。
結果を表3に示した。 (比較例1〜2)高分子量アクリルと塩ビ系樹脂の比率
を表2のように変えた以外は実施例1と同様にして試験
を行った。結果を表3に示した。塩ビ系樹脂の比率が本
発明の規定範囲より高い比較例1では、シール性が劣る
結果となった。反対に高分子量アクリルの比率が本発明
の規定範囲より高い比較例2では、密着性が劣る結果と
なった。 (比較例3〜4)高分子量アクリルの重量平均分子量を
表2のように変えた以外は実施例4と同様にして試験を
行った。結果を表3に示した。高分子量アクリルの平均
分子量が本発明の規定範囲より低い比較例3では、シー
ル性が劣る結果となった。反対に平均分子量が本発明の
規定範囲より高い比較例4では、高分子量アクリル樹脂
溶液の粘度が非常に高くなり、希釈用の溶剤を多量に必
要とするため塗料化が困難となった。 (比較例5〜6)塩ビ系樹脂のモノマー組成を表2のよ
うに変えた以外は実施例1と同様にして試験を行った。
結果を表3に示した。塩ビ系樹脂において塩化ビニルの
比率が本発明の規定範囲より高い比較例5では、密着性
が劣る結果となった。塩ビ系樹脂において塩化ビニリデ
ンの比率が本発明の規定範囲より高い比較例6では重合
度が低下し、シール性が劣る結果となった。 (比較例7〜8)塩ビ系樹脂または高分子量アクリル樹
脂単独で試験を行った。結果を表3に示した。塩ビ系樹
脂単独の比較例7はシール性が、高分子量アクリル樹脂
単独の比較例8は密着性がそれぞれ劣る結果となった。
(Example 1) Elasticity was obtained with respect to an undercoat material composition in which a xylene solution of a polymer acrylic resin having a molecular weight and a monomer composition shown in Table 1 and an ethyl acetate-toluene solution of a vinyl chloride resin were compounded at the ratios shown. An adhesion test with a coating material, a water permeability test, an alkali sealability test, and a blistering property test were conducted by the following methods. The results are shown in Table 3. (Test method) (1) Adhesion test with elastic coating material Various priming materials were applied to a mortar plate so that the film thickness would be 0.125 μm, and the elastic coating material was dried for 24 hours under standard conditions. JIS K 5400 8 was used, which was applied to a film thickness of 0.125 μm, dried for 72 hours in a standard state, immersed in warm water at 50 ° C. for 16 hours, and then dried for 24 hours in a standard state. 5.5.2 Perform the test according to the cross-cut tape method. The evaluation method was 0 to 10 points in the cross-cut tape test. (2) Water Permeability Test According to JIS K 5400 8.16 water permeability test method, a test body was prepared and tested so that the coating amount of the resin solid content was 20 g / m 2 . In the evaluation method, the amount of water permeation after 24 hours was expressed in ml. (3) Alkali sealability test The deionized water used for the water permeability test is mixed with a phenolphthalein solution so as to be 0.01 wt%, and the presence or absence of alkali elution is confirmed. As for the evaluation method, those in which phenolphthalein was discolored were evaluated as having alkali elution, and those in which there was no discoloration were evaluated as no alkali elution. (4) Blistering test A test piece similar to that used in the "Adhesion test with elastic coating material" was immersed in warm water at 50 ° C for 72 hours and visually checked for blister at the interface between the undercoat material and the elastic coating material. Check for the presence. (Examples 2 to 4) Examples 1 to 4 were prepared with respect to the undercoat material composition in which the polymer acrylic resin xylene solution having the molecular weight and the monomer composition shown in Table 1 and the vinyl chloride resin ethyl acetate-toluene solution were blended in the ratios shown. The test was conducted in the same manner as 1.
The results are shown in Table 3. (Comparative Examples 1 and 2) Tests were performed in the same manner as in Example 1 except that the ratio of the high molecular weight acrylic and the vinyl chloride resin was changed as shown in Table 2. The results are shown in Table 3. In Comparative Example 1 in which the ratio of the vinyl chloride resin is higher than the specified range of the present invention, the sealing property was inferior. On the contrary, in Comparative Example 2 in which the ratio of the high molecular weight acrylic was higher than the specified range of the present invention, the adhesion was inferior. Comparative Examples 3 to 4 Tests were performed in the same manner as in Example 4 except that the weight average molecular weight of the high molecular weight acrylic was changed as shown in Table 2. The results are shown in Table 3. In Comparative Example 3 in which the average molecular weight of the high molecular weight acrylic was lower than the specified range of the present invention, the sealing property was inferior. On the other hand, in Comparative Example 4 in which the average molecular weight is higher than the specified range of the present invention, the viscosity of the high molecular weight acrylic resin solution was very high, and a large amount of a solvent for dilution was required, which made it difficult to form a coating material. (Comparative Examples 5 to 6) Tests were performed in the same manner as in Example 1 except that the monomer composition of the vinyl chloride resin was changed as shown in Table 2.
The results are shown in Table 3. In Comparative Example 5 in which the proportion of vinyl chloride in the vinyl chloride resin was higher than the specified range of the present invention, the result was that the adhesion was poor. In Comparative Example 6 in which the ratio of vinylidene chloride in the vinyl chloride resin was higher than the specified range of the present invention, the degree of polymerization was lowered and the sealing property was deteriorated. (Comparative Examples 7 to 8) A test was conducted using a vinyl chloride resin or a high molecular weight acrylic resin alone. The results are shown in Table 3. Comparative Example 7 in which the vinyl chloride resin alone was inferior in sealing property, and Comparative Example 8 in which only the high molecular weight acrylic resin was inferior in adhesion property.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】(A)重量平均分子量が150000〜3
00000の高分子量アクリル樹脂、(B)塩化ビニ
ル、塩化ビニリデンを固形分比率1:0.1〜1で共重
合した塩ビ系樹脂とし、(A)の固形分100重量部に
対して(B)を固形分換算で50〜400重量部配合す
ることを特徴とする下塗材組成物。
1. A weight average molecular weight of (A) is 150,000 to 3
A high molecular weight acrylic resin of 00000, (B) vinyl chloride and vinylidene chloride are copolymerized at a solid content ratio of 1: 0.1 to 1 to obtain a vinyl chloride resin, and (B) is based on 100 parts by weight of the solid content of (A). 50 to 400 parts by weight in terms of solid content is added to the undercoat material composition.
【請求項2】(A)高分子量アクリル樹脂が、化1、化
2であらわされる単量体を、固形分比率1:0.3〜
0.6で共重合したものであることを特徴とする請求項
第1項に記載の下塗材組成物。 【化1】 【化2】
2. A high molecular weight acrylic resin (A) comprises a monomer represented by Chemical Formula 1 or Chemical Formula 2, and a solid content ratio of 1: 0.3 to.
The undercoat material composition according to claim 1, wherein the undercoat material composition is a copolymer of 0.6. [Chemical 1] [Chemical 2]
JP05199207A 1993-07-16 1993-07-16 Undercoat material composition Expired - Lifetime JP3092767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05199207A JP3092767B2 (en) 1993-07-16 1993-07-16 Undercoat material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05199207A JP3092767B2 (en) 1993-07-16 1993-07-16 Undercoat material composition

Publications (2)

Publication Number Publication Date
JPH0734006A true JPH0734006A (en) 1995-02-03
JP3092767B2 JP3092767B2 (en) 2000-09-25

Family

ID=16403923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05199207A Expired - Lifetime JP3092767B2 (en) 1993-07-16 1993-07-16 Undercoat material composition

Country Status (1)

Country Link
JP (1) JP3092767B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144148A (en) * 2010-10-20 2019-08-20 威士伯采购公司 With the water based coating system for improving moisture-proof and heat resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110144148A (en) * 2010-10-20 2019-08-20 威士伯采购公司 With the water based coating system for improving moisture-proof and heat resistance
CN110144159A (en) * 2010-10-20 2019-08-20 威士伯采购公司 With the water based coating system for improving moisture-proof and heat resistance

Also Published As

Publication number Publication date
JP3092767B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
US4946889A (en) Coating composition
JP3335359B2 (en) Moisture-curable modified acrylic polymer sealant composition
JPH0380829B2 (en)
CA1246279A (en) Primer coating composition of a fluorocarbon polymer and an amino alkyl alkoxy silane
JPS61189693A (en) Moistureproof coating of electronic component
CA1263986A (en) Resin compositions and products using the same
US5034460A (en) Coating of vinylidene fluoride polymer and fluorine containing graft copolymer
JPH0734006A (en) Primer coating composition
GB2127029A (en) Clear lacquer based on polyvinylidene fluoride and a process for coating metallic surfaces
JP2655783B2 (en) Aqueous liquid for primer
JP3358873B2 (en) Aqueous solution for primer
JPS5978220A (en) Room temperature-curable elastic composition
CN110776793A (en) Fluorine coating composition
JPH0812900A (en) Aqueous solution for primer
US5145918A (en) Bonding polysulphide sealant to silicone
JP2557581B2 (en) Coating film structure and manufacturing method thereof
JPS5943226B2 (en) Substrate coated with fluorocarbon resin and manufacturing method thereof
EP0212771A1 (en) Viscosity stable plastisol sealant
JP2001064470A (en) Primer composition
JP3455065B2 (en) Paint composition for repainting
JP2019131805A (en) Coating composition, and surface protection method of concrete structure using the same
JPH06329973A (en) Polyvinyl chloride-based sealing composition
JPS62250017A (en) Silicone resin composition
JPH01279913A (en) Curable composition
RU2115673C1 (en) Plastisol on polyvinylchloride base

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070728

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080728

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20090728

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100728

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120728

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120728

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130728

EXPY Cancellation because of completion of term