JPH07335202A - Mn dry battery - Google Patents

Mn dry battery

Info

Publication number
JPH07335202A
JPH07335202A JP6131596A JP13159694A JPH07335202A JP H07335202 A JPH07335202 A JP H07335202A JP 6131596 A JP6131596 A JP 6131596A JP 13159694 A JP13159694 A JP 13159694A JP H07335202 A JPH07335202 A JP H07335202A
Authority
JP
Japan
Prior art keywords
zinc
dry battery
titanium
lead
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6131596A
Other languages
Japanese (ja)
Inventor
Eiji Tano
英二 田野
Shohei Nozaki
捷平 野崎
Ryohei Ashihara
良平 芦原
Hajime Murakami
村上  元
Kohei Kubota
耕平 久保田
Akira Kato
彰 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP6131596A priority Critical patent/JPH07335202A/en
Priority to US08/482,701 priority patent/US5595836A/en
Priority to CA002151531A priority patent/CA2151531C/en
Priority to DE69511949T priority patent/DE69511949T2/en
Priority to EP95109057A priority patent/EP0688056B1/en
Priority to PL95309083A priority patent/PL177888B1/en
Priority to KR1019950015476A priority patent/KR0150391B1/en
Priority to BR9502808A priority patent/BR9502808A/en
Priority to MYPI95001585A priority patent/MY113717A/en
Priority to CN95108301A priority patent/CN1065666C/en
Publication of JPH07335202A publication Critical patent/JPH07335202A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain mechanical strength and preservation property equivalent to those of the conventional battery while maintaining anti-corrosion property by containing a lead and a titanium at their specific weight% range in the negative pole zinc can of a dry battery whose active material of the positive pole is Mn di-oxide. CONSTITUTION:A Mn dry battery consist of a positive pole depolarizing mix 1 whose active material is Mn di-oxide, a separator 2, a negative pole zinc can 3, a bottom part insulation paper 4, a carbon bar 5, and a cap integrated sealing plate 6 recurrently serving as a positive terminal, a negative pole terminal board 7, and an exterior can 8. This zinc can 3 is made of zinc alloy containing lead less than of 0.5weight/% and titanium of 0.001 to 0.5weight/%. By adding titanium to zinc, its crystal tissue becomes fine, and the processing property, mechanical strength, and preservation property of a dry battery equivalent to those of the conventional alloy containing the lead and cadmium can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マンガン乾電池に関
し、特に負極亜鉛合金を改良して機械的強度と耐腐食性
を向上させた水銀・カドミウム無添加のマンガン乾電池
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manganese dry battery, and more particularly to a mercury-cadmium-free manganese dry battery in which a negative electrode zinc alloy is improved to improve mechanical strength and corrosion resistance.

【0002】[0002]

【従来の技術】従来、マンガン乾電池の負極を兼ねる亜
鉛缶の製缶時に必要な加工性、機械的強度を高め、また
負極亜鉛缶の腐食を抑制するために、一般にマンガン乾
電池においては、0.03〜0.1重量%のカドミウム
と0.1〜0.3重量%の鉛を添加した亜鉛合金が用い
られていた。使用済み乾電池の廃棄による環境汚染が問
題視されるところから、これら重金属のうちカドミウム
については、現在無添加で生産されているが、負極亜鉛
缶の耐腐食性と機械的強度を補うために、一般に鉛の添
加量を例えば、0.3〜0.5重量%に増量している。
2. Description of the Related Art Conventionally, in a manganese dry battery, generally, in order to improve workability and mechanical strength required for making a zinc can also serving as a negative electrode of a manganese dry battery and suppress corrosion of a negative electrode zinc can, Zinc alloys with additions of 03-0.1 wt% cadmium and 0.1-0.3 wt% lead have been used. Of these heavy metals, cadmium is currently produced without any additives because environmental pollution caused by the disposal of used dry batteries is regarded as a problem, but in order to supplement the corrosion resistance and mechanical strength of the negative electrode zinc can, Generally, the amount of lead added is increased to, for example, 0.3 to 0.5% by weight.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、鉛の添
加量を増量した負極亜鉛缶は、製缶時に必要な加工性、
機械的強度が、従来の鉛およびカドミウムを含有した負
極亜鉛缶に比べて不十分であった。また、鉛は微量では
あるが、環境汚染を考慮すると、鉛を用いないことが望
まれる。
However, the negative electrode zinc can with an increased amount of lead added has the workability required during can manufacturing.
The mechanical strength was insufficient as compared with conventional negative electrode zinc cans containing lead and cadmium. Although lead is a small amount, it is desirable not to use lead in consideration of environmental pollution.

【0004】本発明は、以上に鑑み、耐腐食性を維持し
ながら従来の鉛およびカドミウムを含有する負極亜鉛缶
と同等の機械的強度を有する亜鉛缶を備えるマンガン乾
電池を提供することを目的とする。さらに本発明は、従
来と同等の機械的強度と耐腐食性を有し、しかも鉛を含
有しない負極亜鉛缶を備えたマンガン乾電池を提供する
ことを目的とする。
In view of the above, it is an object of the present invention to provide a manganese dry battery provided with a zinc can having mechanical strength equivalent to that of a conventional negative electrode zinc can containing lead and cadmium while maintaining corrosion resistance. To do. It is another object of the present invention to provide a manganese dry battery having a negative electrode zinc can which has mechanical strength and corrosion resistance equivalent to those of conventional ones and which does not contain lead.

【0005】[0005]

【課題を解決するための手段】本発明のマンガン乾電池
は、二酸化マンガンを活物質とする正極、負極亜鉛缶お
よびセパレータを備え、前記亜鉛缶が、0.5重量%以
下の鉛と0.001〜0.5重量%のチタンを含有する
亜鉛合金からなるものである。ここにおいて、チタン含
有量は、0.01〜0.1重量%がより好ましい。ま
た、本発明のマンガン乾電池は、二酸化マンガンを活物
質とする正極、負極亜鉛缶およびセパレータを備え、前
記亜鉛缶が、0.001〜0.5重量%のチタンを含有
する亜鉛合金からなるものである。この亜鉛合金のチタ
ン含有量は、0.01〜0.5重量%がより好ましい。
The manganese dry battery of the present invention comprises a positive electrode using manganese dioxide as an active material, a negative electrode zinc can and a separator, wherein the zinc can contains 0.5% by weight or less of lead and 0.001%. It consists of a zinc alloy containing .about.0.5% by weight of titanium. Here, the titanium content is more preferably 0.01 to 0.1% by weight. Further, the manganese dry battery of the present invention comprises a positive electrode using manganese dioxide as an active material, a negative electrode zinc can, and a separator, and the zinc can is made of a zinc alloy containing 0.001 to 0.5% by weight of titanium. Is. The titanium content of this zinc alloy is more preferably 0.01 to 0.5% by weight.

【0006】[0006]

【作用】亜鉛にチタンを添加することにより、従来の鉛
およびカドミウムを含有した合金と同等の加工性、機械
的強度を得ることができる。これは、チタンの添加によ
り結晶組織が微細化することによるものと考えられる。
鉛を0.5重量%以下含有する鉛合金においてはチタン
含有量0.001〜0.5重量%で、また鉛を含有しな
い場合はチタン含有量0.01〜0.5重量%で、鉛お
よびカドミウムを含む合金と同等以上の機械的強度が得
られ、そして従来と同等の乾電池の保存特性を得ること
ができる。
By adding titanium to zinc, workability and mechanical strength equivalent to those of conventional alloys containing lead and cadmium can be obtained. It is considered that this is because the crystal structure is refined by the addition of titanium.
In a lead alloy containing 0.5% by weight or less of lead, the titanium content is 0.001 to 0.5% by weight, and when not containing lead, the titanium content is 0.01 to 0.5% by weight. The mechanical strength equal to or higher than that of the alloy containing cadmium and cadmium can be obtained, and the storage characteristics of the dry battery equivalent to the conventional one can be obtained.

【0007】[0007]

【実施例】以下に本発明を実施例に基づいて詳細に説明
する。純度99.99%の亜鉛地金を溶解し、これに鉛
および/またはチタンを添加して表1に示す組成の亜鉛
合金を作製した。No.15〜17は比較例である。上
記の亜鉛合金を用いて単1形乾電池の亜鉛缶を作製し、
その機械的強度を評価した。すなわち、図2に示すよう
に、負極亜鉛缶10をV形ブロック11の上に置き、負
極亜鉛缶の開口部から10mmの位置に、円錐状圧力端
子12を当て垂直方向に加圧する。この円錐状圧力端子
の加圧方向の変位量と、円錐状圧力端子の当たる点にか
かる力を記録計で記録する。単1サイズの負極亜鉛缶で
は、変位量が約4mmでほぼ一定値を示すことから、4
mm変位時の荷重を、便宜上、負極亜鉛缶の機械的強度
とする。
EXAMPLES The present invention will be described in detail below based on examples. Zinc ingot having a purity of 99.99% was melted, and lead and / or titanium was added thereto to prepare a zinc alloy having the composition shown in Table 1. No. 15 to 17 are comparative examples. Using the above zinc alloy, make a zinc can of a dry cell battery,
The mechanical strength was evaluated. That is, as shown in FIG. 2, the negative electrode zinc can 10 is placed on the V-shaped block 11, and a conical pressure terminal 12 is applied at a position 10 mm from the opening of the negative electrode zinc can to apply pressure in the vertical direction. The amount of displacement of the conical pressure terminal in the pressurizing direction and the force applied to the contact point of the conical pressure terminal are recorded by a recorder. With a single size negative electrode zinc can, the displacement is about 4 mm, which is a nearly constant value.
For convenience, the load at the time of displacement of mm is defined as the mechanical strength of the negative electrode zinc can.

【0008】次に、負極亜鉛缶の耐腐食性を評価するた
め、電解液中での水素ガス発生試験を行った。その試験
方法は、電解液として塩化亜鉛30重量%、塩化アンモ
ニウム1.9重量%のものを5ml用い、一定重量に切
断した負極亜鉛缶を電解液中に浸漬させ、45℃の雰囲
気に放置し、3日目のガス発生量を測定した。また、各
負極亜鉛缶を用いて、図1に示す塩化亜鉛タイプの単1
形マンガン乾電池を作製した。ここで、1は二酸化マン
ガンを活物質とする正極合剤、2はセパレータ、3は負
極亜鉛缶、4は底部絶縁紙、5は炭素棒、6は正極端子
を兼ねるキャップ一体封口板、7は負極端子板、8は外
装缶を示す。これらのマンガン乾電池の保存特性を評価
するために、製造直後、および45℃で3ヵ月間保存し
た後に、2Ωの負荷で連続放電を行い、0.9Vに達す
るまでの放電持続時間を調べた。以上の結果を表1およ
び表2に示す。
Next, in order to evaluate the corrosion resistance of the negative electrode zinc can, a hydrogen gas generation test in an electrolytic solution was conducted. The test method was as follows: 5 ml of 30 wt% zinc chloride and 1.9 wt% ammonium chloride was used as an electrolytic solution, and a negative electrode zinc can cut to a certain weight was immersed in the electrolytic solution and left in an atmosphere of 45 ° C. The gas generation amount on the 3rd day was measured. Also, using each negative electrode zinc can, the zinc chloride type single unit shown in FIG.
A manganese dry battery was produced. Here, 1 is a positive electrode mixture containing manganese dioxide as an active material, 2 is a separator, 3 is a negative electrode zinc can, 4 is bottom insulating paper, 5 is a carbon rod, 6 is a cap integrated sealing plate also serving as a positive electrode terminal, and 7 is Negative electrode terminal plate, 8 shows an outer can. In order to evaluate the storage characteristics of these manganese dry batteries, continuous discharge was performed under a load of 2Ω immediately after production and after storage at 45 ° C. for 3 months, and the discharge duration until reaching 0.9 V was examined. The above results are shown in Tables 1 and 2.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】表の試料No.2〜5から、亜鉛にチタン
を0.001〜0.5重量%添加することで、従来の鉛
のみを添加したNo.16の亜鉛缶よりも機械的強度が
向上し、さらにチタン含有量0.01重量%以上でカド
ミウムを添加したNo.15をも上回る機械的強度を得
ることができる。No.1のチタンの添加量が0.00
1重量%より少ない場合は、負極亜鉛缶が柔らかくな
り、十分な機械的強度が得られない。また、No.6の
チタンの添加量が0.5重量%を超える範囲では、亜鉛
の耐腐食性が悪くなる。
Sample No. in the table. 2 to 5, the addition of 0.001 to 0.5% by weight of titanium to zinc results in No. 2 in which only conventional lead is added. No. 16 in which the mechanical strength is higher than that of the zinc can of No. 16 and the titanium content is 0.01% by weight or more and cadmium is added. Mechanical strengths in excess of 15 can be obtained. No. The amount of titanium added is 0.00
If it is less than 1% by weight, the negative electrode zinc can becomes soft and sufficient mechanical strength cannot be obtained. In addition, No. If the addition amount of titanium of No. 6 exceeds 0.5% by weight, the corrosion resistance of zinc deteriorates.

【0012】鉛を含有しないチタンー亜鉛合金において
は、チタン含有量0.01〜0.5重量%において、負
極亜鉛缶の耐腐食性および乾電池の保存特性が従来の亜
鉛缶を用いたものとほぼ同等である。また、No.7〜
14の鉛を含有する場合は、チタンの添加により負極亜
鉛缶の機械的強度が向上している。そして、チタン含有
量0.01〜0.1重量%において、負極亜鉛缶の機械
的強度、耐腐食性および乾電池の保存特性いずれもが最
も優れている。上記の例では、鉛の含有量を0.3重量
%または0.5重量%としたが、0.5重量%以下の範
囲においては上記とほぼ同様の結果が得られる。
In the titanium-zinc alloy containing no lead, when the titanium content is 0.01 to 0.5% by weight, the corrosion resistance of the negative electrode zinc can and the storage characteristics of the dry battery are almost the same as those of the conventional zinc can. Is equivalent. In addition, No. 7-
In the case of containing 14 lead, the mechanical strength of the negative electrode zinc can is improved by the addition of titanium. When the titanium content is 0.01 to 0.1% by weight, the negative electrode zinc can has the best mechanical strength, corrosion resistance, and storage characteristics of the dry battery. In the above example, the lead content is set to 0.3% by weight or 0.5% by weight, but in the range of 0.5% by weight or less, almost the same result as above can be obtained.

【0013】[0013]

【発明の効果】以上のように本発明によれば、チタンを
0.001〜05重量%添加することにより、負極亜鉛
缶の機械的強度を向上することができる。さらに、鉛を
含む合金または鉛を含有せずチタン含有量を0.01〜
0.5重量%とした負極亜鉛缶を使用することにより、
従来の鉛およびカドミウムを含有した負極亜鉛缶と同等
以上の機械的強度を有し、しかも従来と同等の保存特性
を有する乾電池を得ることができる。
As described above, according to the present invention, the mechanical strength of the negative electrode zinc can can be improved by adding 0.001 to 05% by weight of titanium. Furthermore, an alloy containing lead or a titanium content not containing lead of 0.01 to
By using a negative electrode zinc can with 0.5% by weight,
It is possible to obtain a dry battery having mechanical strength equal to or higher than that of a conventional negative electrode zinc can containing lead and cadmium, and having storage characteristics equivalent to those of conventional ones.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるマンガン乾電池の一
部を断面にした正面図である。
FIG. 1 is a front view in which a part of a manganese dry battery according to an embodiment of the present invention is shown in section.

【図2】負極亜鉛缶の機械的強度測定法を示す斜視図で
ある。
FIG. 2 is a perspective view showing a method for measuring the mechanical strength of a negative electrode zinc can.

【符号の説明】[Explanation of symbols]

1 正極合剤 2 セパレータ 3 負極亜鉛缶 4 底部絶縁紙 5 炭素棒 6 正極キャップ一体封口板 7 負極端子板 8 外装缶 10 負極亜鉛缶 11 V型ブロック 12 円錐状圧力端子 DESCRIPTION OF SYMBOLS 1 Positive electrode mixture 2 Separator 3 Negative zinc can 4 Bottom insulating paper 5 Carbon rod 6 Positive electrode cap integrated sealing plate 7 Negative electrode terminal plate 8 Exterior can 10 Negative zinc can 11 V type block 12 Cone pressure terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 芦原 良平 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 村上 元 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 久保田 耕平 東京都中央区日本橋室町2丁目1番1号 三井金属鉱業株式会社内 (72)発明者 加藤 彰 東京都中央区日本橋室町2丁目1番1号 三井金属鉱業株式会社内 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Ryohei Ashihara 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. 72) Inventor Kohei Kubota 2-1-1 Nihombashi Muromachi, Chuo-ku, Tokyo Mitsui Mining & Smelting Co., Ltd. (72) Akira Kato 2-1-1 Nihombashi Muromachi, Chuo-ku, Tokyo Mitsui Mining & Smelting Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 二酸化マンガンを活物質とする正極、負
極亜鉛缶およびセパレータを備え、前記亜鉛缶が、0.
5重量%以下の鉛と0.001〜0.5重量%のチタン
を含有する亜鉛合金からなることを特徴とするマンガン
乾電池。
1. A positive electrode using manganese dioxide as an active material, a negative electrode zinc can, and a separator, wherein the zinc can has a density of 0.1.
A manganese dry battery comprising a zinc alloy containing 5% by weight or less of lead and 0.001 to 0.5% by weight of titanium.
【請求項2】 二酸化マンガンを活物質とする正極、負
極亜鉛缶およびセパレータを備え、前記亜鉛缶が、0.
001〜0.5重量%のチタンを含有する亜鉛合金から
なることを特徴とするマンガン乾電池。
2. A positive electrode using manganese dioxide as an active material, a negative electrode zinc can, and a separator, wherein the zinc can has a capacity of 0.
A manganese dry battery comprising a zinc alloy containing 001 to 0.5% by weight of titanium.
【請求項3】 前記亜鉛合金のチタン含有量が0.01
〜0.5重量%である請求項2記載のマンガン乾電池。
3. The titanium content of the zinc alloy is 0.01
The manganese dry battery according to claim 2, which is about 0.5% by weight.
JP6131596A 1994-06-14 1994-06-14 Mn dry battery Pending JPH07335202A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP6131596A JPH07335202A (en) 1994-06-14 1994-06-14 Mn dry battery
US08/482,701 US5595836A (en) 1994-06-14 1995-06-07 Manganese dry battery
CA002151531A CA2151531C (en) 1994-06-14 1995-06-12 Manganese dry battery
DE69511949T DE69511949T2 (en) 1994-06-14 1995-06-12 Manganese dry cell with zinc alloy container
EP95109057A EP0688056B1 (en) 1994-06-14 1995-06-12 Manganese dry battery with zinc alloy can
PL95309083A PL177888B1 (en) 1994-06-14 1995-06-13 Dry manganese cell
KR1019950015476A KR0150391B1 (en) 1994-06-14 1995-06-13 Manganese dry battery with zinc alloy can
BR9502808A BR9502808A (en) 1994-06-14 1995-06-14 Dry manganese battery
MYPI95001585A MY113717A (en) 1994-06-14 1995-06-14 Manganese dry battery
CN95108301A CN1065666C (en) 1994-06-14 1995-06-14 Manganese dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6131596A JPH07335202A (en) 1994-06-14 1994-06-14 Mn dry battery

Publications (1)

Publication Number Publication Date
JPH07335202A true JPH07335202A (en) 1995-12-22

Family

ID=15061762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6131596A Pending JPH07335202A (en) 1994-06-14 1994-06-14 Mn dry battery

Country Status (1)

Country Link
JP (1) JPH07335202A (en)

Similar Documents

Publication Publication Date Title
KR0150391B1 (en) Manganese dry battery with zinc alloy can
JP3215448B2 (en) Zinc alkaline battery
JPH04284357A (en) Zinc alkaline battery
JPH04284358A (en) Zinc alkaline battery
JP3344486B2 (en) Method for producing non-melonized zinc alloy powder for alkaline batteries
JPH07335202A (en) Mn dry battery
JPH0421310B2 (en)
JPH0371738B2 (en)
JPH0418671B2 (en)
JPH0794193A (en) Manganese dry battery
JPH08222194A (en) Button type alkaline battery
US4173687A (en) Current generating cell with alloy anode
JPH0317181B2 (en)
JP3618140B2 (en) Manganese battery
JPH0845502A (en) Manganese dry battery
JPH07240202A (en) Alkaline battery
JP2780949B2 (en) Manganese dry cell
JPH1040904A (en) Manganese dry cell
JP2594034B2 (en) Non-aqueous electrolyte battery
JPH0665032B2 (en) Zinc alkaline battery
JPH04328261A (en) Alkaline battery
JPS63124358A (en) Battery
JPH0665031B2 (en) Zinc alkaline battery
JPH09259877A (en) Zinc-based alloy for negative electrode for alkaline battery
US3926677A (en) Electric primary cells