JPH07335191A - Complex retainer for sealed lead acid battery and manufacture of retainer - Google Patents

Complex retainer for sealed lead acid battery and manufacture of retainer

Info

Publication number
JPH07335191A
JPH07335191A JP6143849A JP14384994A JPH07335191A JP H07335191 A JPH07335191 A JP H07335191A JP 6143849 A JP6143849 A JP 6143849A JP 14384994 A JP14384994 A JP 14384994A JP H07335191 A JPH07335191 A JP H07335191A
Authority
JP
Japan
Prior art keywords
retainer
sealed lead
acid battery
active material
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6143849A
Other languages
Japanese (ja)
Inventor
Tokihisa Azuma
登喜久 東
Hideo Endo
秀夫 遠藤
Takashi Hirashima
敬 平島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP6143849A priority Critical patent/JPH07335191A/en
Publication of JPH07335191A publication Critical patent/JPH07335191A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PURPOSE:To provide a complex retainer for a sealed lead acid battery and a manufacturing method for retainers, with which an excellent anti- shortcircuiting performance is obtained and also stacker assembling is possible. CONSTITUTION:A bonding agent 2 having a viscosity of 100-1000cps and a glass transition point of 30 deg.C is applied to at least a couple of opposing edges of an active material intrusion preventive sheet 1 prepared by a wet sheet- making process. The sheet 1 and a retainer 3 for sealed lead acid battery chiefly containing glass fibers are laid one over another, and the bonding agent 2 is allowed to permeate the two, which are thus joined together to form a complex retainer 4 for the sealed lead acid battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスタッカー組立が可能な
密閉型鉛蓄電池用複合リテーナとその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite retainer for a sealed lead-acid battery, which can be assembled in a stacker, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】密閉型鉛蓄電池は、二酸化鉛を活物質と
する陽極板と鉛を活物質とする陰極板の間に、電解液で
ある希硫酸を染み込ませたリテーナを介在させ、密着さ
せて構成される鉛蓄電池である。リテーナを両極板間に
密着させて使用される理由は、保持している希硫酸を極
板に供給して放電反応を起こさしめること、放電反応に
よって発生した水を吸収すること、充電反応においては
保持している水を極板に供給して充電反応を起こさしめ
ること、充電反応によって発生した希硫酸を吸収するこ
とである。また、電池を密閉化させるために、リテーナ
は、充電終了末期に陽極板で発生する酸素ガスを陰極板
に導く働きをしている。更に、リテーナは、セパレータ
機能として陽・陰両極板の間に介在して両者間のイオン
伝導性と電気絶縁性を保つことが必要である
2. Description of the Related Art A sealed lead-acid battery is constructed by interposing a retainer impregnated with dilute sulfuric acid, which is an electrolytic solution, between a positive electrode plate containing lead dioxide as an active material and a negative electrode plate containing lead as an active material and closely contacting each other. It is a lead acid battery. The reason for using the retainer in close contact between both electrode plates is to supply the dilute sulfuric acid held by the electrode plate to cause a discharge reaction, to absorb water generated by the discharge reaction, and in the charging reaction. It is to supply the retained water to the electrode plate to cause a charging reaction and to absorb the dilute sulfuric acid generated by the charging reaction. Further, in order to seal the battery, the retainer has a function of guiding oxygen gas generated in the anode plate at the end of charging to the cathode plate. Furthermore, the retainer must be interposed between the positive and negative electrode plates as a separator function to maintain ionic conductivity and electrical insulation between them.

【0003】[0003]

【発明が解決しようとする課題】一方、密閉型鉛蓄電池
を高容量化し、高率放電特性を向上させるために、極板
を薄くして電池セル当たりの極板枚数を増やし、且つ極
板間隔を狭めることが必要である。この場合、リテーナ
においても薄型化が必要となる。しかし、リテーナを薄
型化した場合、極板の凸凹のリテーナへの食い込み、リ
テーナへの活物質のもぐり込み等により、ショートを発
生し易い状況になる。このように密閉型鉛蓄電池を高容
量化し、高率放電特性を向上させるためには、リテーナ
は薄型化され、且つ耐ショート性を備えることが必要で
ある。また、密閉型鉛蓄電池の低価格化の為には鉛蓄電
池の生産性向上が不可欠であり、従来から自動車用液式
鉛蓄電池の組立に導入されているスタッカー組立方式を
密閉型鉛蓄電池の組立に応用することで、密閉型鉛蓄電
池の生産性向上が可能となる。しかし、従来の密閉型鉛
蓄電池用リテーナは、剛性が低く、リテーナ間の滑り抵
抗が大きいためにスタッカー組立ができないものであっ
た。
On the other hand, in order to increase the capacity of a sealed lead acid battery and improve the high rate discharge characteristics, the electrode plates are thinned to increase the number of electrode plates per battery cell, and the electrode plate spacing is also increased. It is necessary to narrow In this case, the retainer also needs to be thin. However, when the retainer is made thin, a short circuit easily occurs due to the unevenness of the electrode plate biting into the retainer, the active material digging into the retainer, and the like. In order to increase the capacity of the sealed lead storage battery and improve the high rate discharge characteristics, it is necessary that the retainer be thin and have short-circuit resistance. Moreover, in order to reduce the price of sealed lead-acid batteries, it is essential to improve the productivity of lead-acid batteries, and the stacker assembly method that has been introduced for the assembly of liquid lead-acid batteries for automobiles has been adopted for the assembly of sealed lead-acid batteries. When applied to, the productivity of sealed lead-acid batteries can be improved. However, the conventional sealed lead-acid battery retainer has a low rigidity and a large slip resistance between the retainers, so that the stacker cannot be assembled.

【0004】[0004]

【課題を解決するための手段】本発明は、上記従来の課
題を解決した密閉型鉛蓄電池用複合リテーナを提供する
もので、ガラス繊維を主体とした密閉型鉛蓄電池用リテ
ーナの少なくとも片面に、湿式抄造シートからなる活物
質侵入防止シートを全面に設け、これらの外周辺のうち
少なくとも一組の対向辺をガラス転移点(Tg)30℃
以上の接着剤で接合したことを特徴とする。また、本発
明は、上記密閉型鉛蓄電池用複合リテーナの製造方法を
提供するもので、湿式抄造法にて作成した活物質侵入防
止シートの外周辺のうち少なくとも一組の対向辺に粘度
100〜1000cps、Tg30℃以上の接着剤を塗
布し、該活物質侵入防止シートとガラス繊維を主体とし
た密閉型鉛蓄電池用リテーナを重ね合わせて両者に接着
剤を染み込ませ、両者を接合することを特徴とする。
DISCLOSURE OF THE INVENTION The present invention provides a composite retainer for a sealed lead-acid battery, which solves the above-mentioned conventional problems. At least one surface of the retainer for a sealed lead-acid battery, which is mainly composed of glass fiber, An active material intrusion prevention sheet made of a wet papermaking sheet is provided on the entire surface, and at least one pair of opposite sides of the outer periphery thereof has a glass transition point (Tg) of 30 ° C.
It is characterized by being bonded with the above adhesive. The present invention also provides a method for producing the composite retainer for a sealed lead-acid battery, wherein the viscosity is 100 to 100% on at least one pair of opposite sides of the outer periphery of the active material intrusion prevention sheet produced by a wet papermaking method. An adhesive having 1000 cps and a Tg of 30 ° C. or higher is applied, and the active material intrusion prevention sheet and a retainer for a sealed lead acid battery mainly made of glass fiber are overlapped with each other to allow the adhesive to soak into the both, and the both are joined. And

【0005】[0005]

【作用】本発明の密閉型鉛蓄電池用複合リテーナは、活
物質侵入防止機能を持たせた湿式抄造シート層を有する
ので、電池に組み込む際の極板群加圧時に、極板の端が
リテーナを強く圧迫することによるショート、極板の表
面平滑度が悪い場合、その凸部分がリテーナを強く押す
ことによるショート等を防止することができる。また、
電池に組み込まれた後の電池使用時、充放電を繰り返す
内に極板が膨張・収縮を繰り返すために発生するショー
ト、充放電を繰り返す内に微細化した鉛粉がリテーナ中
にもぐり込むことによって発生するショート等に対して
も防止することができる。
Since the composite retainer for a sealed lead-acid battery of the present invention has the wet papermaking sheet layer having the function of preventing the intrusion of the active material, the end of the electrode plate is retained at the end of the electrode plate when the electrode plate group is pressed when being incorporated into the battery. It is possible to prevent a short circuit due to strong pressure on the electrode and a short circuit due to the convex portion of the electrode plate pressing the retainer strongly when the surface smoothness of the electrode plate is poor. Also,
When the battery is used after it has been installed in the battery, a short circuit occurs due to repeated expansion and contraction of the electrode plate during repeated charging and discharging, and it also occurs when fine lead powder gets caught in the retainer during repeated charging and discharging. It is also possible to prevent short circuits that occur.

【0006】一方、密閉型鉛蓄電池をスタッカー組立方
式にする為に必要な密閉型鉛蓄電池用リテーナの剛性
は、活物質侵入防止シートを貼合わせる接着剤としてT
gが30℃以上のアクリル系、スチレン系等の接着剤を
使用し、更に両者を接着する部分を密閉型鉛蓄電池用複
合リテーナ端部の少なくとも相対する2辺とすることで
確保される。また、リテーナ間の滑り抵抗の低抵抗化
は、活物質侵入防止シートの表面を平滑に保ち、摩擦抵
抗を小さくすることによって実現される。このようにし
て、密閉型鉛蓄電池のスタッカー組立方式の採用によ
り、密閉型鉛蓄電池の生産性は従来と比較して飛躍的に
向上する。
On the other hand, the rigidity of the retainer for a sealed lead acid battery, which is necessary to make the sealed lead acid battery into a stacker assembly system, is T as an adhesive agent for sticking the active material intrusion prevention sheet.
It is ensured by using an acrylic or styrene adhesive having a g of 30 ° C. or higher, and further by making at least two opposite sides of the end portion of the composite retainer for a sealed lead-acid battery that bond the both. Further, the reduction of the slip resistance between the retainers is realized by keeping the surface of the active material intrusion prevention sheet smooth and reducing the friction resistance. In this way, by adopting the stacker assembly method of the sealed lead acid battery, the productivity of the sealed lead acid battery is dramatically improved as compared with the conventional one.

【0007】[0007]

【実施例】次に本発明の密閉型鉛蓄電池用複合リテーナ
の実施例について説明する。本発明の密閉型鉛蓄電池用
複合リテーナに用いるガラス繊維を主体とした密閉型鉛
蓄電池用リテーナとしては、平均繊維径0.3〜5μm
のガラス繊維を用い、好ましくは0.5〜2μmの繊維
径のものを用いる。平均繊維径5μmを越えるガラス繊
維を主体とするとリテーナ機能のひとつである電解液保
持能力が低くなり好ましくない。また、平均繊維径0.
3μm未満のガラス繊維を主体とするとリテーナのコス
トが著しく高くなるため好ましくない。ガラス繊維は、
1種類の平均繊維径のガラス繊維のみから作成したもの
だけでなく、上記ガラス繊維径の範囲にある2種類以上
の平均繊維径のガラス繊維を組み合わせて作成してもよ
い。また、平均繊維径0.3〜5μmのガラス繊維を主
体とする時は、平均繊維径5〜20μmのガラス繊維を
20wt%以下の範囲にて配合することも可能である。
ガラス繊維のガラス組成は、耐酸性を有したもので、含
アルカリガラス等が好ましい。
EXAMPLE Next, an example of the composite retainer for a sealed lead-acid battery of the present invention will be described. An average fiber diameter of 0.3 to 5 μm is provided as a retainer for a sealed lead acid battery mainly composed of glass fiber used in the composite retainer for a sealed lead acid battery of the present invention.
Glass fiber of 0.5 to 2 μm is preferably used. When glass fibers having an average fiber diameter of more than 5 μm are mainly used, the electrolyte retaining ability, which is one of the retainer functions, becomes low, which is not preferable. Further, the average fiber diameter is 0.
It is not preferable to mainly use glass fibers of less than 3 μm, because the cost of the retainer becomes extremely high. Glass fiber
Not only one made of only one kind of glass fibers having an average fiber diameter, but two or more kinds of glass fibers having an average fiber diameter within the above range of glass fiber diameters may be made in combination. When glass fibers having an average fiber diameter of 0.3 to 5 μm are mainly used, glass fibers having an average fiber diameter of 5 to 20 μm can be blended in a range of 20 wt% or less.
The glass composition of the glass fiber has acid resistance, and alkali-containing glass or the like is preferable.

【0008】ガラス繊維だけで密閉型鉛蓄電池用リテー
ナを構成してリテーナの薄型化に対応した場合、強度の
不足によってリテーナ製造時の作業性が劣る時は、補強
のためのバインダー成分となる合成繊維、合成パルプ、
樹脂エマルジョン、天然パルプ等を20wt%以下の範
囲で配合することが可能である。一方、密閉型鉛蓄電池
の特徴として深い充放電を繰り返すと、電池上下におい
て電解液比重に差が生じるいわゆる成層化現象が発生す
る場合がある。この成層化現象を回避する手段として、
ガラス繊維を主体とした密閉型鉛蓄電池用リテーナに、
比表面積100m2 /g以上の無機粉体として合成シリ
カ粉末等を50wt%以下の範囲で配合することが可能
である。
When a retainer for a sealed lead-acid battery is constructed only with glass fibers to cope with a thinner retainer, when the workability at the time of manufacturing the retainer is poor due to insufficient strength, it becomes a binder component for reinforcement. Fiber, synthetic pulp,
It is possible to mix resin emulsion, natural pulp and the like in the range of 20 wt% or less. On the other hand, as a characteristic of the sealed lead-acid battery, when deep charging and discharging are repeated, a so-called stratification phenomenon may occur in which a difference in specific gravity of the electrolyte solution occurs between the upper and lower sides of the battery. As a means to avoid this stratification phenomenon,
For retainer for sealed lead-acid battery mainly made of glass fiber,
As an inorganic powder having a specific surface area of 100 m 2 / g or more, synthetic silica powder or the like can be blended in a range of 50 wt% or less.

【0009】本発明の密閉型鉛蓄電池用複合リテーナに
用いる活物質侵入防止シートとしては、 鉛蓄電池の活物質である鉛粉の侵入を防止できること 鉛蓄電池用極板作成時に発生した表面の凹凸、活物質
塊等が当たっても破れないこと電気抵抗が充分低いこ
と 電解液保持力が高いこと(空隙率が大きいこと) が必要な性能である。以上の性能を確保できる活物質侵
入防止シートは、通常の湿式抄造法で作成される液式鉛
蓄電池用セパレータに類すものが最も適している。
The active material intrusion prevention sheet used for the composite retainer for a sealed lead acid battery of the present invention is capable of preventing invasion of lead powder, which is an active material of a lead acid battery, and surface irregularities generated during the production of a lead acid battery electrode plate, It does not break even if it is hit by a mass of active material, its electrical resistance is sufficiently low, and its electrolyte retention is high (large porosity). The active material intrusion prevention sheet capable of ensuring the above performance is most suitable as a liquid lead acid battery separator produced by a normal wet papermaking method.

【0010】この活物質侵入防止シートに使用する材料
としては、耐酸性及び耐酸化性に優れ、重金属等の不純
物を含有せず、微細なものを使用する。一般には、無機
粉体、ガラス繊維、及び合成パルプ、合成繊維、合成樹
脂、天然パルプ等のバインダー成分から構成される。無
機粉体としては、合成シリカ粉末、珪藻土等の微細で且
つ耐酸性を有し、重金属等の不純物を含まないものを使
用する。ガラス繊維としては、平均繊維径が0.2〜3
0μmの範囲のもので、耐酸性を有した含アルカリガラ
ス等を用いることが必要である。合成パルプとしては、
ポリエチレン、ポリプロピレン等の耐酸性を有するもの
を使用する。合成繊維としては、ポリエステル繊維、ア
クリル系繊維、ポリプロピレン繊維等の耐酸性、耐酸化
性を有するもので、これらの材質を主体とした複合繊維
を用いてもよい。合成樹脂は繊維材料や粉末材料を固定
化し、強度を補う目的で使用し、アクリル系エマルジョ
ン等が好ましい。天然パルプとしては、クラフトパル
プ、リンターパルプ、靱皮繊維等の植物系繊維で、重金
属等の不純物を含まないものを使用する。また、使用す
る際はビータ等の叩解装置を用いて、任意の繊維径、繊
維長に破断したものを用いる。
As the material used for the active material invasion prevention sheet, a fine material having excellent acid resistance and oxidation resistance and containing no impurities such as heavy metals is used. Generally, it is composed of inorganic powder, glass fiber, and binder components such as synthetic pulp, synthetic fiber, synthetic resin, and natural pulp. As the inorganic powder, fine powder such as synthetic silica powder and diatomaceous earth having acid resistance and containing no impurities such as heavy metals is used. As a glass fiber, the average fiber diameter is 0.2 to 3
It is necessary to use an alkali-containing glass or the like having an acid resistance in the range of 0 μm. As synthetic pulp,
Use those with acid resistance such as polyethylene and polypropylene. As the synthetic fibers, those having acid resistance and oxidation resistance such as polyester fibers, acrylic fibers, polypropylene fibers, etc., and composite fibers mainly composed of these materials may be used. The synthetic resin is used for the purpose of fixing the fiber material or the powder material and supplementing the strength, and an acrylic emulsion or the like is preferable. As the natural pulp, plant fibers such as kraft pulp, linter pulp, and bast fiber that do not contain impurities such as heavy metals are used. When used, a beater such as a beater is used to break the fiber into an arbitrary fiber diameter and fiber length.

【0011】この活物質浸入防止シートの主目的である
鉛粉の浸入を防止するためには孔径が小さい方が有利で
あり、平均孔径を10μm以下とする必要がある。しか
し、平均孔径が小さく、0.1μm未満の場合は、電気
抵抗が高くなって電池放電特性が低下することから、本
発明の密閉型鉛蓄電池用複合リテーナに用いる活物質浸
入防止シートとしては適さない。
In order to prevent the intrusion of lead powder, which is the main purpose of this active material permeation preventive sheet, it is advantageous that the pore diameter is small, and the average pore diameter must be 10 μm or less. However, when the average pore diameter is small and less than 0.1 μm, the electric resistance increases and the battery discharge characteristics deteriorate, so that it is suitable as an active material intrusion prevention sheet used in the composite retainer for a sealed lead acid battery of the present invention. Absent.

【0012】一方、活物質浸入防止シートの厚さは0.
05〜1.0mm、好ましくは0.2〜0.7mmとす
る必要がある。これは、厚さが1.0mmを越える場合
は、電気抵抗が高くなり電池放電特性が低下してしま
い、厚さが0.05mm未満の場合は電気抵抗は低くな
るものの活物質の透過阻止性能が悪くなるからであり、
また、厚さが0.7mmを越える場合は、陽・陰極間の
ショートを防止する効果は高いが、極間の狭い所謂ショ
ートピッチの密閉型鉛蓄電池においては複合するリテー
ナ層の厚さを薄くすることとなり、保液性の面で不利と
なり、厚さが0.2mm未満の場合は、本来のリテーナ
層の保液性を確保でき、電気抵抗についても有利である
が、陽・陰極間のショートを防止する効果が小さくなる
からである。
On the other hand, the thickness of the active material penetration preventing sheet is 0.
It is necessary to set it to 05 to 1.0 mm, preferably 0.2 to 0.7 mm. This is because when the thickness exceeds 1.0 mm, the electric resistance becomes high and the battery discharge characteristics deteriorate, and when the thickness is less than 0.05 mm, the electric resistance becomes low, but the permeation blocking performance of the active material is reduced. Is worse,
When the thickness exceeds 0.7 mm, the effect of preventing a short circuit between the positive electrode and the negative electrode is high, but in a sealed lead-acid battery with a narrow gap between the so-called short pitches, the composite retainer layer is thin. However, when the thickness is less than 0.2 mm, the retainer layer can retain its original liquid retainability, which is advantageous in terms of electric resistance, but between the positive and negative electrodes. This is because the effect of preventing a short circuit is reduced.

【0013】活物質侵入防止シートの製造方法は、前記
の各材料をパルパー等の混合機を用いて水中に分散せし
め、目的のシート目付け及び厚さとなる様に水中の材料
濃度を調整し、その材料を円網、長網、短網等の通常の
抄紙マシンのワイヤー上に導いて脱水し、接触式円筒状
ドライヤーや熱風循環式箱型乾燥機を通して乾燥し、目
的のシートを得るものである。
In the method for producing an active material invasion prevention sheet, each of the above-mentioned materials is dispersed in water using a mixer such as a pulper, and the material concentration in water is adjusted so that the desired sheet weight and thickness are obtained. The material is introduced onto the wire of a normal papermaking machine such as a cylinder, a Fourdrinier, and a shortdrain to be dehydrated, and dried through a contact type cylindrical dryer or a hot air circulation type box dryer to obtain a target sheet. .

【0014】次に、密閉型鉛蓄電池用複合リテーナを作
成する複合化の方法について詳述する。使用する材料
は、前述の湿式抄造法にて作成した活物質侵入防止シー
ト及びガラス繊維を主体とした密閉型鉛蓄電池用リテー
ナと、アクリル系、スチレン系等のTgが30℃以上の
接着剤である。これらの接着剤は、水に分散させたエマ
ルジョンタイプのものや溶剤に希釈されたものを用い
る。アクリル系接着剤の材質は、各種メタクリル酸アル
キルエステル、アクリル酸アルキルエステル及びスチレ
ン誘導体で構成されるものを用いる。スチレン系接着剤
の材質は、ポリスチレン及びニトリル、ブタジエン、ア
クリル酸等の材料との共重合物を用いる。
Next, a method of forming a composite retainer for a sealed lead-acid battery will be described in detail. The materials used are a retainer for a sealed lead acid battery mainly composed of an active material invasion prevention sheet and glass fiber prepared by the above-mentioned wet papermaking method, and an adhesive such as acrylic or styrene having a Tg of 30 ° C or higher. is there. As these adhesives, emulsion type ones dispersed in water or ones diluted with a solvent are used. As the material of the acrylic adhesive, one made of various alkyl methacrylate, alkyl acrylate and styrene derivative is used. As the material of the styrene-based adhesive, a copolymer of polystyrene and a material such as nitrile, butadiene, acrylic acid or the like is used.

【0015】接着剤は使用する際の粘度を100〜10
00cpsとして使用する。粘度が100cps未満の
場合、活物質侵入防止シート及び密閉型鉛蓄電池用リテ
ーナへの染み込みが著しく、両者の界面における接着が
不十分になり易い。また、染み込む面積が広がり易く、
リテーナとしての有効面積を減少させる場合がある。一
方、粘度が1000cpsを越える場合、接着剤を塗布
する作業性が低下するだけでなく、接着剤塗布部に厚さ
が生じて活物質侵入防止シートと密閉型鉛蓄電池用リテ
ーナの間に隙間を生じ易い。もし、両者の間に隙間がで
きた場合、隙間部分に近い極板の電池充放電反応が阻害
されて、電池容量を低下させる原因となる。また、活物
質侵入防止シート及び密閉型鉛蓄電池用リテーナへの染
み込みが悪く、接着しても活物質侵入防止シート及び密
閉型鉛蓄電池用リテーナ表面のみの接着となるため、剥
離し易いものとなる。
The adhesive has a viscosity of 100 to 10 when used.
Used as 00 cps. If the viscosity is less than 100 cps, the active material intrusion prevention sheet and the retainer for a sealed lead-acid battery are soaked into the retainer, and the adhesion at the interface between the two tends to be insufficient. Also, the area soaked in is easy to spread,
It may reduce the effective area of the retainer. On the other hand, when the viscosity exceeds 1000 cps, not only the workability of applying the adhesive is deteriorated, but also a thickness is generated in the adhesive applying portion, which causes a gap between the active material intrusion prevention sheet and the sealed lead acid battery retainer. It is easy to occur. If a gap is formed between the two, the battery charging / discharging reaction of the electrode plate near the gap portion is hindered, which causes a decrease in battery capacity. In addition, the penetration into the active material intrusion prevention sheet and the sealed lead acid battery retainer is poor, and even if they are adhered, only the surface of the active material intrusion prevention sheet and the sealed lead acid battery retainer is adhered, which makes it easy to peel off. .

【0016】接着剤の成分濃度は、活物質侵入防止シー
トと密閉型鉛蓄電池用リテーナを接着せしめるに充分な
濃度とし、10〜50wt%の範囲が望ましい。接着剤
を使用する際の粘度は、各種増粘剤を用いることや、エ
マルジョンタイプの場合、エマルジョンに所定量のアル
カリを添加して粘度を高めるアルカリ増粘によって調整
してもよい。
The component concentration of the adhesive is a concentration sufficient to bond the active material invasion prevention sheet and the retainer for a sealed lead storage battery, and is preferably in the range of 10 to 50 wt%. The viscosity at the time of using the adhesive may be adjusted by using various thickeners or, in the case of the emulsion type, by increasing the viscosity by adding a predetermined amount of alkali to the emulsion.

【0017】活物質侵入防止シートと密閉型鉛蓄電池用
リテーナを貼合わせる方法としては、図1に示すよう
に、所定の大きさに裁断した角型活物質侵入防止シート
1の相対する2辺の端部5〜10mmに、線状にもしく
は間欠した点線状に前述のアクリル系接着剤2を塗布し
て、接着剤2の液滴をつくる。この時、接着剤2は活物
質侵入防止シート1内部にも染み込ませる。その上に密
閉型鉛蓄電池用リテーナ3を乗せて重ね合わせ、接着剤
2の液滴をリテーナ3に吸い込ませ、且つ活物質侵入防
止シート1と密閉型鉛蓄電池用リテーナ3の界面にて接
着せしめ密閉型鉛蓄電池用複合リテーナ4として構成す
る。この後、接着剤2がエマルジョンタイプの場合は水
分を、溶剤希釈タイプのものの場合は溶剤を乾燥・蒸発
させる。尚、図中5は接着部を示す。
As a method of bonding the active material intrusion prevention sheet and the sealed lead acid battery retainer to each other, as shown in FIG. 1, the rectangular active material intrusion prevention sheet 1 cut into a predetermined size has two opposite sides. The above-mentioned acrylic adhesive 2 is applied linearly or intermittently to the end portions 5 to 10 mm to form droplets of the adhesive 2. At this time, the adhesive 2 is also soaked into the inside of the active material intrusion prevention sheet 1. The sealed lead-acid battery retainer 3 is placed on top of it and stacked, the droplets of the adhesive 2 are sucked into the retainer 3, and the active material intrusion prevention sheet 1 and the sealed lead-acid battery retainer 3 are bonded at the interface. The composite retainer 4 for a sealed lead-acid battery is configured. After that, when the adhesive 2 is an emulsion type, water is dried, and when the adhesive 2 is a solvent dilution type, the solvent is dried and evaporated. Incidentally, reference numeral 5 in the figure denotes an adhesive portion.

【0018】また、図2に示すように、活物質侵入防止
シート1の任意の位置に、目的とする密閉型鉛蓄電池用
複合リテーナ4の幅寸法分の間隔をとり、幅10mmの
帯状に接着剤2を活物質侵入防止シート1の長さ方向に
連続して塗布し、その上に密閉型鉛蓄電池用リテーナ3
を乗せて重ね合わせ、乾燥して複合化させる。所定の大
きさに裁断する際、帯状の接着部5の幅に対し、二等分
する様に裁断することによって角形の密閉型鉛蓄電池用
複合リテーナ4の相対する2辺の端部5mmに接着部5
を配したものとすることが可能となる。尚、図中6は裁
断箇所を示す。
Further, as shown in FIG. 2, a band having a width of 10 mm is adhered to an arbitrary position of the active material intrusion prevention sheet 1 with a space corresponding to the width dimension of the intended composite lead-acid battery retainer 4. Agent 2 is continuously applied in the length direction of active material intrusion prevention sheet 1, and retainer 3 for a sealed lead-acid battery is applied thereon.
Place on top of each other and dry to form a composite. When cutting into a predetermined size, the width of the band-shaped adhesive portion 5 is cut into two equal parts, so that the two ends 5 mm of the opposite sides of the square-shaped hermetic lead-acid battery composite retainer 4 are opposed to each other. Part 5
Can be arranged. Incidentally, reference numeral 6 in the drawing indicates a cut portion.

【0019】接着剤2の塗布部及びそれによる接着部5
は、帯状の連続したものだけでなく、図3に示すような
間欠した不連続のもでもよい。かかる方法にて作成した
密閉型鉛蓄電池用複合リテーナは、側辺が接着剤によっ
て補強されているために、スタッカー方式による電池組
立を容易にする。また、接着剤を塗布した部分は、シー
ト及びリテーナの目が詰まって電解液保持能力やイオン
伝導性が低下するが、この部分を電池極板の外側の端の
部分に配することにより、電池容量低下等の問題を回避
できる。
Adhesive 2 application section and resulting adhesion section 5
Is not limited to a continuous band, but may be an intermittent discontinuous pattern as shown in FIG. The hermetically sealed lead acid battery composite retainer produced by such a method facilitates battery assembly by the stacker method because the side edges are reinforced by the adhesive. Also, in the part to which the adhesive is applied, the sheet and retainer are clogged, and the electrolyte retention capacity and ionic conductivity are reduced, but by arranging this part at the outer end part of the battery electrode plate, It is possible to avoid problems such as capacity reduction.

【0020】次に、本発明の具体的な実施例について記
す。 (実施例1)ガラス繊維を主体とした密閉型鉛蓄電池用
リテーナとして、平均繊維径1μmのガラス繊維を水中
に分散し、抄造用ワイヤー上に導いて通常の抄造法によ
りシート化した厚さ0.75mm、密度0.15g/c
3 のガラス繊維製リテーナシートを用いた。一方、活
物質侵入防止シートとして、比表面積200m2 /gの
硅酸粉体50wt%、ポリエチレン製パルプ30wt
%、ポリエステルモノフィラメント15wt%、繊維径
5μmのガラス繊維5wt%から構成され、通常の抄造
法にてシート化した平均孔径2μm、厚さ0.25m
m、密度0.40g/cm3 、電気抵抗0.0007Ω
・100cm3 /枚、空隙率75vol%のシートを用
いた。尚、該活物質侵入防止シートは、液式鉛蓄電池用
セパレータとしても使用可能な性能を有するものであ
る。両シートを複合化(貼合せ)する方法は、アンモニ
ア増粘により、粘度500cpsに調整した、固形分1
5wt%、Tg50℃のアクリルエマルジョンを接着剤
とし、所定の大きさに裁断した角型活物質侵入防止シー
トの相対する2辺の端部に幅5mmの帯状に接着剤を塗
布して、接着剤の液滴を形成せしめ、その上にガラス繊
維製リテーナシート(密閉型鉛蓄電池用リテーナ)を乗
せて、液滴をリテーナに吸い込ませ、且つ活物質侵入防
止シートと密閉型鉛蓄電池用リテーナの界面にて接着せ
しめた。その後、アクリルエマルジョンを乾燥して水分
を蒸発させ、本発明の密閉型鉛蓄電池用複合リテーナを
得た。
Next, specific examples of the present invention will be described. (Example 1) As a retainer for a sealed lead-acid battery mainly composed of glass fibers, glass fibers having an average fiber diameter of 1 μm were dispersed in water, led on a wire for papermaking, and formed into a sheet by an ordinary papermaking method. 0.75 mm, density 0.15 g / c
An m 3 glass fiber retainer sheet was used. On the other hand, as an active material invasion prevention sheet, 50 wt% of silicate powder having a specific surface area of 200 m 2 / g and 30 wt% of polyethylene pulp
%, 15% by weight of polyester monofilament, and 5% by weight of glass fiber having a fiber diameter of 5 μm, formed into a sheet by an ordinary papermaking method, having an average pore diameter of 2 μm and a thickness of 0.25 m.
m, density 0.40 g / cm 3 , electric resistance 0.0007Ω
-A sheet having 100 cm 3 / sheet and a porosity of 75 vol% was used. The active material intrusion prevention sheet has a property that it can also be used as a separator for a liquid lead storage battery. The method of compounding (bonding) both sheets is to adjust the viscosity to 500 cps by thickening ammonia, solid content 1
Adhesive was obtained by applying an acrylic emulsion of 5 wt% and Tg of 50 ° C. as an adhesive to a rectangular active material intrusion prevention sheet cut into a predetermined size, and applying the adhesive in a strip shape with a width of 5 mm to the ends of two opposite sides. The glass fiber retainer sheet (retainer for sealed lead-acid battery) is placed on it to suck the droplets into the retainer, and the interface between the active material intrusion prevention sheet and the retainer for sealed lead-acid battery I glued it in. Then, the acrylic emulsion was dried to evaporate the water content, and the composite retainer for a sealed lead-acid battery of the present invention was obtained.

【0021】(実施例2)活物質侵入防止シートとし
て、比表面積200m2 /gの硅酸粉体50wt%、ポ
リエステルモノフィラメント5wt%、繊維径1μmの
ガラス繊維25wt%、アクリル樹脂20wt%から構
成され、通常の抄造法にてシート化した平均孔径5μ
m、厚さ0.25mm、密度0.40g/cm3 、電気
抵抗0.0003Ω・100cm2 /枚、空隙率80v
ol%のシートを用いた以外は、実施例1と同様にして
本発明の密閉型鉛蓄電池用複合リテーナを得た。
(Example 2) An active material invasion prevention sheet is composed of 50 wt% silicate powder having a specific surface area of 200 m 2 / g, 5 wt% polyester monofilament, 25 wt% glass fiber having a fiber diameter of 1 μm, and 20 wt% acrylic resin. , Average pore size 5μ made into sheet by ordinary papermaking method
m, thickness 0.25 mm, density 0.40 g / cm 3 , electric resistance 0.0003 Ω · 100 cm 2 / sheet, porosity 80 v
A composite retainer for a sealed lead-acid battery of the present invention was obtained in the same manner as in Example 1 except that the ol% sheet was used.

【0022】(実施例3)ガラス繊維を主体とした密閉
型鉛蓄電池用リテーナとして、平均繊維径1μmのガラ
ス繊維を用いてシート化した厚さ0.50mm、密度
0.15g/cm3のガラス繊維製リテーナシートを用
いたことと、活物質侵入防止シートとして、比表面積2
00m2 /gの硅酸粉体15wt%、珪藻土5wt%、
ポリエチレン製パルプ40wt%、ポリエステルモノフ
ィラメント5wt%、繊維径20μmのガラス繊維20
wt%、クラフトパルプ15wt%から構成され、通常
の抄造法にてシート化した平均孔径8μm、厚さ0.5
0mm、密度0.40g/cm3 、電気抵抗0.001
2Ω・100cm2 /枚、空隙率70vol%のシート
を用いた以外は、実施例1と同様にして本発明の密閉型
鉛蓄電池用複合リテーナを得た。
Example 3 As a retainer for a sealed lead-acid battery mainly composed of glass fibers, a glass sheet having a thickness of 0.50 mm and a density of 0.15 g / cm 3 formed by using glass fibers having an average fiber diameter of 1 μm. The fiber retainer sheet was used and the specific surface area of the active material intrusion prevention sheet was 2
15 wt% of silicate powder of 00 m 2 / g, 5 wt% of diatomaceous earth,
40 wt% polyethylene pulp, 5 wt% polyester monofilament, 20 μm fiber diameter glass fiber 20
It is composed of wt% and kraft pulp 15 wt%, and is formed into a sheet by an ordinary papermaking method, having an average pore diameter of 8 μm and a thickness of 0.5.
0 mm, density 0.40 g / cm 3 , electric resistance 0.001
A composite retainer for a sealed lead-acid battery of the present invention was obtained in the same manner as in Example 1 except that a sheet having 2Ω · 100 cm 2 / sheet and a porosity of 70 vol% was used.

【0023】(実施例4)ガラス繊維を主体とした密閉
型鉛蓄電池用リテーナとして、平均繊維径0.5μmの
ガラス繊維を用いてシート化した厚さ0.75mm、密
度0.14g/cm3 のガラス繊維製リテーナシートを
用いたこと以外は、実施例1と同様にして本発明の密閉
型鉛蓄電池用複合リテーナを得た。
Example 4 As a retainer for a sealed lead-acid battery mainly composed of glass fibers, glass fibers having an average fiber diameter of 0.5 μm were formed into a sheet having a thickness of 0.75 mm and a density of 0.14 g / cm 3. A composite retainer for a sealed lead-acid battery of the present invention was obtained in the same manner as in Example 1 except that the glass fiber retainer sheet of was used.

【0024】(実施例5)ガラス繊維を主体とした密閉
型鉛蓄電池用リテーナとして、平均繊維径2μmのガラ
ス繊維を用いてシート化した厚さ0.75mm、密度
0.16g/cm3のガラス繊維製リテーナシートを用
いたこと以外は、実施例1と同様にして本発明の密閉型
鉛蓄電池用複合リテーナを得た。
(Embodiment 5) Glass having a thickness of 0.75 mm and a density of 0.16 g / cm 3 formed as a sheet by using glass fibers having an average fiber diameter of 2 μm as a retainer for a sealed lead-acid battery mainly composed of glass fibers A composite retainer for a sealed lead-acid battery of the present invention was obtained in the same manner as in Example 1 except that a fiber retainer sheet was used.

【0025】(実施例6)ガラス繊維を主体とした密閉
型鉛蓄電池用リテーナとして、平均繊維径0.7μmの
ガラス繊維50wt%と平均繊維径4μmのガラス繊維
50wt%を用いてシート化した厚さ0.75mm、密
度0.15g/cm3 のガラス繊維製リテーナシートを
用いたこと以外は、実施例1と同様にして本発明の密閉
型鉛蓄電池用複合リテーナを得た。
(Example 6) As a retainer for a sealed lead-acid battery mainly composed of glass fibers, a sheet formed by using 50 wt% of glass fibers having an average fiber diameter of 0.7 μm and 50 wt% of glass fibers having an average fiber diameter of 4 μm. A composite retainer for a sealed lead-acid battery of the present invention was obtained in the same manner as in Example 1 except that a glass fiber retainer sheet having a thickness of 0.75 mm and a density of 0.15 g / cm 3 was used.

【0026】(実施例7)ガラス繊維を主体とした密閉
型鉛蓄電池用リテーナとして、平均繊維径0.7μmの
ガラス繊維50wt%と平均繊維径4μmのガラス繊維
40wt%と平均繊維径15μmのチョプドストランド
ガラス10wt%を用いてシート化した厚さ0.75m
m、密度0.17g/cm3 のガラス繊維製リテーナシ
ートを用いたこと以外は、実施例1と同様にして本発明
の密閉型鉛蓄電池用複合リテーナを得た。
(Embodiment 7) As a retainer for a sealed lead-acid battery mainly composed of glass fiber, 50 wt% of glass fiber having an average fiber diameter of 0.7 μm, 40 wt% of glass fiber having an average fiber diameter of 4 μm and a chop having an average fiber diameter of 15 μm were used. 0.75 m thick sheeted using 10 wt% of dostrand glass
A composite retainer for a sealed lead-acid battery of the present invention was obtained in the same manner as in Example 1 except that a glass fiber retainer sheet having m and a density of 0.17 g / cm 3 was used.

【0027】(実施例8)ガラス繊維を主体とした密閉
型鉛蓄電池用リテーナ、活物質侵入防止シート及び複合
化のために使用する接着剤は実施例1と同様のものを使
用し、両シートを複合化(貼合せ)する方法を変え、図
3に示すように、所定の大きさに裁断した角型活物質侵
入防止シートの相対する2辺の端部に幅5mm、長さ1
0mmの接着剤の液滴を20mm間隔に形成せしめ、そ
の上にガラス繊維製リテーナシートを乗せて、液滴をリ
テーナに吸い込ませ、且つ活物質侵入防止シートと密閉
型鉛蓄電池用リテーナの界面にて接着せしめた。その
後、アクリルエマルジョンを乾燥して水分を蒸発させ、
本発明の密閉型鉛蓄電池用複合リテーナを得た。
(Example 8) The same retainer as in Example 1 was used as the retainer for the sealed lead acid battery mainly composed of glass fiber, the active material intrusion prevention sheet, and the composite agent, and both sheets were used. The method of compounding (bonding) is changed, and as shown in FIG. 3, the rectangular active material intrusion prevention sheet cut into a predetermined size has a width of 5 mm and a length of 1 at the opposite ends of the sheet.
Droplets of 0 mm adhesive are formed at intervals of 20 mm, and a glass fiber retainer sheet is placed on top of this to allow the droplets to be sucked into the retainer, and at the interface between the active material intrusion prevention sheet and the sealed lead acid battery retainer. I glued it. After that, dry the acrylic emulsion to evaporate the water,
The composite retainer for sealed lead-acid batteries of the present invention was obtained.

【0028】(比較例1)ガラス繊維を主体とした密閉
型鉛蓄電池用リテーナ、活物質侵入防止シート及び複合
化のために使用する接着剤は実施例1と同様のものを使
用し、両シートを複合化(貼合せ)する方法を変え、図
4に示すように、所定の大きさに裁断した角型活物質侵
入防止シート1を幅方向に3等分する2本の線上に幅5
mmの帯状に接着剤2を塗布して、接着剤2の液滴を形
成せしめ、その上にガラス繊維製リテーナシート(密閉
型鉛蓄電池用リテーナ)3を乗せて、接着剤2の液滴を
リテーナ3に吸い込ませ、且つ活物質侵入防止シート1
と密閉型鉛蓄電池用リテーナ3の界面にて接着せしめ
た。その後、アクリルエマルジョンを乾燥して水分を蒸
発させ、密閉型鉛蓄電池用複合リテーナを得た。この複
合リテーナは剛性を強くする接着剤を用いているが、両
端部を補強していないために横からの応力に対して曲が
り易いものであった。そのためスタッカー組立は行え
ず、1枚毎に陰陽両極板間に挟み込んで電池を組み立て
る方法により、密閉型鉛蓄電池を製造する。
(Comparative Example 1) The same retainer as in Example 1 was used as the retainer for the sealed lead-acid battery mainly composed of glass fiber, the active material intrusion prevention sheet, and the compounding agent. By changing the method of compounding (bonding), as shown in FIG. 4, the square active material intrusion prevention sheet 1 cut into a predetermined size is divided into three equal parts in the width direction, and the width 5 is formed on two lines.
The adhesive 2 is applied in the form of a strip of mm to form droplets of the adhesive 2, and a glass fiber retainer sheet (retainer for sealed lead-acid battery) 3 is placed on the adhesive 2 to drop the droplets of the adhesive 2. Sheet to prevent intrusion of active material 1 by sucking into retainer 3
And the retainer 3 for the sealed lead-acid battery were bonded at the interface. Then, the acrylic emulsion was dried to evaporate the water content to obtain a composite retainer for a sealed lead storage battery. This composite retainer uses an adhesive that increases the rigidity, but since both ends are not reinforced, it is easily bent by a lateral stress. Therefore, stacker assembly cannot be performed, and a sealed lead-acid battery is manufactured by a method of assembling batteries by sandwiching them one by one between the positive and negative electrode plates.

【0029】(比較例2)ガラス繊維を主体とした密閉
型鉛蓄電池用リテーナ及び活物質侵入防止シートは実施
例1と同様のものを使用し、複合化のために使用する接
着剤として、固形分30wt%で分散溶媒にメチルエチ
ルケトン(2−ブタノン)を用いた粘度800cpsの
ニトリルゴム系接着剤を用いた。両シートを複合化(貼
合せ)する方法は、所定の大きさに裁断した角型活物質
侵入防止シートの相対する2辺の端部に幅5mmの帯状
に接着剤を塗布して、その上にガラス繊維製リテーナシ
ートを乗せて接着せしめた。その後、分散溶媒を蒸発さ
せて、密閉型鉛蓄電池用複合リテーナを得た。この複合
リテーナは剛性を強くする接着剤を用いていないので、
スタッカー組立は行えず、1枚毎に陰陽両極板間に挟み
込んで電池を組み立てる方法により、密閉型鉛蓄電池を
製造する。
(Comparative Example 2) The same retainer and active material invasion preventive sheet as in Example 1 were used for the sealed lead-acid battery mainly composed of glass fiber, and a solid adhesive was used as an adhesive for compounding. A nitrile rubber adhesive having a viscosity of 800 cps and using methyl ethyl ketone (2-butanone) as a dispersion solvent at a content of 30 wt% was used. A method of compounding (bonding) both sheets is to apply an adhesive in the form of a strip having a width of 5 mm to the ends of two opposite sides of a square active material intrusion prevention sheet cut into a predetermined size, and A glass fiber retainer sheet was placed on and adhered. Then, the dispersion solvent was evaporated to obtain a composite retainer for a sealed lead storage battery. Since this composite retainer does not use an adhesive that increases rigidity,
Stacker assembly is not possible, and sealed lead-acid batteries are manufactured by a method of assembling batteries by sandwiching them one by one between the positive and negative electrode plates.

【0030】(比較例3)ガラス繊維を主体とした密閉
型鉛蓄電池用リテーナ及び活物質侵入防止シートは実施
例1と同様のものを使用し、複合化する際に両者を貼合
せることなく、重ねて巻いたロール状の密閉型鉛蓄電池
用複合リテーナを得た。この複合リテーナを使用して密
閉型鉛蓄電池を組み立てる際はスタッカー組立は行え
ず、ロールから所定量の複合リテーナを引き出して所定
寸法に裁断してそのまま、陰陽両極板間に挟み込んで電
池を組み立てる方法による。
(Comparative Example 3) The same retainer and active material intrusion prevention sheet for sealed lead-acid battery as mainly composed of glass fiber were used as in Example 1, and both were not stuck together when compounded. A roll-shaped composite retainer for a sealed lead acid battery was obtained. When assembling a sealed lead-acid battery using this composite retainer, stacker assembly cannot be performed.A predetermined amount of composite retainer is pulled out from the roll, cut into a predetermined size, and then sandwiched between the Yin and Yang electrode plates to assemble the battery. by.

【0031】(従来例1)ガラス繊維を主体とした密閉
型鉛蓄電池用リテーナとして、平均繊維径0.7μmの
ガラス繊維を水中に分散し、抄造用ワイヤー上に導いて
通常の抄造法によりシート化し、厚さ1.00mm、密
度0.15g/cm3 のガラス繊維製の従来の密閉型鉛
蓄電池用リテーナを得た。
(Conventional Example 1) As a retainer for a sealed lead-acid battery mainly composed of glass fibers, a glass fiber having an average fiber diameter of 0.7 μm is dispersed in water, guided on a wire for papermaking, and a sheet is formed by a usual papermaking method. Then, a retainer for a conventional sealed lead-acid battery made of glass fiber having a thickness of 1.00 mm and a density of 0.15 g / cm 3 was obtained.

【0032】(従来例2)ガラス繊維を主体とした密閉
型鉛蓄電池用リテーナとして、平均繊維径0.7μmの
ガラス繊維50wt%と平均繊維径4μmのガラス繊維
50wt%を水中に分散し、抄造用ワイヤー上に導いて
通常の抄造法によりシート化し、厚さ1.00mm、密
度0.15g/cm3 のガラス繊維製の従来の密閉型鉛
蓄電池用リテーナを得た。
(Conventional Example 2) As a retainer for a sealed lead-acid battery mainly composed of glass fibers, 50 wt% of glass fibers having an average fiber diameter of 0.7 μm and 50 wt% of glass fibers having an average fiber diameter of 4 μm are dispersed in water to produce paper. Then, the sheet was guided to a conventional wire and formed into a sheet by an ordinary papermaking method to obtain a conventional sealed lead-acid battery retainer made of glass fiber having a thickness of 1.00 mm and a density of 0.15 g / cm 3 .

【0033】(従来例3)ガラス繊維を主体とした密閉
型鉛蓄電池用複合リテーナとして、平均繊維径0.7μ
mのガラス繊維50wt%と平均繊維径4μmのガラス
繊維40wt%と平均繊維径15μmのチョップドスト
ランドガラス10wt%を水中に分散し、抄造用ワイヤ
ー上に導いて通常の抄造法によりシート化し、厚さ1.
00mm、密度0.17g/cm3 のガラス繊維製の従
来の密閉型鉛蓄電池用リテーナを得た。
(Prior art example 3) As a composite retainer for glass-fiber sealed lead acid batteries, the average fiber diameter is 0.7 μm.
m glass fiber 50 wt%, average fiber diameter 4 μm glass fiber 40 wt% and chopped strand glass 10 wt% having an average fiber diameter 15 μm are dispersed in water, led onto a papermaking wire, formed into a sheet by a normal papermaking method, and have a thickness of 1.
A conventional retainer for a sealed lead acid battery made of glass fiber having a diameter of 00 mm and a density of 0.17 g / cm 3 was obtained.

【0034】上記の実施例1〜8の本発明の密閉型鉛蓄
電池用複合リテーナ、比較例1〜3、及び従来例1〜3
の密閉型鉛蓄電池用複合リテーナについて、剛性試験、
滑り抵抗試験、耐酸化寿命試験、リテーナ耐ショート性
試験(穴開け強度試験)を実施した。各試験方法は以下
の通りである。 剛性試験:JIS P 8125の荷重曲げ方法による
板紙のこわさ試験方法(テーバー式スティッフネス試
験)に従って実施した。 滑り抵抗試験:図5に試験方法の略図を示すとおり、各
密閉型鉛蓄電池用複合リテーナ4から100mm×10
0mmの正方形の試料3枚を採取して3枚を重ね、その
上にガラス板7を介して500gの重り8を乗せて垂直
荷重を掛ける。この時、3枚の内の中央(2枚目)は試
料を引っ張る方向に掴み代として5mmずらして重ね
る。掴み代をクリップ9で挟み、クリップ9の端をロー
ドセル10に接続し、50mm/minの速度にて中央
の試料を引っ張り、動き始めた時の引っ張り荷重を記録
計より読み取り、滑り抵抗値とした。 耐酸化寿命試験:JRS37506−1E−15AR7
Aの蓄電池用合成隔離板 3.4耐酸化性試験方法に準
拠して実施した。図6に試験方法の略図を示すように、
具体的には以下に示すとおりである。120W ×90L
×180H mmの電槽11、比重1.300(at20
℃)の希硫酸12を500cm3 、50W ×50L ×3
Tmmの純鉛製電極13を2枚、50W ×50L ×1T
mmの純鉛製電極当て板14を2枚、70W ×70L ×
5T mmのガラス板15を2枚、底面が50W ×50L
mmで重量5.0kgの重り16、70W ×70L mm
の密閉型鉛蓄電池用複合リテーナ4の試料を用意する。
次に、電槽11の中央にてガラス板15、純鉛製電極1
3、純鉛製電極当て板14、密閉型鉛蓄電池用複合リテ
ーナ4、純鉛製電極当て板14、純鉛製電極13、ガラ
ス板15、重り16の順に積層し、下側の電極13をマ
イナス、上側の電極13をプラスとして図略の電源に接
続する。そこへ比重1.300(at20℃)の希硫酸
12を500cm3 添加して、50±2℃に保った水槽
中に置く。その後、2.5Aの電流を通電し続け、両電
極間の電位差を記録して電位差が0.5V低下(短絡)
するまでの時間を測定した。この時間が長いほど、耐酸
化性及び耐ショート性に優れたリテーナセパレータであ
る。 リテーナ耐ショート性試験(穴開け強度試験):各密閉
型鉛蓄電池用リテーナから50mm×50mmの正方形
の試料を作成し、試料の前処理として105℃にて30
分間乾燥させる。この試料を直径15mmの穴の開いた
2枚の固定板の間に挟んで固定する。一方、試験装置と
してロードセルを備えたオートストレン(米倉製作所
製)(通称:オートグラフ)を使用し、本オートストレ
ンの上部チャックに外径2.0mmφのスチール棒を固
定し、その下部には前述のリテーナを挟んだ固定板を固
定する。上部チャックに固定したスチール棒を15mm
/minの一定速度にてリテーナ上に下ろし、スチール
棒がリテーナを貫通する迄の荷重をロードセルにて検出
して記録計で連続記録し、その最大値をもてリテーナ穴
開け強度とする。各々の実施例1〜8の本発明の密閉型
鉛蓄電池用複合リテーナ、比較例1〜3及び従来例1〜
3の密閉型鉛蓄電池用リテーナについて、上記の試験を
行った結果を表1に示す。
The composite retainers for sealed lead-acid batteries of the present invention in Examples 1 to 8 above, Comparative Examples 1 to 3 and Conventional Examples 1 to 3
About the composite retainer for sealed lead-acid battery of
A slip resistance test, an oxidation resistance test, and a retainer short resistance test (drilling strength test) were performed. Each test method is as follows. Rigidity test: Carried out according to the stiffness test method of a paperboard (Taber type stiffness test) according to the load bending method of JIS P8125. Slip resistance test: As shown in the schematic diagram of the test method in FIG. 5, 100 mm × 10 from each composite retainer 4 for sealed lead-acid batteries
Three 0 mm square samples are taken, three of them are piled up, and a 500 g weight 8 is placed on the sample with a glass plate 7, and a vertical load is applied. At this time, the center (second sheet) of the three sheets is stacked in the pulling direction of the sample with a shift of 5 mm as a grip margin. The gripping margin is sandwiched by clips 9, the ends of the clips 9 are connected to the load cell 10, the central sample is pulled at a speed of 50 mm / min, and the pulling load at the time of starting movement is read from the recorder and used as the slip resistance value. . Oxidation resistance life test: JRS37506-1E-15AR7
The synthetic separator for storage batteries of A was performed in accordance with the 3.4 oxidation resistance test method. As shown in the schematic diagram of the test method in FIG.
Specifically, it is as shown below. 120W x 90L
× 180H mm battery case 11, specific gravity 1.300 (at20
Dilute sulfuric acid 12 ℃) 500cm 3, 50W × 50L × 3
Two Tmm pure lead electrodes 13, 50W x 50L x 1T
2 mm pure lead electrode plates 14, 70W x 70L x
Two 5T mm glass plates 15, bottom of which is 50W x 50L
Weight 5.0 kg in mm 16, 70W x 70L mm
A sample of the composite retainer 4 for sealed lead-acid battery of 1 is prepared.
Next, in the center of the battery case 11, the glass plate 15 and the pure lead electrode 1
3, a pure lead electrode contact plate 14, a hermetically sealed lead storage battery composite retainer 4, a pure lead electrode contact plate 14, a pure lead electrode 13, a glass plate 15, a weight 16 are laminated in this order, and the lower electrode 13 is attached. The negative electrode 13 and the upper electrode 13 are connected to a power source (not shown) with the positive electrode 13 being positive. 500 cm 3 of dilute sulfuric acid 12 having a specific gravity of 1.300 (at 20 ° C.) was added thereto and placed in a water tank kept at 50 ± 2 ° C. After that, a current of 2.5 A is continuously applied, the potential difference between both electrodes is recorded, and the potential difference decreases by 0.5 V (short circuit).
The time to do was measured. The longer this time is, the better the retainer separator is in oxidation resistance and short circuit resistance. Retainer short-circuit resistance test (drilling strength test): A square sample of 50 mm x 50 mm was prepared from each sealed lead-acid battery retainer, and the sample was pretreated at 105 ° C for 30 minutes.
Let dry for minutes. This sample is fixed by being sandwiched between two fixing plates having holes with a diameter of 15 mm. On the other hand, using an auto strain equipped with a load cell (Yonekura Seisakusho Co., Ltd.) (common name: Autograph) as a test device, a steel rod with an outer diameter of 2.0 mmφ was fixed to the upper chuck of this auto strain, and the lower part was described above. Fix the fixing plate with the retainer in between. 15mm steel rod fixed to the upper chuck
The load until the steel rod penetrates the retainer is detected at the load cell at a constant speed of / min, and continuously recorded by a recorder. The maximum value is used as the retainer punching strength. Composite retainers for sealed lead-acid batteries of the present invention of Examples 1 to 8, Comparative Examples 1 to 3 and Conventional Example 1 to 1
Table 1 shows the results of the above-mentioned tests performed on the retainer for sealed lead-acid battery No. 3 described above.

【0035】[0035]

【表1】 [Table 1]

【0036】表1から明らかな様に、本発明の実施例1
〜8を従来例と比較するとき、剛性値は3倍近い値を示
し、滑り抵抗は4〜7割減少する。この様に剛性が強
く、滑り抵抗の小さい密閉型鉛蓄電池用複合リテーナ
は、密閉型鉛蓄電池を組み立てる際に、スタッカー組立
を行うことが可能であり、密閉型鉛蓄電池の生産性を著
しく向上できる。一方、本発明の実施例1〜8を従来例
と比較するとき、耐酸化寿命時間は2〜5倍に長くな
る。これは、本発明の密閉型鉛蓄電池用複合リテーナ
は、密閉型鉛蓄電池に使用されたとき、リテーナへの鉛
粉のもぐり込み等によるショートに対して耐性の強いこ
とを示しており、密閉型鉛蓄電池の寿命を著しく向上さ
せる効果を持つ。また、穴開け強度についても、本発明
の密閉型鉛蓄電池用複合リテーナは、従来のリテーナに
比べ、1.5〜2倍の強度を持ち、密閉型鉛蓄電池組立
時に発生する極板の凹凸のリテーナへの食い込み、リテ
ーナへの活物質のもぐり込み等を防止して、密閉型鉛蓄
電池を生産する際の組立不良を低減し、歩留を向上させ
ることができる。
As is clear from Table 1, Example 1 of the present invention
When comparing ~ 8 with the conventional example, the rigidity value shows a value nearly three times, and the slip resistance decreases by 40 to 70%. In this way, the composite retainer for sealed lead-acid batteries, which has high rigidity and low slip resistance, can perform stacker assembly when assembling the sealed lead-acid battery, and can significantly improve the productivity of the sealed lead-acid battery. . On the other hand, when comparing Examples 1 to 8 of the present invention with the conventional example, the oxidation resistance life time becomes 2 to 5 times longer. This indicates that the composite retainer for a sealed lead-acid battery of the present invention is highly resistant to a short circuit caused by the lead powder crawling into the retainer when used in a sealed lead-acid battery. It has the effect of significantly improving the life of lead acid batteries. Also, regarding the punching strength, the composite retainer for a sealed lead-acid battery of the present invention has a strength of 1.5 to 2 times that of the conventional retainer, and the unevenness of the electrode plate that occurs during the assembly of the sealed lead-acid battery. It is possible to prevent biting into the retainer, penetration of the active material into the retainer, and the like, thereby reducing assembly defects when producing a sealed lead acid battery and improving yield.

【0037】[0037]

【発明の効果】本発明によるときは、密閉型鉛蓄電池用
リテーナに活物質侵入防止機能を持たせた層を有するの
で、電池に組み込む際の極板群加圧時に、極板の端がリ
テーナを強く圧迫することによるショート、極板の表面
平滑度が悪い場合、その凸部がリテーナを強く押すこと
によるショート等を防止することができる。また、電池
に組み込まれた後の電池使用時、充放電を繰り返す内に
極板が膨張・収縮を繰り返すために発生するショート、
充放電を繰り返す内に微細化した鉛粉がリテーナ中にも
ぐり込むことによって発生するショート等に対しても防
止することができる。そのため、密閉型鉛蓄電池製造工
程での、不良電池を低減することができ、生産歩留を向
上することができる。また、密閉型鉛蓄電池の寿命を著
しく向上させることができる。一方、密閉型鉛蓄電池を
スタッカー組立方式が可能な本発明の密閉型鉛蓄電池用
リテーナを使用することで、密閉型鉛蓄電池の生産性
を、従来と比較して飛躍的に向上させることができる。
According to the present invention, since the retainer for the sealed lead-acid battery has the layer having the function of preventing the intrusion of the active material, the end of the electrode plate is retained when the electrode plate group is pressed when being incorporated in the battery. It is possible to prevent a short circuit due to strong pressure on the electrode, and a short circuit due to the convex portion of the electrode plate pressing the retainer strongly when the surface smoothness of the electrode plate is poor. In addition, when the battery is used after being incorporated into the battery, a short circuit occurs due to the electrode plate repeatedly expanding and contracting during repeated charging and discharging,
It is also possible to prevent a short circuit or the like caused by fine lead powder getting into the retainer during repeated charging and discharging. Therefore, defective batteries can be reduced in the sealed lead-acid battery manufacturing process, and the production yield can be improved. In addition, the life of the sealed lead acid battery can be significantly improved. On the other hand, by using the retainer for a sealed lead-acid battery of the present invention capable of stacking the sealed lead-acid battery in a stacker system, the productivity of the sealed lead-acid battery can be dramatically improved as compared with the conventional one. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の密閉型鉛蓄電池用複合リテーナの側面
図であり、図1aは複合化前の状態、図1bは複合化後
の状態を示す
FIG. 1 is a side view of a composite retainer for a sealed lead-acid battery of the present invention, FIG. 1a shows a state before compounding, and FIG. 1b shows a state after compounding.

【図2】本発明の密閉型鉛蓄電池用複合リテーナの側面
図であり、図2aは複合化前の状態、図2bは複合化後
の状態を示す
FIG. 2 is a side view of a composite retainer for a sealed lead-acid battery of the present invention, FIG. 2a shows a state before compounding, and FIG. 2b shows a state after compounding.

【図3】本発明の密閉型鉛蓄電池用複合リテーナの平面
FIG. 3 is a plan view of a composite retainer for a sealed lead acid battery according to the present invention.

【図4】比較例の密閉型鉛蓄電池用複合リテーナの説明
図であり、図4aは複合化前の平面図、図4bは複合化
前の側面図、図4cは複合化後の側面図である
FIG. 4 is an explanatory view of a composite retainer for a sealed lead-acid battery of a comparative example, FIG. 4a is a plan view before compounding, FIG. 4b is a side view before compounding, and FIG. 4c is a side view after compounding. is there

【図5】滑り抵抗試験方法の略図FIG. 5 is a schematic diagram of a slip resistance test method.

【図6】耐酸化寿命試験方法の略図FIG. 6 is a schematic diagram of an oxidation resistance life test method.

【符号の説明】[Explanation of symbols]

1 活物質侵入防止シート 2 接着剤 3 密閉型鉛蓄電池用リテーナ 4 密閉型鉛蓄電池用複合リテーナ 5 接着部 6 裁断箇所 7 ガラス板 8 重り 9 クリップ 10 ロードセル 11 電槽 12 希硫酸 13 純鉛製電極 14 純鉛製電極当て板 15 ガラス板 16 重り 1 Active Material Intrusion Prevention Sheet 2 Adhesive 3 Retainer for Sealed Lead-Acid Battery 4 Composite Retainer for Sealed Lead-Acid Battery 5 Adhesive Part 6 Cutting Point 7 Glass Plate 8 Weight 9 Clip 10 Load Cell 11 Battery Case 12 Dilute Sulfuric Acid 13 Pure Lead Electrode 14 Pure lead electrode contact plate 15 Glass plate 16 Weight

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガラス繊維を主体とした密閉型鉛蓄電池
用リテーナの少なくとも片面に、湿式抄造シートからな
る活物質侵入防止シートを全面に設け、これらの外周辺
のうち少なくとも一組の対向辺をガラス転移点30℃以
上の接着剤で接合したことを特徴とする密閉型鉛蓄電池
用複合リテーナ。
1. An active material intrusion prevention sheet made of a wet papermaking sheet is provided on the entire surface of at least one surface of a retainer for a sealed lead storage battery mainly made of glass fiber, and at least one pair of opposing sides of the outer periphery thereof is provided. A composite retainer for a sealed lead storage battery, which is joined by an adhesive having a glass transition point of 30 ° C. or higher.
【請求項2】 前記ガラス繊維を主体とした密閉型鉛蓄
電池用リテーナは、平均繊維径0.3〜5μmのガラス
繊維を主体とすることを特徴とする請求項1記載の密閉
型鉛蓄電池用複合リテーナ。
2. The hermetically sealed lead acid battery retainer comprising glass fibers as a main component is mainly characterized by glass fibers having an average fiber diameter of 0.3 to 5 μm. Compound retainer.
【請求項3】 前記活物質侵入防止シートは、無機粉
体、ガラス繊維、及び、合成パルプ、合成繊維、合成樹
脂、天然パルプ等のバインダー成分を主構成成分とし、
平均孔径0.1〜10μm、厚さ0.05〜1.0mm
であることを特徴とする請求項1または2記載の密閉型
鉛蓄電池用複合リテーナ。
3. The active material invasion prevention sheet comprises inorganic powder, glass fiber, and a binder component such as synthetic pulp, synthetic fiber, synthetic resin and natural pulp as main constituent components,
Average pore size 0.1-10 μm, thickness 0.05-1.0 mm
The composite retainer for a sealed lead-acid battery according to claim 1 or 2, wherein
【請求項4】 前記活物質侵入防止シートは、厚さ0.
2〜0.7mmであることを特徴とする請求項3記載の
密閉型鉛蓄電池用複合リテーナ。
4. The active material intrusion prevention sheet has a thickness of 0.
The composite retainer for a sealed lead storage battery according to claim 3, wherein the composite retainer has a thickness of 2 to 0.7 mm.
【請求項5】 湿式抄造法にて作成した活物質侵入防止
シートの外周辺のうち少なくとも一組の対向辺に粘度1
00〜1000cps、ガラス転移点30℃以上の接着
剤を塗布し、該活物質侵入防止シートとガラス繊維を主
体とした密閉型鉛蓄電池用リテーナを重ね合わせて両者
に接着剤を染み込ませ、両者を接合することを特徴とす
る密閉型鉛蓄電池用複合リテーナの製造方法。
5. A viscosity of 1 on at least one pair of opposite sides of the outer periphery of an active material intrusion prevention sheet prepared by a wet papermaking method.
An adhesive having a glass transition point of 30 ° C. or more and a glass transition point of 0 to 1000 cps is applied, and the active material intrusion prevention sheet and a retainer for a sealed lead-acid battery mainly composed of glass fiber are overlapped with each other to allow the adhesive to soak into them, A method for manufacturing a composite retainer for a sealed lead-acid battery, which is characterized by joining.
JP6143849A 1994-06-02 1994-06-02 Complex retainer for sealed lead acid battery and manufacture of retainer Pending JPH07335191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6143849A JPH07335191A (en) 1994-06-02 1994-06-02 Complex retainer for sealed lead acid battery and manufacture of retainer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6143849A JPH07335191A (en) 1994-06-02 1994-06-02 Complex retainer for sealed lead acid battery and manufacture of retainer

Publications (1)

Publication Number Publication Date
JPH07335191A true JPH07335191A (en) 1995-12-22

Family

ID=15348395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6143849A Pending JPH07335191A (en) 1994-06-02 1994-06-02 Complex retainer for sealed lead acid battery and manufacture of retainer

Country Status (1)

Country Link
JP (1) JPH07335191A (en)

Similar Documents

Publication Publication Date Title
US11233293B2 (en) Laminar textile material for a battery electrode
US9843048B2 (en) Fiber mat for battery plate reinforcement
EP0507090A1 (en) Lead/sulphuric acid storage battery
JP2022133405A (en) Improved separator for lead-acid battery, improved battery, and related method
US20140377628A1 (en) Mat made of combination of coarse glass fibers and micro glass fibers used as a separator in a lead-acid battery
RU2609891C2 (en) Multifunctional cloth for use in lead-acid battery
JP5215008B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
US5154988A (en) Deep cycle battery separators
BR112016029519B1 (en) WATER LOSS REDUCER NON-WOVEN FIBER CARPET, LEAD ACID BATTERY INCLUDING SAID CARPET AND METHOD FOR FORMING SAID NON-WOVEN FIBER CARPET FOR USE IN A LEAD ACID BATTERY
WO2014084683A1 (en) Nonwoven fabric formed from fiber coated with organic binder polymer compound, electrochemical device comprising nonwoven fabric, and method for manufacturing nonwoven fabric
US20070259260A1 (en) Electrochemical lead-acid rechargeable battery
JPH07335191A (en) Complex retainer for sealed lead acid battery and manufacture of retainer
JPH11260335A (en) Separator for sealed lead-acid battery
US20160344036A1 (en) Polyolefinic plate wraps, improved wrapped plates, improved lead acid batteries, and related methods
CN206059490U (en) A kind of high intensity AGM dividing plate
CN115434184A (en) Nano composite coated paper and preparation method thereof
JP3060632B2 (en) Separators for liquid lead-acid batteries
CN209487603U (en) A kind of high-efficient graphite alkene energy-storage battery
JPH09199101A (en) Bag-shaped separator for lead-acid battery
JP2817350B2 (en) Storage battery separator
KR102044926B1 (en) Bipolar plate-electrode composite, method for preparing the same, and redox flow battery comprising the same
JP2808819B2 (en) Storage battery separator
JPS60211764A (en) Sealed type lead storage battery
JP2023144564A (en) Support for secondary battery and secondary battery
JPH08180852A (en) Bag separator for storage battery and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030513