JPH07334823A - Mr characteristic measuring instrument - Google Patents

Mr characteristic measuring instrument

Info

Publication number
JPH07334823A
JPH07334823A JP6145592A JP14559294A JPH07334823A JP H07334823 A JPH07334823 A JP H07334823A JP 6145592 A JP6145592 A JP 6145592A JP 14559294 A JP14559294 A JP 14559294A JP H07334823 A JPH07334823 A JP H07334823A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
applying medium
head
positioning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6145592A
Other languages
Japanese (ja)
Inventor
Akio Takada
昭夫 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6145592A priority Critical patent/JPH07334823A/en
Publication of JPH07334823A publication Critical patent/JPH07334823A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/455Arrangements for functional testing of heads; Measuring arrangements for heads
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B13/00Recording simultaneously or selectively by methods covered by different main groups among G11B3/00, G11B5/00, G11B7/00 and G11B9/00; Record carriers therefor not otherwise provided for; Reproducing therefrom not otherwise provided for
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • G11B5/3166Testing or indicating in relation thereto, e.g. before the fabrication is completed

Landscapes

  • Magnetic Heads (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To obtain an instrument which is capable of measuring the electromagnetic conversion characteristics, such as MR characteristic and frequency characteristic of an MR element without requiring slider working and mounting on a gimbal plate. CONSTITUTION:This MR characteristic measuring instrument is an instrument to evaluate the electromagnetic conversion characteristic of the MR element disposed in an MR/IND head and has an AFM/MFM 12, a magnetic field impressing medium 14 having a magnetic reference mark 26 at the top end face, a first positioning device 16 and a second positioning device 18. The first positioning device 16 has an imposing surface 24 and places the MR/IND head on the imposing surface by aligning the central axis of the MR element with the Z direction of the three-dimensional coordinate system of which X direction and Y direction are the track width direction and thickness direction of the MR element, respectively and positions the MR/IND head by freely moving the head in the X-, Y- and Z directions. The second positioning device positions the magnetic field impressing medium by freely moving the medium in the X-, Y- and Z directions while holding the magnetic field impressing means by aligning its magnetic field direction with the Z direction. The AFM/MFM is a microscope commonly used for interatomic force and magnetic force to obtain the information on the ruggedness of a surface and the information on magnetism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、MR特性測定装置に関
し、更に詳細には、MR/INDヘッドに内蔵されたM
R素子の電磁変換特性を測定する装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for measuring MR characteristics, and more particularly to an M / N head incorporated in an MR / IND head.
The present invention relates to a device for measuring the electromagnetic conversion characteristics of an R element.

【0002】[0002]

【従来の技術】磁気記録の高記録密度化・狭トラック化
に伴い、高密度の磁気記録用読み出しヘッドとして、M
Rヘッドが、盛んに利用されるようになっている。MR
ヘッドは、電気抵抗率が磁場の存在によって変化する磁
気抵抗効果現象を示す磁気抵抗効果素子(以下、簡単に
MR素子と言う)を利用し、磁気記録媒体の磁束の有無
によって変化する電気抵抗を検出することにより、磁気
記録媒体に書き込まれた磁気的情報を再生している。
2. Description of the Related Art With the increase in recording density and the narrower track of magnetic recording, M has been used as a high-density read head for magnetic recording.
The R head has been widely used. MR
The head uses a magnetoresistive effect element (hereinafter simply referred to as an MR element) that exhibits a magnetoresistive effect phenomenon in which the electric resistivity changes due to the presence of a magnetic field, and the electric resistance that changes depending on the presence or absence of magnetic flux of the magnetic recording medium is used. By detecting, the magnetic information written on the magnetic recording medium is reproduced.

【0003】MR/INDヘッドは、書き込み側にはイ
ンダクティブヘッドを使用し、読み出し側にはMRヘッ
ドを使用した書き込み/読み出し両用のヘッドである。
インダクティブヘッドAは、図1の斜視図に示すよう
に、MRヘッドBに対して対面するように構成され、イ
ンダクティブヘッドAは、軟磁性体からなる上層コアC
と、記録用コイルDと、軟磁性体からなる上層シールド
Eとからなり、上層コアCと上層シールドEとの間には
ギャップが設けてある。一方、MRヘッドBは、MR素
子Fと、基板Gと、基板G上に形成された下層シールド
Hとから構成されている。本明細書では、X方向及びY
方向をそれぞれMR素子のトラック幅方向及び厚さ方向
とする3次元座標系を使用する。
The MR / IND head is a write / read head using an inductive head on the write side and an MR head on the read side.
As shown in the perspective view of FIG. 1, the inductive head A is configured to face the MR head B, and the inductive head A has an upper core C made of a soft magnetic material.
And a recording coil D and an upper shield E made of a soft magnetic material, and a gap is provided between the upper core C and the upper shield E. On the other hand, the MR head B is composed of an MR element F, a substrate G, and a lower layer shield H formed on the substrate G. In this specification, the X direction and the Y direction
A three-dimensional coordinate system whose directions are the track width direction and the thickness direction of the MR element is used.

【0004】MR/INDヘッドのMR素子の、磁気抵
抗効果特性(以下、MR特性と言う)、再生特性、オフ
・トラック特性、記録磁場による再生安定性等を含めた
電磁変換特性は、従来、ハードディスク上に記録された
磁気信号をMR素子で検出することにより、評価されて
いた。図2は、MR素子のMR特性曲線のグラフであっ
て、横軸に磁場強度を縦軸にMR素子の出力信号(電
圧)を示している。図2中、実線C1 はMR素子にバイ
アス磁場をかけてない時のMR特性であり、破線C2 は
MR素子にバイアス磁場をかけた時のMR特性である。
尚、MR素子の出力信号は、磁場強度が0の時の信号電
圧と磁場強度が任意の大きさである時の信号電圧との差
Vd で示される。バイアス磁場とは、MR素子に流すセ
ンス電流とMR素子の磁化の成す角度が所定の角度、望
ましくは45°の角度になるように、センス電流と直交
する方向に加える磁場を言う。このMR特性曲線を求め
ることにより、上述の電磁変換特性を評価できる。
The electromagnetic conversion characteristics of the MR element of the MR / IND head, including the magnetoresistive effect characteristics (hereinafter referred to as MR characteristics), reproduction characteristics, off-track characteristics, reproduction stability due to the recording magnetic field, etc. It was evaluated by detecting the magnetic signal recorded on the hard disk with an MR element. FIG. 2 is a graph of the MR characteristic curve of the MR element, in which the horizontal axis shows the magnetic field strength and the vertical axis shows the output signal (voltage) of the MR element. In FIG. 2, the solid line C1 is the MR characteristic when the bias magnetic field is not applied to the MR element, and the broken line C2 is the MR characteristic when the bias magnetic field is applied to the MR element.
The output signal of the MR element is represented by the difference Vd between the signal voltage when the magnetic field strength is 0 and the signal voltage when the magnetic field strength is an arbitrary magnitude. The bias magnetic field is a magnetic field applied in a direction orthogonal to the sense current so that the angle formed by the sense current flowing through the MR element and the magnetization of the MR element becomes a predetermined angle, preferably 45 °. By obtaining this MR characteristic curve, the above electromagnetic conversion characteristics can be evaluated.

【0005】[0005]

【発明が解決しようとする課題】しかし、ハードディス
ク上に記録されたこの磁気信号は、非常に弱く、しかも
MR/INDヘッドの加工時にどうしても生じるヘッド
と基板との間の凹部(Recession )のため、MR素子自
身のMR特性とMR/INDヘッドとして実際に使用す
る際のMR素子のMR特性の相関関係を確立することが
難しく、評価の信頼性が低かった。また、この方法で評
価するためには、MR/INDヘッドをスライダー加工
し、ジンバル・プレートに取り付けることが必要なため
に、MR/INDヘッド製品に設けられたMR素子は、
その評価がウェハ製作から長時間経過した後になって初
めて可能となる。その結果、ヘッドの製造歩留りを把握
すること、及び製品の改良情報を設計者にフィードバッ
クすることが遅れ、生産性を向上させたり、或いはヘッ
ドの構造及び機能を改良したりすることが難しかった。
However, this magnetic signal recorded on the hard disk is very weak, and due to the recession between the head and the substrate, which is inevitable when the MR / IND head is processed, It was difficult to establish a correlation between the MR characteristics of the MR element itself and the MR characteristics of the MR element when actually used as an MR / IND head, and the reliability of evaluation was low. Further, in order to evaluate by this method, it is necessary to process the MR / IND head with a slider and attach it to the gimbal plate, so the MR element provided in the MR / IND head product is
The evaluation is possible only after a long time has passed since the wafer was manufactured. As a result, it is difficult to grasp the manufacturing yield of the head and to feed back the product improvement information to the designer, which makes it difficult to improve productivity or improve the structure and function of the head.

【0006】そこで、ヘッドのMR特性を迅速に把握す
る方法として、磁気力顕微鏡( Magnetic Force Micros
cope、MFM)を使用し、探針から発する磁場強度を変
えることにより、MR素子のMR特性を測定する方法が
提案されている。この方法では、MR特性の測定に当た
りヘッドのスライダー加工及びジンバル・プレートへの
取り付けの必要は無くなるが、しかし、その測定原理上
から、次に挙げる三つの問題がある。先ず、第1には、
MFMの探針から発する磁場強度が低いため、MR素子
の抵抗変化特性の一部分しか測定できないことである。
第2には、MFMの探針の先端が数10nmと小さいの
で、その大きさが実際に書き込まれている記録信号と物
理的に異なり、そのため、測定結果の信頼性が低いと言
う問題である。第3には、MFMの探針から発する磁場
は空間的に方向性を有しないので、MR素子の周波数特
性を測定できないと言うことである。
Therefore, as a method for quickly grasping the MR characteristics of the head, a magnetic force microscope (Magnetic Force Micros
cope, MFM) and changing the magnetic field strength emitted from the probe to measure the MR characteristics of the MR element. With this method, it is not necessary to process the slider on the head and attach it to the gimbal plate for measuring the MR characteristics, but there are the following three problems from the measurement principle. First and foremost,
Since the magnetic field intensity emitted from the MFM probe is low, only a part of the resistance change characteristic of the MR element can be measured.
Secondly, since the tip of the MFM probe is as small as several tens of nanometers, its size is physically different from the actual recorded signal, and therefore the reliability of the measurement result is low. . Thirdly, since the magnetic field emitted from the MFM probe has no spatial directivity, the frequency characteristic of the MR element cannot be measured.

【0007】以上説明した問題に鑑み、本発明の目的
は、スライダー加工及びジンバル・プレートへの取り付
けを必要とすることなく、しかもMR素子のMR特性及
び周波数特性を含む電磁変換特性を高い信頼性で測定で
きる装置を提供することである。
In view of the above-mentioned problems, it is an object of the present invention to provide a highly reliable electromagnetic conversion characteristic including MR characteristics and frequency characteristics of an MR element without requiring slider processing and attachment to a gimbal plate. It is to provide a device that can be measured by.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るMR特性測定装置は、MR/INDヘ
ッド内のMR素子の電磁変換特性を評価する装置であっ
て、X方向及びY方向をそれぞれMR素子のトラック幅
方向及び厚さ方向とする3次元座標系のZ方向にMR素
子の中心軸を向けてMR/INDヘッドを載せ、X方
向、Y方向及びZ方向に自在に移動して位置決めする第
1位置決め装置と、位置決め用の磁性基準マークを上端
面に有し、かつ可変な磁場強度で磁場を形成する磁場印
加媒体と、磁場方向をZ方向に向けて保持しつつ磁場印
加媒体をX方向、Y方向及びZ方向に自在に移動して位
置決めする第2位置決め装置と、探針により面を走査し
て面の凹凸情報及び磁気情報を得る原子間力及び磁気力
兼用顕微鏡とを備え、磁場印加媒体の基準マークを基準
に第1位置決め装置及び第2位置決め装置を移動させつ
つ探針を作動させて、上から下に、探針と、磁場印加媒
体の磁場方向と、MR素子の中心軸とを一致させるよう
に位置決めし、次いで磁場印加媒体の磁場強度を変えて
MR素子の電磁変換特性を測定するようにしたことを特
徴としている。
In order to achieve the above object, an MR characteristic measuring apparatus according to the present invention is an apparatus for evaluating the electromagnetic conversion characteristic of an MR element in an MR / IND head. The MR / IND head is mounted with the central axis of the MR element oriented in the Z direction of the three-dimensional coordinate system in which the Y direction is the track width direction and the thickness direction of the MR element, and the MR / IND head is freely movable in the X direction, the Y direction, and the Z direction. A first positioning device for moving and positioning, a magnetic field applying medium having a magnetic reference mark for positioning on the upper end surface and forming a magnetic field with variable magnetic field strength, and holding the magnetic field direction in the Z direction. A second positioning device for freely moving and positioning the magnetic field applying medium in the X direction, Y direction and Z direction, and for both atomic force and magnetic force for scanning the surface with a probe to obtain surface irregularity information and magnetic information Equipped with a microscope The probe is operated while moving the first positioning device and the second positioning device with reference to the reference mark of the magnetic field applying medium, and from top to bottom, the probe, the magnetic field direction of the magnetic field applying medium, and the center of the MR element. It is characterized in that it is positioned so as to coincide with the axis, and then the magnetic field strength of the magnetic field applying medium is changed to measure the electromagnetic conversion characteristics of the MR element.

【0009】本発明で使用する原子間力及び磁気力兼用
顕微鏡は、探針と物の表面の原子間力を利用して表面の
微細な凹凸形状を検出できる原子間力顕微鏡(Atomic F
orceMicroscope、AFM)と微細な磁気力を検出して微
小部の磁気分布を検出する磁気力顕微鏡(MFM)との
機能を兼ね備えている既知の装置である。第1及び第2
位置決め装置は、位置決めした対象物の位置決め情報を
XYZ座標等で記憶し、更に、記憶している位置決め情
報に基づき対象物を設定位置に移動できるようになって
いる既知の装置である。
The atomic force and magnetic force microscope used in the present invention is an atomic force microscope (Atomic F) capable of detecting fine irregularities on the surface by utilizing the atomic force on the surface of a probe and an object.
(orceMicroscope, AFM) and a magnetic force microscope (MFM) that detects a magnetic distribution of a minute portion by detecting a fine magnetic force, and is a known device. First and second
The positioning device is a known device that stores the positioning information of the positioned object in XYZ coordinates and the like, and can further move the object to the set position based on the stored positioning information.

【0010】また、本発明に係る別のMR特性測定装置
は、MR/INDヘッド内のMR素子の電磁変換特性を
評価する装置であって、X方向及びY方向をそれぞれM
R素子のトラック幅方向及び厚さ方向とする3次元座標
系のZ方向にMR素子の中心軸を向けてMR/INDヘ
ッドを載せ、かつ分散した電極と電極に接続したMR素
子とからなる平面的基準マークを面上に有する載置面を
備え、X方向、Y方向及びZ方向に自在に移動して載置
面上のMR/INDヘッドを位置決めする第1位置決め
装置と、可変な磁場強度で磁場を形成すると共に基準マ
ークに平行な対向電極を下面に有し、かつ磁場方向をZ
方向に向けてMR/INDヘッドに対して相対的に固定
された磁場印加媒体と、基準マークと対向電極と間の電
気抵抗を測定するテスタと、探針により面を走査して面
の凹凸情報及び磁気情報を得る原子間力及び磁気力兼用
顕微鏡とを備え、位置決め装置を移動させつつ探針を作
動させてMR素子を位置決めし、次いで位置決め装置を
移動させつつテスタにより電気抵抗を測定して基準マー
クと対向電極との位置関係を求め、それによって、上か
ら下に、探針と、磁場印加媒体の磁場方向と、MR素子
の中心軸とを一致させるように位置決めし、次いで磁場
印加媒体の磁場強度を変えてMR/INDヘッドの電磁
変換特性を測定するようにしたことを特徴としている。
Another MR characteristic measuring apparatus according to the present invention is an apparatus for evaluating the electromagnetic conversion characteristic of an MR element in an MR / IND head, wherein M is measured in the X direction and Y direction.
A plane formed by mounting an MR / IND head with the central axis of the MR element oriented in the Z direction of the three-dimensional coordinate system, which is the track width direction and the thickness direction of the R element, and including dispersed electrodes and MR elements connected to the electrodes. A first positioning device having a mounting surface having a dynamic reference mark on the surface, and freely moving in the X, Y and Z directions to position the MR / IND head on the mounting surface; and a variable magnetic field strength. Form a magnetic field with a counter electrode parallel to the reference mark on the lower surface, and the magnetic field direction is Z
A magnetic field applying medium fixed in a direction relative to the MR / IND head, a tester for measuring the electric resistance between the reference mark and the counter electrode, and a surface scanning by a probe to obtain surface irregularity information. And a microscope for combined use of atomic force and magnetic force for obtaining magnetic information, the probe is operated while moving the positioning device to position the MR element, and then the electrical resistance is measured by a tester while moving the positioning device. The positional relationship between the reference mark and the counter electrode is determined, and thereby the probe, the magnetic field direction of the magnetic field applying medium, and the central axis of the MR element are aligned from top to bottom, and then the magnetic field applying medium is positioned. The electromagnetic conversion characteristic of the MR / IND head is measured by changing the magnetic field strength of the MR / IND head.

【0011】本発明の好適な実施態様では、磁場印加媒
体が、単磁極ヘッドであることを特徴としている。ま
た、本発明の別の好適な実施態様では、磁場印加媒体
は、磁場強度がX方向に異なるように基板上に成膜され
た硬磁性膜を備えた硬磁性体か、または磁場強度が異な
る硬磁性膜の各々をそれぞれ基板上に成膜した硬磁性体
の複数個の組であることを特徴としている。
In a preferred embodiment of the present invention, the magnetic field applying medium is a single magnetic pole head. In another preferred embodiment of the present invention, the magnetic field applying medium is a hard magnetic body having a hard magnetic film formed on a substrate such that the magnetic field strength is different in the X direction, or the magnetic field strength is different. It is characterized in that each of the hard magnetic films is a plurality of sets of hard magnetic materials formed on a substrate.

【0012】[0012]

【作用】請求項1の発明では、MR/INDヘッド用の
第1位置決め装置と原子間力及び磁気力兼用顕微鏡(以
下、単にAFM/MFMと言う)とが協働してMR素子
と探針との位置関係を求め、次いで磁場印加媒体用の第
2位置決め装置とAFM/MFMとが協働して、基準マ
ークを基準に磁場印加媒体を位置決めすることにより、
磁場印加媒体と探針との位置関係を求める。続いて、求
めた位置関係に基づき、第1及び第2位置決め装置を作
動させて、上から下に、探針と、磁場印加媒体の磁場方
向と、MR素子の中心軸とを一致させるようにMR/I
NDヘッドと磁場印加媒体とを位置決めした後、磁場印
加媒体の磁場強度を変えてMR/INDヘッドの電磁変
換特性を測定する。以上の構成により、磁場印加媒体が
Z方向の磁場方向を備え、かつ磁場印加媒体の磁場方向
と、MR素子の中心線と、探針とが同じ垂線上に整列し
ているので、正確にかつ容易にMR特性を測定すること
ができる。
According to the first aspect of the invention, the first positioning device for the MR / IND head and the microscope for both atomic force and magnetic force (hereinafter, simply referred to as AFM / MFM) cooperate with each other to form the MR element and the probe. And the second positioning device for the magnetic field applying medium and the AFM / MFM cooperate with each other to position the magnetic field applying medium with reference to the reference mark.
The positional relationship between the magnetic field applying medium and the probe is obtained. Then, based on the obtained positional relationship, the first and second positioning devices are operated so that the probe, the magnetic field direction of the magnetic field applying medium, and the central axis of the MR element are aligned from top to bottom. MR / I
After positioning the ND head and the magnetic field applying medium, the magnetic field strength of the magnetic field applying medium is changed to measure the electromagnetic conversion characteristics of the MR / IND head. With the above configuration, since the magnetic field applying medium has the magnetic field direction of the Z direction, and the magnetic field direction of the magnetic field applying medium, the center line of the MR element, and the probe are aligned on the same perpendicular line, The MR characteristic can be easily measured.

【0013】請求項2の発明では、MR/INDヘッド
用の第1位置決め装置とAFM/MFMとが協働してM
R素子と探針との位置関係を求め、次いで位置決め装置
を移動させつつテスタにより電気抵抗を測定して位置決
め装置の基準マークと磁場印加媒体の対向電極との位置
関係を求め、これにより、基準マークを基準にしたMR
素子と探針と磁場印加媒体の位置関係を確立する。続い
て、求めた位置関係に基づき、位置決め装置を作動させ
て、上から下に、探針と、磁場印加媒体の磁場方向と、
MR素子の中心軸とを一致させるように位置決めした
後、磁場印加媒体の磁場強度を変えてMR/INDヘッ
ドの電磁変換特性を測定する。本発明では、磁場方向が
Z方向の磁場を形成する磁場印加媒体を備え、かつ磁場
印加媒体の磁場方向と、MR素子の中心線と、探針とが
同じ垂線上に整列しているので、正確にかつ容易にMR
特性を測定することができる。
According to the second aspect of the present invention, the first positioning device for the MR / IND head and the AFM / MFM cooperate with each other to generate M.
The positional relationship between the R element and the probe is obtained, and then the electrical resistance is measured by a tester while moving the positioning device to obtain the positional relationship between the reference mark of the positioning device and the counter electrode of the magnetic field applying medium. MR based on mark
The positional relationship between the element, the probe, and the magnetic field applying medium is established. Then, based on the obtained positional relationship, the positioning device is operated, and from top to bottom, the probe, the magnetic field direction of the magnetic field applying medium,
After positioning so as to match the central axis of the MR element, the magnetic field strength of the magnetic field applying medium is changed to measure the electromagnetic conversion characteristics of the MR / IND head. In the present invention, since the magnetic field applying medium that forms a magnetic field whose magnetic field direction is the Z direction is provided, and the magnetic field direction of the magnetic field applying medium, the center line of the MR element, and the probe are aligned on the same perpendicular line, MR accurately and easily
The property can be measured.

【0014】[0014]

【実施例】以下、添付図面を参照し、実施例に基づいて
本発明をより詳細に説明する。実施例1 図3は請求項1に記載の発明の一実施例の構成を示す概
念図である。本実施例のMR特性測定装置10は、原子
間力及び磁気力兼用顕微鏡(Atomic Force andMagnetic
Force Microscope、以下、AFM/AFMと略称す
る)12と、磁場印加媒体14と、MR/INDヘッド
Sを位置決めする第1位置決め装置16と、磁場印加媒
体14を保持しつつX、Y及びZ方向に自在に移動して
磁場印加媒体14を位置決めする第2位置決め装置18
とを備えている。AFM/MFM12は、原子間力を利
用して表面の凹凸情報を検出できる原子間力顕微鏡(A
FM)と、磁性を有する探針を使用し、微細な磁気力を
検出して磁気分布を検出する磁気力顕微鏡との機能を兼
ね、更に自在に先端が動くカンチレバ状の探針20(以
下、探針20は単に先端の探知部を意味する)を備えた
既知の装置であって、例えばセイコー電子工業製のAF
M/MFM等を使用できる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in more detail based on embodiments with reference to the accompanying drawings. Embodiment 1 FIG. 3 is a conceptual diagram showing the configuration of an embodiment of the invention described in claim 1. The MR characteristic measuring apparatus 10 of the present embodiment is an atomic force and magnetic force microscope (Atomic Force and Magnetic).
Force Microscope (hereinafter abbreviated as AFM / AFM) 12, a magnetic field applying medium 14, a first positioning device 16 for positioning the MR / IND head S, and X, Y and Z directions while holding the magnetic field applying medium 14. Second positioning device 18 for freely moving to position the magnetic field applying medium 14
It has and. The AFM / MFM12 is an atomic force microscope (A that can detect surface irregularity information using atomic force).
FM) and a magnetic probe, which also have the functions of a magnetic force microscope that detects a magnetic distribution by detecting a fine magnetic force, and a cantilever-shaped probe 20 (hereinafter The probe 20 is a known device including only a detection unit at the tip), and is, for example, an AF manufactured by Seiko Denshi Kogyo.
M / MFM etc. can be used.

【0015】本MR特性測定装置10において、3次元
座標系のX方向及びY方向は、図1に示すように、測定
すべきMR/INDヘッドSのMR素子のトラック幅方
向及び厚さ方向にそれぞれ設定されている。第1位置決
め装置16は、X−Y平面に平行な載置面24を上面に
備え、MR素子F(図1参照)の中心軸をZ方向に一致
させて、測定すべきMR/INDヘッドSを載置面24
に載せ、X、Y及びZ方向に自在に移動して、MR/I
NDヘッドSを位置決めする。
In the MR characteristic measuring apparatus 10, the X and Y directions of the three-dimensional coordinate system are, as shown in FIG. 1, the track width direction and the thickness direction of the MR element of the MR / IND head S to be measured. Each is set. The first positioning device 16 has a mounting surface 24 parallel to the XY plane on the upper surface thereof, and the MR / IND head S to be measured by aligning the central axis of the MR element F (see FIG. 1) in the Z direction. Mounting surface 24
On the MR / I and move freely in the X, Y and Z directions to
Position the ND head S.

【0016】第2位置決め装置18は、磁場方向をZ方
向に向けた状態で磁場印加媒体14をアーム22により
保持しつつ位置決めする。磁場印加媒体14は、磁場強
度が可変な磁場をMR素子に作用させる媒体であって、
単磁極ヘッド、又は基板上に硬磁性膜を被覆した硬磁性
体で構成されている。また、磁場印加媒体14のZ方向
の上面には、磁性を有する位置決め用の基準マーク26
が設けてある。
The second positioning device 18 positions the magnetic field applying medium 14 while holding the magnetic field applying medium 14 by the arm 22 in a state where the magnetic field direction is oriented in the Z direction. The magnetic field applying medium 14 is a medium that causes a magnetic field having a variable magnetic field strength to act on the MR element,
It is composed of a single magnetic pole head or a hard magnetic material in which a hard magnetic film is coated on a substrate. Further, on the upper surface of the magnetic field applying medium 14 in the Z direction, a reference mark 26 for positioning having magnetism is provided.
Is provided.

【0017】単磁極ヘッド28は、図4(a)及び
(b)に示すように、軟磁性体からなる上層コア30
と、磁場を発生する磁場発生コイル32と、基板34
と、基板34上に形成された軟磁性体からなる磁極36
とから構成されている。MR特性の測定時、単磁極ヘッ
ド28は、図4(a)及び(b)に示すように、MR/
INDヘッドSに対して磁極36とMR素子Fとが同じ
垂直平面に整列するように位置決めされ、磁場発生コイ
ル32に電流を流すと、磁場を発生させて、矢印で示す
ように、それぞれ時計周り方向及び反時計周り方向の磁
力線を出し、磁場方向がZ方向(矢印の方向)の磁場を
形成する。磁場発生コイル32に流す電流の強さを変え
ることにより磁場強度が変化するので、MR/INDヘ
ッドSのMR素子Fは、作用する磁場強度に応じた電気
抵抗に基づく信号(電圧)を出力し、図2に示すような
特性曲線となる。単磁極ヘッド28の場合、磁極34の
上縁部が、基準マーク26として使用される。尚、図4
中のCからH迄の符号は、図1で説明したものと同じで
あり、Iは単なるカバーである。
As shown in FIGS. 4A and 4B, the single magnetic pole head 28 has an upper core 30 made of a soft magnetic material.
A magnetic field generating coil 32 for generating a magnetic field, and a substrate 34.
And a magnetic pole 36 made of a soft magnetic material formed on the substrate 34.
It consists of and. At the time of measuring the MR characteristics, the single magnetic pole head 28, as shown in FIGS.
The magnetic pole 36 and the MR element F are positioned with respect to the IND head S so as to be aligned in the same vertical plane, and when a current is passed through the magnetic field generating coil 32, a magnetic field is generated and each is rotated clockwise as indicated by an arrow. Direction and counterclockwise magnetic force lines are emitted to form a magnetic field whose magnetic field direction is the Z direction (direction of arrow). Since the magnetic field strength changes by changing the strength of the current flowing through the magnetic field generating coil 32, the MR element F of the MR / IND head S outputs a signal (voltage) based on the electric resistance according to the acting magnetic field strength. The characteristic curve is as shown in FIG. In the case of the single pole head 28, the upper edge of the pole 34 is used as the reference mark 26. Incidentally, FIG.
Reference numerals C to H in the figure are the same as those described in FIG. 1, and I is a cover.

【0018】硬磁性体は、アルミナ・チタン・カーバイ
ト製のセラミック基板上に絶縁膜を介してCoPt等からな
る硬磁性膜を成膜したものであって、例えば、図5
(a)及び図5(b)に示すように、MR素子に対して
X方向に動かすと、磁場強度が低減するように構成され
ている。図5(a)に示す硬磁性体40は、1個の基板
42上に複数枚(図5(a)では、5枚)の同じ磁場強
度の細長い硬磁性膜帯44A、B、C、D、Eが相互に
平行でかつ等間隔で上下方向に配列、成膜されている。
また、硬磁性体40は、硬磁性膜帯44の下端が、Aで
は基板42に下端に一致し、BからEになるに従い硬磁
性膜44の下端と基板42との間隔が算術級数的に大き
くなるように形成されている。
The hard magnetic material is obtained by forming a hard magnetic film of CoPt or the like on a ceramic substrate made of alumina / titanium / carbite through an insulating film.
As shown in FIGS. 5A and 5B, when the MR element is moved in the X direction, the magnetic field strength is reduced. The hard magnetic body 40 shown in FIG. 5A has a plurality of (in FIG. 5A, five) elongated hard magnetic film bands 44A, B, C, D having the same magnetic field strength on one substrate 42. , E are parallel to each other and arranged at equal intervals in the vertical direction to form a film.
Further, in the hard magnetic body 40, the lower end of the hard magnetic film band 44 coincides with the lower end of the substrate 42 in A, and the distance between the lower end of the hard magnetic film 44 and the substrate 42 becomes an arithmetic series as it goes from B to E. It is formed to be large.

【0019】図5(b)に示す硬磁性体40は、各基板
42A、B、C毎に異なる磁場強度を持つ硬磁性膜46
A、B、Cをそれぞれ成膜した、磁場強度の異なる硬磁
性体の複数個の組から構成されている。尚、磁性材料、
膜厚、又は着磁時の着磁方向を変えることにより、異な
る磁場強度の硬磁性膜を各基板上に形成することができ
る。硬磁性体40の場合、図5(a)及び(b)に示す
硬磁性膜帯44の上端部分が基準マーク26として機能
し、図6に示すように、基板42上の絶縁膜48上に硬
磁性膜44が形成されており、細い上縁部が基準マーク
26となる。また、必要に応じ硬磁性膜44の上端部分
をエッチングして任意の形状の基準マークにすることが
できる。
The hard magnetic body 40 shown in FIG. 5B is a hard magnetic film 46 having a different magnetic field intensity for each of the substrates 42A, 42B, 42C.
It is composed of a plurality of sets of hard magnetic materials having different magnetic field strengths, in which A, B, and C are deposited. In addition, magnetic material,
By changing the film thickness or the magnetization direction during magnetization, hard magnetic films having different magnetic field strengths can be formed on each substrate. In the case of the hard magnetic body 40, the upper end portion of the hard magnetic film band 44 shown in FIGS. 5A and 5B functions as the reference mark 26, and as shown in FIG. 6, on the insulating film 48 on the substrate 42. The hard magnetic film 44 is formed, and the thin upper edge portion serves as the reference mark 26. If necessary, the upper end portion of the hard magnetic film 44 can be etched to form a reference mark of any shape.

【0020】MR特性の測定時、硬磁性体40は、図7
に示すように、MR/INDヘッドSに対して、硬磁性
膜44とMR素子Fとが同じ垂直平面に整列するように
配置され、図7においてZ方向(矢印の方向)の磁場を
印加することができ、図5(a)に示す硬磁性体40と
MR素子とを相対的にX方向に移動することにより、ま
た図5(b)に示す組の各硬磁性体40を順次使用する
ことにより、MR素子Fに対する磁場強度を変化させる
ことができる。
At the time of measuring the MR characteristics, the hard magnetic body 40 is shown in FIG.
7, the hard magnetic film 44 and the MR element F are arranged so as to be aligned on the same vertical plane with respect to the MR / IND head S, and a magnetic field in the Z direction (direction of the arrow) in FIG. 7 is applied. By moving the hard magnetic body 40 and the MR element shown in FIG. 5A relative to each other in the X direction, the hard magnetic bodies 40 of the set shown in FIG. 5B are used one after another. As a result, the magnetic field strength for the MR element F can be changed.

【0021】次に、実施例1のMR特性測定装置10を
使用して、MR/INDヘッドに内蔵されたMR素子の
MR特性を測定する方法を説明する。ステップ1 図3のように、第1位置決め装置16の載置面24上
に、MR素子F(図1参照)の中心軸をZ方向に一致さ
せて測定すべきMR/INDヘッドSを載せ、AFM/
MFM12の探針20の下に移動する。AFM/MFM
12をAFMモードで作動させ、探針20でMR/IN
Dヘッドの表面、特にMR素子F近辺を走査して表面の
凹凸を検出し、その情報をAFM/MFM12内に記憶
させる。ステップ2 次いで、AFM/MFM12をMFMモードで作動さ
せ、探針20でMR/INDヘッドSの表面を走査し、
MR/INDヘッドSのMR素子の位置を検出し、その
位置をAFM/MFM12に記憶させる。この走査にお
いて、AFM/MFM12は、ステップ1で検出した凹
凸情報に基づき、MR/INDヘッドSの表面に対して
探針20との間隔が設定値になるように探針20を走行
させつつ、磁性体のみに応答する探針20の作動からM
R素子の位置を検出し、探針20とMR素子との位置関
係(XYZ座標)を求める。
Next, a method of measuring the MR characteristic of the MR element incorporated in the MR / IND head using the MR characteristic measuring apparatus 10 of the first embodiment will be described. Step 1 As shown in FIG. 3, the MR / IND head S to be measured with the central axis of the MR element F (see FIG. 1) aligned with the Z direction is placed on the mounting surface 24 of the first positioning device 16. AFM /
It moves below the probe 20 of the MFM 12. AFM / MFM
12 in the AFM mode and MR / IN with the probe 20
The surface of the D head, particularly the vicinity of the MR element F, is scanned to detect surface irregularities, and the information is stored in the AFM / MFM 12. Step 2 Next, the AFM / MFM 12 is operated in the MFM mode, and the probe 20 scans the surface of the MR / IND head S.
The position of the MR element of the MR / IND head S is detected, and the position is stored in the AFM / MFM 12. In this scanning, the AFM / MFM 12 runs the probe 20 on the surface of the MR / IND head S so that the distance between the probe 20 and the probe 20 becomes a set value based on the unevenness information detected in step 1. From the operation of the probe 20 that responds only to the magnetic substance, M
The position of the R element is detected, and the positional relationship (XYZ coordinates) between the probe 20 and the MR element is obtained.

【0022】ステップ3 第1位置決め装置16を作動させて、ステップ2で求め
た探針20とMR素子との位置関係に基づき、図8に示
すように、MR素子を探針20の直下に位置決めする。
次いで、探針20とMR素子Fとの間に磁場印加媒体1
4を配置することができるように、Z方向に下降させて
MR素子Fを探針20から下方に離す。ステップ4 第2位置決め装置18を作動させて、磁場印加媒体14
を探針20の下に移動する。次いで、ステップ1及び2
と同様の操作を行う。即ち、AFM/MFM12をAF
Mモードで作動させ、探針20で磁場印加媒体14の上
面を走査して表面の凹凸を検出して、その凹凸情報をA
FM/MFM12内に記憶させる。次いで、MFMモー
ドでAFM/MFM12を使用して、再び磁場印加媒体
14の上面を走査し、基準マーク26の位置を検出し、
探針20と基準マーク26との位置関係(XYZ座標)
をAFM/MFM12に記憶させる。
Step 3 The first positioning device 16 is operated to position the MR element directly below the probe 20, as shown in FIG. 8, based on the positional relationship between the probe 20 and the MR element obtained in Step 2. To do.
Then, the magnetic field applying medium 1 is interposed between the probe 20 and the MR element F.
4 can be arranged so that the MR element F is moved downward in the Z direction and separated from the probe 20. Step 4 The second positioning device 18 is activated to activate the magnetic field applying medium 14
Is moved below the probe 20. Then steps 1 and 2
Perform the same operation as. That is, AF the AFM / MFM12
When operating in the M mode, the probe 20 scans the upper surface of the magnetic field application medium 14 to detect surface irregularities, and the irregularity information is A
It is stored in the FM / MFM 12. Then, using the AFM / MFM 12 in the MFM mode, the upper surface of the magnetic field applying medium 14 is again scanned to detect the position of the reference mark 26,
Positional relationship between the probe 20 and the reference mark 26 (XYZ coordinates)
Are stored in the AFM / MFM 12.

【0023】ステップ5 図9に示すように、第2位置決め装置18を作動させ
て、ステップ4で求めた探針20と基準マーク26との
位置関係に基づき、基準マーク26を探針20の直下に
位置決めする。これにより、MR/INDヘッドSのM
R素子FのZ方向軸と磁場印加媒体14の磁場方向とが
一致する。ステップ6 第1位置決め装置16又は第2位置決め装置18をZ方
向に作動させて、磁場印加媒体14とMR/INDヘッ
ドSとを相互に接近させる。
Step 5 As shown in FIG. 9, the second positioning device 18 is operated to move the reference mark 26 directly below the probe 20 based on the positional relationship between the probe 20 and the reference mark 26 obtained in step 4. To position. As a result, M of the MR / IND head S
The Z direction axis of the R element F and the magnetic field direction of the magnetic field applying medium 14 match. Step 6 The first positioning device 16 or the second positioning device 18 is operated in the Z direction to bring the magnetic field applying medium 14 and the MR / IND head S close to each other.

【0024】ステップ7 MR/INDヘッドのMR素子にセンス電流を流し、一
方、硬磁性体40の場合には、硬磁性体40をX方向に
動かし、単磁極ヘッドの場合には、電流の強さを変えつ
つ電流をコイルに流して磁場強度が変化する磁場を形成
することにより、MR素子の出力電圧を測定する。本実
施例のMR特性測定装置10を使用して上述のように操
作することにより、磁場印加媒体14の磁場方向と、M
R素子Fの中心線と、探針20とが同じ垂線上に整列す
るので、正確にMR特性を測定することができる。
Step 7 A sense current is passed through the MR element of the MR / IND head, while in the case of the hard magnetic body 40, the hard magnetic body 40 is moved in the X direction. The output voltage of the MR element is measured by flowing a current through the coil while changing the height to form a magnetic field whose magnetic field strength changes. By operating the MR characteristic measuring apparatus 10 of the present embodiment as described above, the magnetic field direction of the magnetic field applying medium 14 and M
Since the center line of the R element F and the probe 20 are aligned on the same vertical line, the MR characteristic can be accurately measured.

【0025】実施例2 図10(a)は請求項4に記載の発明の一実施例の構成
を示す概念図である。本実施例のMR特性測定装置50
は、図10(a)に示すように、実施例1と同様なAF
M/MFM12、磁場印加媒体14及び位置決め装置1
8と、磁場印加媒体14の磁場方向をZ方向に一致させ
るようにアーム52で支持して、所定位置に固定する支
持装置54と、磁場印加媒体14の後述する対向電極6
2と同じく後述する基準マーク56との電気抵抗を測定
する電気抵抗測定用テスタ74とを備えている。テスタ
74は、図10に示すように、後述する測定目的に応じ
てA又はBに接続して使用する。特に、Bに接続してM
R特性を測定する時には、MRセンス電流供給源と電圧
出力機能を持つテスタとして機能する。図10(b)に
示すように、第2位置決め装置18の載置面24には、
平面的広がりのある位置決め用の基準マーク56が設け
てある。また、図10(c)に示すように、磁場印加媒
体14の下面60は、X−Y平面に平行な面であって、
面上に導電性膜、例えば金又は白金の膜からなる膜状
の、基準マーク56に対向する対向電極62が被着され
ている。磁場印加媒体14には、実施例1と同様に、単
磁極ヘッド28又は硬磁性体40が使用されている。
Embodiment 2 FIG. 10 (a) is a conceptual diagram showing the construction of an embodiment of the invention described in claim 4. In FIG. MR characteristic measuring apparatus 50 of the present embodiment
As shown in FIG. 10A, the same AF
M / MFM 12, magnetic field applying medium 14, and positioning device 1
8, a support device 54 that is supported by an arm 52 so as to match the magnetic field direction of the magnetic field applying medium 14 with the Z direction and is fixed at a predetermined position, and a counter electrode 6 of the magnetic field applying medium 14 which will be described later.
2, an electrical resistance measuring tester 74 for measuring an electrical resistance with a reference mark 56, which will be described later, is provided. As shown in FIG. 10, the tester 74 is used by being connected to A or B according to the measurement purpose described later. In particular, connect to B and M
When measuring the R characteristic, it functions as a tester having an MR sense current supply source and a voltage output function. As shown in FIG. 10B, the mounting surface 24 of the second positioning device 18 has
A reference mark 56 for positioning, which has a two-dimensional spread, is provided. Further, as shown in FIG. 10C, the lower surface 60 of the magnetic field applying medium 14 is a surface parallel to the XY plane,
A counter electrode 62, which is made of a conductive film, for example, a gold or platinum film, and which faces the reference mark 56, is deposited on the surface. For the magnetic field applying medium 14, the single magnetic pole head 28 or the hard magnetic material 40 is used as in the first embodiment.

【0026】基準マーク56は、基準マーク56内の任
意の位置に基準点58を備え、縦横の長さが磁場印加媒
体下面60の対向電極62の縦横の長さより大きい寸法
になっていて、図11(a)に示すような配置で基板6
4上に成膜された細長い1本のMR素子66と複数個の
電極68、70、72とから構成されている。電極68
は、等間隔に離隔し、かつ長脚がMR素子66に平行に
配置されている複数個のL字形のパターンに成膜され、
その短脚の左端がMR素子66上に接続されている。電
極70は、その幅がMR素子66の幅と同じで、MR素
子66上に直接成膜されている。また、電極72は、M
R素子66に対して平行でかつ等間隔に離隔して配置さ
れた複数本の細長い電極で構成されている。電極68、
70及び72の上面は載置面24に平行で、かつ同じ高
さの面に仕上げてある。磁場印加媒体14の対向電極6
2は、図11で、Y方向及びX方向の長さが68Bの右
端から72Cの左端までの長さ及び68Dの上端から6
8Bの下端までの長さにそれぞれ等しい。
The reference mark 56 has a reference point 58 at an arbitrary position within the reference mark 56, and the vertical and horizontal lengths are larger than the vertical and horizontal lengths of the counter electrode 62 on the lower surface 60 of the magnetic field applying medium. Substrate 6 is arranged as shown in FIG.
It is composed of one elongated MR element 66 and a plurality of electrodes 68, 70 and 72 which are formed on the surface of the electrode 4. Electrode 68
Is formed into a plurality of L-shaped patterns that are equally spaced and the long legs are arranged parallel to the MR element 66.
The left end of the short leg is connected to the MR element 66. The electrode 70 has the same width as that of the MR element 66 and is directly formed on the MR element 66. The electrode 72 is M
It is composed of a plurality of elongated electrodes arranged in parallel to the R element 66 and spaced apart at equal intervals. Electrode 68,
The upper surfaces of 70 and 72 are finished parallel to the mounting surface 24 and at the same height. Counter electrode 6 of magnetic field applying medium 14
In FIG. 11, 2 is the length from the right end of 68B to the left end of 72C and the length of 6D from the upper end of 68D in the Y and X directions.
It is equal to the length to the bottom of 8B.

【0027】次に、実施例2のMR特性測定装置50を
使用して、MR/INDヘッドに内蔵されたMR素子の
MR特性を測定する方法を説明する。ステップ1及び2 図10(a)に示すように、測定すべきMR/INDヘ
ッドSを位置決め装置18の載置面24に載せ、実施例
1のステップ1及びステップ2と同様にして、探針20
とMR素子との位置関係を求める。ステップ3 次いで、AFM/MFM12をAFMモードで使用し
て、載置面24上の基準マーク56を走査し、基準マー
ク56の基準点58の位置を検出する。ステップ1及び
2で求めた探針20とMR素子との位置関係により、基
準点58とMR素子との位置関係、基準マーク56の各
電極の位置関係が判る。
Next, a method of measuring the MR characteristic of the MR element incorporated in the MR / IND head using the MR characteristic measuring apparatus 50 of the second embodiment will be described. Steps 1 and 2 As shown in FIG. 10A, the MR / IND head S to be measured is mounted on the mounting surface 24 of the positioning device 18, and the probe is carried out in the same manner as in Steps 1 and 2 of the first embodiment. 20
And the positional relationship between the MR element and the MR element is obtained. Step 3 Next, the AFM / MFM 12 is used in the AFM mode to scan the reference mark 56 on the mounting surface 24 and detect the position of the reference point 58 of the reference mark 56. From the positional relationship between the probe 20 and the MR element obtained in steps 1 and 2, the positional relationship between the reference point 58 and the MR element and the positional relationship between the electrodes of the reference mark 56 can be known.

【0028】ステップ4 次に、位置決め装置18を作動して、図12に示すよう
に、基準マーク56を磁場印加媒体14の直下に移動さ
せ、以下のようにして、磁場印加媒体14の対向電極6
2で基準マーク56を走査して磁場印加媒体14と基準
マーク56との位置関係を検出する。単磁極ヘッドを使
用する場合には、磁場発生コイル32(図4参照)に電
流を流して磁場を発生させておく。先ず、位置決め装置
18をY方向に動かし、基準マーク56上に磁場印加媒
体14を移動する。次いでZ方向に動かして、磁場印加
媒体14の対向電極62と基準マーク56の電極とを接
触させ、その電気抵抗を電気抵抗測定用テスタ74で測
定し、測定後Z方向に上昇させて電極と離隔する。次
に、位置決め装置18を僅かにY方向に動かし、同様の
操作を行う。かかる操作を繰り返して、磁場印加媒体1
4を電極72Dと電極68Bとの間に位置決めする。次
に、X方向の位置決めを行う。それには、位置決め装置
18をX方向に動かし、70及び68内の任意の2端子
間でのMR特性を測定する。このとき、図10でテスタ
74の端子をBに接続し、任意の2端子間には10mA以
下の電流を流し、その端子間の電圧変化を測定すること
でMR特性を測定する。そして、磁場印加媒体14を電
極68Bと68Dとの間(図11では、YBとYD)に
位置決めする。これにより、基準マーク56内の基準点
58と磁場印加媒体14との位置関係が判る。
Step 4 Next, the positioning device 18 is operated to move the reference mark 56 to a position directly below the magnetic field applying medium 14 as shown in FIG. 12, and the counter electrode of the magnetic field applying medium 14 is set as follows. 6
The reference mark 56 is scanned at 2 to detect the positional relationship between the magnetic field applying medium 14 and the reference mark 56. When a single pole head is used, a current is passed through the magnetic field generating coil 32 (see FIG. 4) to generate a magnetic field. First, the positioning device 18 is moved in the Y direction to move the magnetic field applying medium 14 on the reference mark 56. Then, it is moved in the Z direction to bring the counter electrode 62 of the magnetic field applying medium 14 into contact with the electrode of the reference mark 56, and measure the electric resistance thereof with the electric resistance measuring tester 74. Separate. Next, the positioning device 18 is slightly moved in the Y direction, and the same operation is performed. By repeating this operation, the magnetic field applying medium 1
Position 4 between electrode 72D and electrode 68B. Next, positioning in the X direction is performed. To do so, the positioning device 18 is moved in the X direction, and the MR characteristic between any two terminals in 70 and 68 is measured. At this time, the terminal of the tester 74 is connected to B in FIG. 10, a current of 10 mA or less is passed between any two terminals, and the MR characteristic is measured by measuring the voltage change between the terminals. Then, the magnetic field applying medium 14 is positioned between the electrodes 68B and 68D (YB and YD in FIG. 11). Thereby, the positional relationship between the reference point 58 in the reference mark 56 and the magnetic field applying medium 14 can be known.

【0029】ステップ5 位置決め装置18を作動して、ステップ3で求めた基準
点58とMR/INDヘッドSのMR素子Fとの位置関
係及びステップ4で求めた基準マーク56と磁場印加媒
体14との位置関係に基づき、磁場印加媒体14をMR
素子F(図4及び7参照)上に位置決めする。ステップ6 次いで、位置決め装置18を作動して、磁場印加媒体1
4とMR素子Fとの間隔が所定の値になるように磁場印
加媒体14を下降、位置決めする。これには、磁場印加
媒体14を一旦MR素子Fに接触する程度に下降させ、
次いで所定値の間隔だけ逆に上昇させる。尚、磁場印加
媒体14とMR素子との接触は、抵抗測定用テスタ等を
使用して両者の導通を見ることにより、検知することが
できる。ステップ7 実施例1と同様にして、MR特性を測定する。本実施例
のMR特性測定装置50を使用して上述のように操作す
ることにより、磁場印加媒体14の磁場方向と、MR素
子Fの中心線と、探針20とが同じ垂線上に整列するの
で、正確にMR特性を測定することができる。
Step 5: The positioning device 18 is activated to operate the positional relationship between the reference point 58 obtained in Step 3 and the MR element F of the MR / IND head S and the reference mark 56 obtained in Step 4 and the magnetic field applying medium 14. Based on the positional relationship of
Position on element F (see FIGS. 4 and 7). Step 6 Next, the positioning device 18 is operated to operate the magnetic field applying medium 1
The magnetic field applying medium 14 is lowered and positioned so that the distance between the MR element F and the MR element F becomes a predetermined value. For this purpose, the magnetic field applying medium 14 is once lowered to the extent that it contacts the MR element F,
Then, it is increased in reverse by an interval of a predetermined value. The contact between the magnetic field applying medium 14 and the MR element can be detected by using a resistance measuring tester or the like to check the continuity between the two. Step 7 In the same manner as in Example 1, the MR characteristic is measured. By operating the MR characteristic measuring apparatus 50 of the present embodiment as described above, the magnetic field direction of the magnetic field applying medium 14, the center line of the MR element F, and the probe 20 are aligned on the same perpendicular line. Therefore, the MR characteristic can be accurately measured.

【0030】実施例3 MR/INDヘッドの周波数特性とは、周波数(磁化
幅)とMR出力の関係を言い、通常、周波数が高くなる
につれ、磁化幅が短くなり磁場がMR素子に入り難くな
ってヘッドの出力が低下する。本発明では、図13に示
すように、磁場印加媒体14としてギャップが異なる2
個の単磁極ヘッド28Aと28Bとを使用して、同様に
MR特性を測定することにより、磁化幅の大小、即ち周
波数の高低とMR出力との関係を求め、周波数特性を評
価することができる。
Example 3 The frequency characteristic of the MR / IND head refers to the relationship between frequency (magnetization width) and MR output. Usually, as the frequency becomes higher, the magnetization width becomes shorter and the magnetic field is less likely to enter the MR element. Output of the head decreases. In the present invention, as shown in FIG.
By similarly measuring the MR characteristics by using the single magnetic pole heads 28A and 28B, it is possible to obtain the relationship between the magnitude of the magnetization width, that is, the height of the frequency and the MR output, and evaluate the frequency characteristics. .

【0031】実施例4 図14に示すように、MR素子Fに対してY方向に磁場
印加媒体14を動かすことにより、オフ・トラック特性
を測定することができる。
Embodiment 4 As shown in FIG. 14, the off-track characteristic can be measured by moving the magnetic field applying medium 14 in the Y direction with respect to the MR element F.

【0032】実施例5 MR/INDヘッドSの記録コイルDに電流を流し、電
流を流す前後のMR特性をそれぞれ測定することによ
り、MR素子のMR特性の安定性を評価することでき
る。
Embodiment 5 By passing a current through the recording coil D of the MR / IND head S and measuring the MR characteristics before and after the current is passed, the stability of the MR characteristics of the MR element can be evaluated.

【0033】[0033]

【発明の効果】以上の構成により、請求項1及び請求項
4の発明によれば、磁場印加媒体がZ方向を磁場方向と
する磁場を形成し、かつ磁場印加媒体の磁場方向と、M
R素子の中心線と、探針とを同じ垂線上に容易にかつ厳
密に整列させることができるので、MR/INDヘッド
をスライダー加工してジンバル・プレートに取り付ける
必要なく、正確にかつ素早く電磁変換特性、即ちMR特
性、周波数特性、オフ・トラック特性、MR素子の安定
性及びMR素子のバイアス・ポイント等を測定すること
ができる。よって、本発明に係るMR特性測定装置は、
MR/INDヘッドの製造歩留りの向上及びMR/IN
Dヘッドの特性改良に大いに寄与する。
With the above construction, according to the inventions of claims 1 and 4, the magnetic field applying medium forms a magnetic field whose magnetic field direction is the Z direction, and the magnetic field applying medium has a magnetic field direction of M.
Since the center line of the R element and the probe can be easily and precisely aligned on the same perpendicular line, the MR / IND head does not need to be slider-processed and attached to the gimbal plate, which allows accurate and quick electromagnetic conversion. It is possible to measure characteristics such as MR characteristics, frequency characteristics, off-track characteristics, MR element stability, and MR element bias point. Therefore, the MR characteristic measuring device according to the present invention is
Improvement of MR / IND head manufacturing yield and MR / IN
It greatly contributes to the improvement of the characteristics of the D head.

【図面の簡単な説明】[Brief description of drawings]

【図1】MR/INDヘッドの分解斜視図である。FIG. 1 is an exploded perspective view of an MR / IND head.

【図2】MR特性曲線のグラフである。FIG. 2 is a graph of an MR characteristic curve.

【図3】MR特性測定装置の第1実施例の構成を示す模
式図である。
FIG. 3 is a schematic diagram showing the configuration of a first embodiment of the MR characteristic measuring apparatus.

【図4】図4(a)及び(b)はそれぞれMR特性測定
時の単磁極ヘッドとMR/INDヘッドとの関係を示す
概念的縦断面図である。
4A and 4B are conceptual longitudinal sectional views showing the relationship between a single pole head and an MR / IND head when measuring MR characteristics.

【図5】図5(a)及び(b)はそれぞれ硬磁性体の概
念的平面図である。
5 (a) and 5 (b) are conceptual plan views of a hard magnetic material.

【図6】図5(a)の矢視I−Iの上面図である。FIG. 6 is a top view taken along line I-I of FIG. 5 (a).

【図7】MR特性測定時の硬磁性体とMR/INDヘッ
ドとの関係を示す概念的縦断面図である。
FIG. 7 is a conceptual vertical cross-sectional view showing the relationship between a hard magnetic material and an MR / IND head when measuring MR characteristics.

【図8】MR特性測定時の探針とMR素子との関係を示
す概念的図である。
FIG. 8 is a conceptual diagram showing a relationship between a probe and an MR element when measuring MR characteristics.

【図9】MR特性測定時の探針と磁場印加媒体とMR素
子との関係を示す概念的図である。
FIG. 9 is a conceptual diagram showing a relationship among a probe, a magnetic field applying medium, and an MR element when measuring MR characteristics.

【図10】図10(a)、(b)及び(c)はそれぞれ
MR特性測定装置の第2実施例の構成を示す模式図であ
る。
10 (a), (b) and (c) are schematic diagrams showing a configuration of a second embodiment of the MR characteristic measuring apparatus, respectively.

【図11】図11(a)は基準マークの電極配置図、図
11(b)は図11(a)の矢視II−IIの側面図であ
る。
11 (a) is an electrode layout diagram of a reference mark, and FIG. 11 (b) is a side view taken along the line II-II of FIG. 11 (a).

【図12】磁場印加媒体と基準マークとの位置決めを説
明するための模式図である。
FIG. 12 is a schematic diagram for explaining positioning of a magnetic field applying medium and a reference mark.

【図13】周波数特性を検出する方法を説明する模式図
である。
FIG. 13 is a schematic diagram illustrating a method of detecting frequency characteristics.

【図14】オフ・トラック特性を検出する方法を説明す
る模式図である。
FIG. 14 is a schematic diagram illustrating a method of detecting off-track characteristics.

【符号の説明】[Explanation of symbols]

10 MR特性測定装置の第1実施例 12 AFM/AFM 14 磁場印加媒体 16 第1位置決め装置 18 第2位置決め装置 20 探針 22 アーム 24 載置面 26 基準マーク 28 単磁極ヘッド 40 硬磁性体 42 基板 44 硬磁性膜 50 MR特性測定装置の第2実施例 52 アーム 54 支持装置 56 基準マーク 58 基準点 62 対向電極 66 MR素子 68、70、72 電極 74 テスタ 10 First Example of MR Characteristic Measuring Device 12 AFM / AFM 14 Magnetic Field Applying Medium 16 First Positioning Device 18 Second Positioning Device 20 Probe 22 Arm 24 Mounting Surface 26 Reference Mark 28 Single Pole Head 40 Hard Magnetic Material 42 Substrate 44 Hard Magnetic Film 50 Second Example of MR Characteristic Measuring Device 52 Arm 54 Supporting Device 56 Reference Mark 58 Reference Point 62 Counter Electrode 66 MR Element 68, 70, 72 Electrode 74 Tester

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 MR/INDヘッド内のMR素子の電磁
変換特性を評価する装置であって、 X方向及びY方向をそれぞれMR素子のトラック幅方向
及び厚さ方向とする3次元座標系のZ方向にMR素子の
中心軸を向けてMR/INDヘッドを載せ、X方向、Y
方向及びZ方向に自在に移動して位置決めする第1位置
決め装置と、 位置決め用の磁性基準マークを上端面に有し、かつ可変
な磁場強度で磁場を形成する磁場印加媒体と、 磁場方向をZ方向に向けて保持しつつ磁場印加媒体をX
方向、Y方向及びZ方向に自在に移動して位置決めする
第2位置決め装置と、 探針により面を走査して面の凹凸情報及び磁気情報を得
る原子間力及び磁気力兼用顕微鏡とを備え、 磁場印加媒体の基準マークを基準に第1位置決め装置及
び第2位置決め装置を移動させつつ探針を作動させて、
上から下に、探針と、磁場印加媒体の磁場方向と、MR
素子の中心軸とを一致させるように位置決めし、次いで
磁場印加媒体の磁場強度を変えてMR素子の電磁変換特
性を測定するようにしたことを特徴とするMR特性測定
装置。
1. An apparatus for evaluating the electromagnetic conversion characteristics of an MR element in an MR / IND head, comprising: a Z in a three-dimensional coordinate system in which the X direction and the Y direction are respectively the track width direction and the thickness direction of the MR element. The MR / IND head is placed with the central axis of the MR element oriented in the X-direction and the Y-direction.
A first positioning device for freely moving and positioning in the Z direction and the Z direction, a magnetic field applying medium having a magnetic reference mark for positioning on the upper end surface and forming a magnetic field with variable magnetic field strength, and a magnetic field direction in the Z direction. Hold the magnetic field in the direction of
A second positioning device that freely moves and positions in the Y-direction, the Y-direction, and the Z-direction, and a microscope for combined use of atomic force and magnetic force that obtains surface irregularity information and magnetic information by scanning the surface with a probe, By operating the probe while moving the first positioning device and the second positioning device based on the reference mark of the magnetic field applying medium,
From top to bottom, the probe, the magnetic field direction of the magnetic field applying medium, and the MR
An MR characteristic measuring apparatus characterized in that the element is positioned so as to coincide with the central axis of the element, and then the magnetic field strength of the magnetic field applying medium is changed to measure the electromagnetic conversion characteristic of the MR element.
【請求項2】 前記磁場印加媒体が、単磁極ヘッドであ
ることを特徴とする請求項1に記載のMR特性測定装
置。
2. The MR characteristic measuring apparatus according to claim 1, wherein the magnetic field applying medium is a single magnetic pole head.
【請求項3】 前記磁場印加媒体は、X方向に沿って磁
場強度が異なるように基板上に成膜された硬磁性膜を備
えた硬磁性体か、または磁場強度が異なる硬磁性膜の各
々をそれぞれ基板上に成膜した硬磁性体の複数個の組で
あることを特徴とする請求項1に記載のMR特性測定装
置。
3. The magnetic field applying medium is a hard magnetic body having a hard magnetic film formed on a substrate such that the magnetic field strength is different along the X direction, or each of the hard magnetic films having different magnetic field strengths. 2. The MR characteristic measuring apparatus according to claim 1, wherein the MR characteristic measuring apparatus comprises a plurality of sets of hard magnetic materials each formed on a substrate.
【請求項4】 MR/INDヘッド内のMR素子の電磁
変換特性を評価する装置であって、 X方向及びY方向をそれぞれMR素子のトラック幅方向
及び厚さ方向とする3次元座標系のZ方向にMR素子の
中心軸を向けてMR/INDヘッドを載せ、かつ分散し
た電極と電極に接続したMR素子とからなる平面的基準
マークを面上に有する載置面を備え、X方向、Y方向及
びZ方向に自在に移動して載置面上のMR/INDヘッ
ドを位置決めする第1位置決め装置と、 可変な磁場強度で磁場を形成すると共に基準マークに平
行な対向電極を下面に有し、かつ磁場方向をZ方向に向
けてMR/INDヘッドに対して相対的に固定された磁
場印加媒体と、 基準マークと対向電極と間の電気抵抗を測定するテスタ
と、 探針により面を走査して面の凹凸情報及び磁気情報を得
る原子間力及び磁気力兼用顕微鏡とを備え、 位置決め装置を移動させつつ探針を作動させてMR素子
を位置決めし、次いで位置決め装置を移動させつつテス
タにより電気抵抗を測定して基準マークと対向電極との
位置関係を求め、それによって、上から下に、探針と、
磁場印加媒体の磁場方向と、MR素子の中心軸とを一致
させるように位置決めし、次いで磁場印加媒体の磁場強
度を変えてMR素子の電磁変換特性を測定するようにし
たことを特徴とするMR特性測定装置。
4. An apparatus for evaluating the electromagnetic conversion characteristics of an MR element in an MR / IND head, comprising a Z in a three-dimensional coordinate system in which the X direction and the Y direction are the track width direction and the thickness direction of the MR element, respectively. The MR / IND head is placed with the central axis of the MR element oriented in the direction, and a mounting surface having a planar reference mark composed of dispersed electrodes and MR elements connected to the electrodes is provided on the surface, and the X direction, Y direction. A first positioning device that freely moves in the Z direction and the Z direction to position the MR / IND head on the mounting surface; and a counter electrode that forms a magnetic field with variable magnetic field strength and that is parallel to the reference mark on the lower surface. , And a magnetic field applying medium that is fixed relative to the MR / IND head with the magnetic field direction facing the Z direction, a tester that measures the electrical resistance between the reference mark and the counter electrode, and scans the surface with a probe. And then the concave surface It is equipped with a microscope for both atomic force and magnetic force that obtains information and magnetic information. The probe is operated to position the MR element while moving the positioning device, and then the electrical resistance is measured by the tester while moving the positioning device. To obtain the positional relationship between the reference mark and the counter electrode, so that from top to bottom, the probe and
An MR characterized in that the magnetic field direction of the magnetic field applying medium and the central axis of the MR element are positioned so as to coincide with each other, and then the magnetic field strength of the magnetic field applying medium is changed to measure the electromagnetic conversion characteristics of the MR element. Characteristic measuring device.
【請求項5】 前記磁場印加媒体が、単磁極ヘッドであ
ることを特徴とする請求項4に記載のMR特性測定装
置。
5. The MR characteristic measuring apparatus according to claim 4, wherein the magnetic field applying medium is a single magnetic pole head.
【請求項6】 前記磁場印加媒体は、X方向に沿って磁
場強度が異なるように基板上に成膜された硬磁性膜を備
えた硬磁性体か、または磁場強度が異なる硬磁性膜の各
々をそれぞれ基板上に成膜した硬磁性体の複数個の組で
あることを特徴とする請求項4に記載のMR特性測定装
置。
6. The magnetic field applying medium is a hard magnetic body having a hard magnetic film formed on a substrate so that the magnetic field strength is different along the X direction, or each of the hard magnetic films having different magnetic field strengths. 5. The MR characteristic measuring apparatus according to claim 4, wherein each is a plurality of sets of hard magnetic materials formed on a substrate.
JP6145592A 1994-06-03 1994-06-03 Mr characteristic measuring instrument Pending JPH07334823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6145592A JPH07334823A (en) 1994-06-03 1994-06-03 Mr characteristic measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6145592A JPH07334823A (en) 1994-06-03 1994-06-03 Mr characteristic measuring instrument

Publications (1)

Publication Number Publication Date
JPH07334823A true JPH07334823A (en) 1995-12-22

Family

ID=15388653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6145592A Pending JPH07334823A (en) 1994-06-03 1994-06-03 Mr characteristic measuring instrument

Country Status (1)

Country Link
JP (1) JPH07334823A (en)

Similar Documents

Publication Publication Date Title
US7023204B2 (en) Magnetic imaging microscope test system and its application for characterization of read and write heads for magnetic recording
US8278917B2 (en) Magnetic head inspection method and magnetic head inspection device
US6504363B1 (en) Sensor for eddy current testing and method of use thereof
US5640089A (en) Method and apparatus for surface roughness detection - using a magnetoresistive element
JP2961452B2 (en) Information processing device
US8225486B2 (en) Method of manufacturing a perpendicular magnetic recording head
US6731110B2 (en) Magneto-resistive device with built-in test structure and method for determining resistance and track width
JP5618091B2 (en) Magnetic field detection apparatus and method
US8185968B2 (en) Magnetic head inspection method and magnetic head manufacturing method
JPS61107153A (en) Measuring device
US9837108B2 (en) Magnetic sensor and a method and device for mapping the magnetic field or magnetic field sensitivity of a recording head
JPH07334823A (en) Mr characteristic measuring instrument
US7368905B2 (en) System, method, and apparatus for use of micro coils within a single slider test nest
JP3527947B2 (en) Probe, manufacturing method thereof, microscope and tester having probe
CN1439157A (en) Shield design for magnetoresistive sensor
JP2013120080A (en) Magnetic field measuring method and device
Lustig et al. High‐resolution magnetic field measurement system for recording heads and disks
JPH09185812A (en) Microstylus recording device coated with magnetoresistive multilayer
JP2012234606A (en) Magnetic field sensor for inspecting recording element of perpendicular magnetic recording type magnetic head, recording element inspection device using the same, and method for inspecting recording element
US20120127605A1 (en) Method and device for mapping the magnetic field or magnetic field sensitivity of a recording head
JP2000067420A (en) Inspection element for measuring characteristic of magnetic head and wafer having the same, and their production
JPH09283578A (en) Magnetic sensitivity measuring apparatus for magnetoresistive element
JP2000353309A (en) Method and device for evaluating magneto-resistive head of yoke type
JPH06313847A (en) Cantilever type actuator, cantilever type probe, and scanning tunneling microscope and information processor using these actuator and probe
US20040228043A1 (en) Miniature Magnetoresistive Multitap Sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071215

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20071215

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071215

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081215

LAPS Cancellation because of no payment of annual fees