JPH0733433Y2 - Thin film EL device - Google Patents

Thin film EL device

Info

Publication number
JPH0733433Y2
JPH0733433Y2 JP13155089U JP13155089U JPH0733433Y2 JP H0733433 Y2 JPH0733433 Y2 JP H0733433Y2 JP 13155089 U JP13155089 U JP 13155089U JP 13155089 U JP13155089 U JP 13155089U JP H0733433 Y2 JPH0733433 Y2 JP H0733433Y2
Authority
JP
Japan
Prior art keywords
refractive index
insulating layer
layer
light
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13155089U
Other languages
Japanese (ja)
Other versions
JPH0369899U (en
Inventor
彰一 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP13155089U priority Critical patent/JPH0733433Y2/en
Publication of JPH0369899U publication Critical patent/JPH0369899U/ja
Application granted granted Critical
Publication of JPH0733433Y2 publication Critical patent/JPH0733433Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、エレクトロルミネッセンス(以下ELと称す
る。)を利用した発光デバイスである薄膜EL素子に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a thin film EL element which is a light emitting device utilizing electroluminescence (hereinafter referred to as EL).

[従来の技術] ELは蛍光体に電場を加えたときに発光する現象をいい、
ELディスプレイは、ガラス板や透明な有機フィルム上に
塗布した蛍光体に電場を加えて発光させるものである。
ELディスプレイには、ZnSなどの蛍光体粉末をセルロー
ズなどの誘電体の中に分散させた分散型EL、ZnSにMnな
どをドープした蒸着薄膜を絶縁層でサンドイッチした薄
膜ELなどがある。
[Prior Art] EL is a phenomenon that emits light when an electric field is applied to a phosphor.
An EL display is one that emits light by applying an electric field to a phosphor coated on a glass plate or a transparent organic film.
EL displays include a dispersion type EL in which phosphor powder such as ZnS is dispersed in a dielectric such as cellulose, and a thin film EL in which a vapor-deposited thin film in which ZnS is doped with Mn is sandwiched with an insulating layer.

代表的な薄膜EL素子の構造を第7図に示す。第7図にお
いて、Aは視認側を示すが、ガラス基板1の裏面にはIT
O等からなる前面透明電極層2が形成され、発光層4は
前面絶縁層3および背面絶縁層5によってサンドイッチ
されて前面透明電極層2の裏面に配置され、さらに背面
絶縁層の上にはAl蒸着膜等からなる背面電極層6が形成
され、前面透明電極層2と背面電極層6との間には電源
7が接続される。
The structure of a typical thin film EL device is shown in FIG. In FIG. 7, A indicates the viewing side, but IT is on the back surface of the glass substrate 1.
The front transparent electrode layer 2 made of O or the like is formed, the light emitting layer 4 is sandwiched by the front insulating layer 3 and the back insulating layer 5, and is disposed on the back surface of the front transparent electrode layer 2. A back electrode layer 6 made of a vapor deposition film or the like is formed, and a power source 7 is connected between the front transparent electrode layer 2 and the back electrode layer 6.

このように、通常の薄膜EL素子は、反射型のものである
が、場合によっては、透過型の発光素子を必要とする。
そこで、透過型の発光素子を必要とする場合は、前面電
極層および背面電極層ともに透明電極膜によって形成す
る。
As described above, a normal thin film EL element is of a reflection type, but in some cases, a transmission type light emitting element is required.
Therefore, when a transmissive light emitting element is required, both the front electrode layer and the back electrode layer are formed of transparent electrode films.

[考案が解決しようとする課題] 薄膜EL素子が反射型である場合、発光層から裏面に放射
された光は、金属蒸着膜等で構成される背面電極層によ
って、前面へ反射されるので、表示輝度が優れている。
しかしながら、透過型のEL素子の場合、発光層から裏面
に放射された光は、背面の透明電極層をそのまま透過し
て反射されることは無いので、表示輝度が弱いものとな
る。
[Problems to be Solved by the Invention] When the thin film EL element is a reflection type, the light emitted from the light emitting layer to the back surface is reflected to the front surface by the back electrode layer composed of a metal deposition film or the like. Excellent display brightness.
However, in the case of a transmissive EL element, the light emitted from the light emitting layer to the back surface does not pass through the transparent electrode layer on the back surface as it is and is reflected, so that the display brightness becomes weak.

本考案は、透過型薄膜EL素子の前記のごとき問題点に鑑
みてなされたものであって、表示輝度の優れた透過型薄
膜EL素子を提供することを目的とする。
The present invention has been made in view of the above problems of the transmissive thin film EL element, and an object of the present invention is to provide a transmissive thin film EL element having excellent display brightness.

[課題を解決するための手段] 本考案の薄膜EL素子は、透明な基板と、前記基板の裏面
に形成された透明な前面電極層と、低屈折率層と高屈折
率層の2層の屈折率の異なる絶縁層からなり前記高屈折
率層が前記前面電極側になるように前記前面電極層の上
に形成された前面絶縁層と、前記前面絶縁層の上に形成
された発光層と、低屈折率層と高屈折率層の2層屈折率
の異なる絶縁層からなり前記低屈折率層が前記発光層側
になるように前記発光層の上に形成された背面絶縁層
と、前記背面絶縁層の上に形成された背面電極層とから
なり、光が入射する媒体となる前記発光層をn0、光が透
過する薄膜となる前記前面または背面の低屈折率絶縁層
の屈折率をn、光が透過する薄膜となる前記前面または
背面の高屈折率絶縁層の屈折率をns、としたときn0>n
<nsであって、光が透過する薄膜となる前記前面および
背面の低屈折率絶縁層の屈折率をn0、光が透過する薄膜
となる前記前面または背面の高屈折率絶縁層の屈折率を
n、光が透過する薄膜を支持する基板となる前記前面ま
たは背面電極層の屈折率をns、としたときn0<n>nsで
あって、光が透過する薄膜となる前記前面または背面の
低屈折率または高屈折率絶縁層の膜厚をd、前記発光層
の発光ピーク波長をλとした場合、視認側の各絶縁層は
次式 n・d=(2N−1)λ/4 視認側と反対側の各絶縁層は次式 n・d=(2N)λ/4 (ただし、Nは自然数) を満足することを要旨とする。
[Means for Solving the Problems] The thin film EL device of the present invention comprises a transparent substrate, a transparent front electrode layer formed on the back surface of the substrate, and a low refractive index layer and a high refractive index layer. A front insulating layer formed of an insulating layer having a different refractive index on the front electrode layer such that the high refractive index layer is on the front electrode side; and a light emitting layer formed on the front insulating layer. A low-refractive index layer and a high-refractive index layer, two layers of insulating layers having different refractive indices, and a back insulating layer formed on the light-emitting layer so that the low-refractive index layer is on the light-emitting layer side; The refractive index of the low-refractive-index insulating layer consisting of a back electrode layer formed on the back insulating layer, n 0 in the light emitting layer serving as a medium into which light is incident, and the front or back low insulating layer serving as a thin film through which light is transmitted. Is n, and the refractive index of the front or back high-refractive-index insulating layer, which is a thin film through which light is transmitted, is ns. Can n 0> n
<Ns, where the refractive index of the front and back low-refractive-index insulating layers that become thin films that transmit light is n 0 , and the refractive index of the front- or back-side high-refractive-index insulating layers that become thin films that transmit light Where n is n 0 <n> ns, where n is the refractive index of the front or back electrode layer serving as a substrate that supports a thin film that transmits light, and the front or back surface is a thin film that transmits light. Where d is the film thickness of the low-refractive index or high-refractive index insulating layer and λ is the emission peak wavelength of the light emitting layer, each insulating layer on the viewing side has the following expression n · d = (2N−1) λ / 4 The gist of each insulating layer on the side opposite to the viewing side is to satisfy the following equation n · d = (2N) λ / 4 (where N is a natural number).

本考案の薄膜EL素子に用いられる透明基板は、ガラス基
板であっても樹脂基板であっても良い。また、この透明
基板は透光性を有するものであれば少々着色してあって
も良い。
The transparent substrate used in the thin film EL device of the present invention may be a glass substrate or a resin substrate. Further, this transparent substrate may be slightly colored as long as it has translucency.

また、薄膜EL素子の前面または背面に形成される透明電
極層の材料としては、種々の透明導電材料を用いること
ができるが、通常ITO(インジウム−チン−オキサイ
ド)、二酸化錫等が用いられる。電極層の形成方法は、
種々の蒸着法、またはスパッタリング、スプレイ−焼成
法とすることができる。
As the material of the transparent electrode layer formed on the front surface or the back surface of the thin film EL element, various transparent conductive materials can be used, but ITO (indium-tin oxide), tin dioxide or the like is usually used. The method of forming the electrode layer is
Various vapor deposition methods or sputtering, spray-firing methods can be used.

発光層には黄橙色発光のZnS:Mn(発光ピーク波長λ=58
5nm)、緑色発光のZnS:TbF3(発光ピーク波長λ=550n
m)、赤色発光のCaS:Eu(発光ピーク波長λ=610nm)な
どを用いることができる。
Yellow-orange emission ZnS: Mn (emission peak wavelength λ = 58
5 nm), green emission ZnS: TbF 3 (emission peak wavelength λ = 550 n
m), CaS: Eu emitting red light (emission peak wavelength λ = 610 nm), and the like can be used.

絶縁層に用いる低屈折率材料としては、MgF2(屈折率n
=1.38)、SiO2(n=1.45)、Al2O3(n=1.62)など
があり、高屈折率材料としては、Y2O3(n=1.89)、Zr
O2(n=2.1)、TiO2(n=2.3)などがあるが、薄膜EL
素子の絶縁層としては、高誘電率、高耐圧といった特性
にも注目して、適切な組み合わせを選ぶことが必要であ
る。
As the low refractive index material used for the insulating layer, MgF 2 (refractive index n
= 1.38), SiO 2 (n = 1.45), Al 2 O 3 (n = 1.62), etc., and high refractive index materials include Y 2 O 3 (n = 1.89) and Zr.
O 2 (n = 2.1), TiO 2 (n = 2.3), etc., but thin film EL
It is necessary to select an appropriate combination for the insulating layer of the device, paying attention to the characteristics such as high dielectric constant and high breakdown voltage.

なお、低屈折率絶縁層および高屈折率絶縁層の組み合わ
せは、発光層の屈折率との関連で、n0<n>nsまたはn0
>n<nsの関係を満足させるよう決定される。また、光
が入射する媒体、光が透過する薄膜、および薄膜を支持
する基板の関係は、各低屈折率絶縁層または高屈折率絶
縁層ごとに決められ、膜厚が設定される。
The combination of the low refractive index insulating layer and the high refractive index insulating layer is n 0 <n> ns or n 0 in relation to the refractive index of the light emitting layer.
It is determined to satisfy the relationship of> n <ns. Further, the relationship between the medium into which light is incident, the thin film through which light is transmitted, and the substrate supporting the thin film is determined for each low-refractive index insulating layer or high-refractive index insulating layer, and the film thickness is set.

[作用] 前面電極層と背面電極層の間に電圧を印加すると、発光
層からはピーク波長λの光が放射される。
[Operation] When a voltage is applied between the front electrode layer and the back electrode layer, light having a peak wavelength λ is emitted from the light emitting layer.

然るに、第1図において、視点を左側におき、視認側を
前面とした場合、光が入射する媒体となる発光層もしく
は前面の低屈折率絶縁層の屈折率をn0、光が透過する薄
膜となる前面の低屈折率または高屈折率絶縁層の屈折率
をn、光が透過する薄膜を支持する基板となる前面の高
屈折率絶縁層または前面電極層の屈折率をns、光が透過
する薄膜となる前面の低屈折率または高屈折率絶縁層の
膜厚をd、発光層の発光ピーク波長をλとした場合、第
1図の符号において、n0、n、nsの組合せは、(4、3
2、31)および(31、32、2)となるが、n0<n>nsま
たはn0>n<nsなる関係があり、光が透過する薄膜とな
る前面の低屈折率または高屈折率絶縁層の膜厚dは次式 n・d=(2N−1)λ/4 ・・・・・(1) (ただし、Nは自然数) なる関係を満足するように設定してあるので、発光層の
発光により前面に放射された光の反射率は最小となる。
Therefore, in FIG. 1, when the viewpoint is on the left side and the viewing side is the front surface, the refractive index of the light-emitting layer or the low-refractive-index insulating layer on the front surface, which is the medium into which light is incident, is n 0 , and the thin film through which light is transmitted. N is the refractive index of the low or high refractive index insulating layer on the front side, ns is the refractive index of the high refractive index insulating layer or the front electrode layer on the front side that is the substrate that supports the thin film that transmits light, and transmits the light. Where d is the thickness of the low-refractive index or high-refractive index insulating layer on the front surface, which is a thin film, and λ is the emission peak wavelength of the light-emitting layer, the combination of n 0 , n, and ns in the reference numeral of FIG. (4, 3
2, 31) and (31, 32, 2), but there is a relationship of n 0 <n> ns or n 0 > n <ns, and a low refractive index or a high refractive index of the front surface that becomes a thin film that transmits light. The film thickness d of the insulating layer is set so as to satisfy the following equation: n · d = (2N−1) λ / 4 (1) (where N is a natural number). The reflectance of the light emitted to the front surface by the emission of the layer is minimal.

また、光が入射する媒体となる発光層もしくは背面の低
屈折率絶縁層の屈折率をn0、光が透過する薄膜となる背
面の低屈折率または高屈折率絶縁層の屈折率をn、光が
透過する薄膜を支持する基板となる背面の高屈折率絶縁
層または背面電極層の屈折率をns、光が透過する薄膜と
なる背面の低屈折率または高屈折率絶縁層の膜厚をd、
発光層の発光ピーク波長をλとした場合、第1図の符号
において、n0、n、nsの組合せは、(4、51、52)およ
び(5152、6)となるが、n0<n>nsまたはn0>n<ns
なる関係があり、光が透過する薄膜となる背面の低屈折
率または高屈折率絶縁層の膜厚dは、次式 n・d=(2N)λ/4 ・・・・・(2) (ただし、Nは自然数) なる関係を満足するように設定してあるので、発光層の
発光により背面に放射された光の反射率は最大となる。
Further, the refractive index of the light-emitting layer serving as a medium into which light enters or the low-refractive-index insulating layer on the back surface is n 0 , and the low-refractive index or the high-refractive-index insulating layer on the back surface serving as a thin film that transmits light is n, Ns is the refractive index of the high refractive index insulating layer or the back electrode layer on the back surface that serves as a substrate that supports the thin film that transmits light, and ns is the thickness of the low refractive index or high refractive index insulating layer on the back surface that is the thin film that transmits light. d,
If the emission peak wavelength of the emission layer was changed to lambda, in the code of Figure 1, n 0, n, the combination of the ns is a (4,51,52) and (5152,6), n 0 <n > Ns or n 0 > n <ns
And the film thickness d of the low-refractive-index or high-refractive-index insulating layer on the back surface, which is a thin film that transmits light, is expressed by the following equation: n · d = (2N) λ / 4 (2) ( However, since N is set so as to satisfy the relation of (N is a natural number), the reflectance of the light emitted to the back surface by the light emission of the light emitting layer is maximized.

そのため、従来の透過型薄膜EL素子よりも発光の輝度が
優れたものとなる。また、同一輝度を得るために、従来
の素子よりも印加電圧が低くて済むので、初期輝度が半
減する発光時間で表される寿命特性が、著しく向上す
る。なお、以上の説明では第1図において、視点を左側
においた場合を説明したが、第1図において視点を左側
におき、視認側を背面とした場合、背面側が第1式を満
足するようにし、前面側が第2式を満足するようにすれ
ば良い。
Therefore, the luminance of light emission is superior to that of the conventional transmissive thin film EL element. Further, since the applied voltage may be lower than that of the conventional element in order to obtain the same brightness, the life characteristics represented by the emission time at which the initial brightness is reduced by half are remarkably improved. In the above description, the case where the viewpoint is on the left side in FIG. 1 has been described. However, when the viewpoint is on the left side in FIG. 1 and the viewing side is the back side, the back side should satisfy the first expression. The front side may satisfy the second formula.

[実施例] 本考案の好適な実施例について比較例と併せて説明し、
本考案の効果を明らかにする。
[Example] A preferred example of the present invention will be described together with a comparative example.
The effect of the present invention will be clarified.

(実施例1) 第1図は本考案の薄膜EL素子の部分断面図を示す。先
ず、ガラスを基板1として裏面にITOからなる透明な前
面電極層2をイオンプレーティング法により膜厚200nm
で形成した。
(Example 1) FIG. 1 shows a partial cross-sectional view of a thin film EL device of the present invention. First, a transparent front electrode layer 2 made of ITO is formed on the back surface of a glass substrate 1 with a film thickness of 200 nm by an ion plating method.
Formed by.

続いて、前面電極層2の上に、高屈折率層31および低屈
折率層32からなる前面絶縁層3を電子ビーム蒸着法によ
り形成した。なお、高屈折率層31には高屈折率材料であ
るY2O3(屈折率ns=1.89)を、低屈折率層32には低屈折
率材料であるSiO2(屈折率n=1.45)を用い、n0>n<
nsなる関係を満足させるようにした。また、発光層から
の光の反射率を減少させるように(1)式に基づいて、
前面高屈折率絶縁層31の膜厚を200nmとし、前面低屈折
率絶縁層32の膜厚を100nmとして形成した。
Then, the front insulating layer 3 including the high refractive index layer 31 and the low refractive index layer 32 was formed on the front electrode layer 2 by the electron beam evaporation method. The high refractive index layer 31 is made of a high refractive index material Y 2 O 3 (refractive index ns = 1.89), and the low refractive index layer 32 is made of a low refractive index material SiO 2 (refractive index n = 1.45). And n 0 > n <
I tried to satisfy the relationship of ns. Further, based on the equation (1), the reflectance of the light from the light emitting layer is reduced.
The front high-refractive-index insulating layer 31 was formed with a thickness of 200 nm, and the front low-refractive-index insulating layer 32 was formed with a thickness of 100 nm.

次いで、形成された前面低屈折率絶縁層32の上に、同様
電子ビーム蒸着法で黄橙色発光(発光ピーク波長λ=58
5nm)のZnS:0.5wt%Mnからなる発光層4を膜厚600nmで
形成した。さらに、形成した発光層4の表面に、低屈折
率層51と高屈折率層52からなる背面絶縁層5積層して形
成した。なお、前面絶縁層3と同様に、高屈折率層52に
は高屈折率材料であるY2O3(屈折率ns=1.89)を、低屈
折率層51には低屈折率材料であるSiO2(屈折率n=1.4
5)を用い、n0>n<nsなる関係を満足させるようにし
た。また、発光層からの光の反射率を増加させるように
(2)式に基づいて、背面低屈折率絶縁層51の膜厚を20
0nmとし、背面高屈折率絶縁層52の膜厚を200nmとして形
成した。
Then, on the formed front low-refractive-index insulating layer 32, yellow-orange light emission (emission peak wavelength λ = 58
The light emitting layer 4 made of ZnS: 0.5 wt% Mn (5 nm) was formed to a film thickness of 600 nm. Further, a back insulating layer 5 composed of a low refractive index layer 51 and a high refractive index layer 52 was laminated on the surface of the formed light emitting layer 4. Like the front insulating layer 3, the high refractive index layer 52 is made of a high refractive index material Y 2 O 3 (refractive index ns = 1.89), and the low refractive index layer 51 is made of a low refractive index material SiO 2. 2 (Refractive index n = 1.4
5) is used to satisfy the relationship of n 0 > n <ns. In addition, the thickness of the back low-refractive-index insulating layer 51 is set to 20 according to the formula (2) so as to increase the reflectance of light from the light emitting layer.
The thickness of the back high-refractive-index insulating layer 52 was 200 nm.

最後に、背面高屈折率絶縁層52の上にITOからなる透明
な背面電極層6をイオンプレーティング法により膜厚20
0nm形成して、薄膜EL素子を作製した。
Finally, a transparent back electrode layer 6 made of ITO is formed on the back high-refractive-index insulating layer 52 by the ion plating method to a film thickness of 20.
A 0 nm-thick film was formed to produce a thin film EL device.

作製した本実施例の薄膜EL素子に電圧を印加して発光さ
せ、前面絶縁層3および背面絶縁層5における発光層か
らの光の波長と反射率の関係を測定したところ、第2図
(a)および第2図(b)に示すような結果を得た。第
2図(a)は前面絶縁層に入射する発光層からの光の波
長と反射率を示すが、ピーク波長λの585nmにおいて反
射率が最小を示していることが確認できた。また、第2
図(b)は背面絶縁層に入射する発光層からの光の波長
と反射率を示すが、ピーク波長λの585nmにおいて反射
率が最大を示していることが確認できた。
A voltage was applied to the manufactured thin film EL element of this example to cause it to emit light, and the relationship between the wavelength of light from the light emitting layers in the front insulating layer 3 and the back insulating layer 5 and the reflectance was measured. ) And the results shown in FIG. 2 (b) were obtained. FIG. 2 (a) shows the wavelength and reflectance of light from the light emitting layer incident on the front insulating layer, and it was confirmed that the reflectance was minimum at the peak wavelength λ of 585 nm. Also, the second
FIG. 6B shows the wavelength and reflectance of the light from the light emitting layer incident on the back insulating layer, and it was confirmed that the reflectance was maximum at the peak wavelength λ of 585 nm.

続いて、本実施例の発光素子の駆動電圧による輝度の変
化を測定した。なお、比較のために前面絶縁層3をY2O3
(膜厚300nm)一層とし、背面絶縁層5をY2O3(膜厚400
nm)一層とし、他の構成は実施例1と全く同じとした比
較例についても、同様に駆動電圧による輝度の変化を測
定した。得られた結果は第5図に示した。
Subsequently, the change in luminance according to the driving voltage of the light emitting device of this example was measured. For comparison, the front insulating layer 3 is set to Y 2 O 3
(Thickness 300 nm) One layer, and the back insulating layer 5 is Y 2 O 3 (thickness 400
For a comparative example in which the thickness is one layer and other configurations are exactly the same as in Example 1, the change in luminance due to the driving voltage was measured in the same manner. The obtained results are shown in FIG.

第5図から明らかなように、同じ輝度80cd/m2を得るの
に、本実施例は比較例よりも約30V駆動電圧が低くて済
み、また、輝度も本実施例は比較例よりも約20〜30%高
い値の得られることが、確認された。
As is clear from FIG. 5, in order to obtain the same luminance of 80 cd / m 2 , the driving voltage of this example is lower than that of the comparative example by about 30 V, and the luminance of this example is also lower than that of the comparative example. It was confirmed that 20 to 30% higher value could be obtained.

次いで、本実施例と比較例の発光素子について、発光素
子の発光時間に対する輝度の変化を測定し、得られた結
果を第6図に示した。第6図から明らかなように、初期
輝度が半減する発光時間は、本実施例は比較例と比較し
て、約2〜5倍長いことが判明し、本実施例の寿命特性
が優れていることが確認された。
Next, with respect to the light emitting elements of this example and the comparative example, changes in luminance with respect to the light emitting time of the light emitting element were measured, and the obtained results are shown in FIG. As is clear from FIG. 6, the emission time at which the initial luminance is reduced by half is found to be about 2 to 5 times longer in this example than in the comparative example, and the life characteristics of this example are excellent. It was confirmed.

(実施例2) 発光層4には、緑色発光(発光ピーク波長λ=550nm)
のZnS:3wt%TbF3(膜厚600nm)を用い、その他は実施例
1と同じ構成の透過型の薄膜EL素子を作製した。なお、
前面絶縁層3は発光層4の発光ピーク波長の550nmに対
して反射減少させるように(1)式に基づいて、前面低
屈折率絶縁層32の膜厚を95nm、前面高屈折率絶縁層31の
膜厚を200nmとし、さらに背面絶縁層5は反射増加させ
るように(2)式に基づいて、背面低屈折率絶縁層51を
190nmとし、背面高屈折率絶縁層52の膜厚を190nmとし
た。
(Example 2) The light emitting layer 4 emits green light (emission peak wavelength λ = 550 nm).
ZnS: 3 wt% TbF 3 (thickness: 600 nm) was used, and a transmissive thin-film EL element having the same structure as in Example 1 was manufactured. In addition,
The front surface insulating layer 3 has a thickness of the front low refractive index insulating layer 32 of 95 nm and a front high refractive index insulating layer 31 based on the equation (1) so as to reflect and reduce the emission peak wavelength of 550 nm of the light emitting layer 4. Is 200 nm, and the back surface insulating layer 5 has a back surface low refractive index insulating layer 51 based on the formula (2) so as to increase reflection.
The thickness of the back high-refractive-index insulating layer 52 was 190 nm.

作製した本実施例の薄膜EL素子に電圧を印加して発光さ
せ、前面絶縁層3および背面絶縁層5における発光層か
らの光の波長と反射率の関係を測定したところ、第3図
(a)および第3図(b)に示すような結果を得た。第
3図(a)は前面絶縁層に入射する発光層からの光の波
長と反射率を示すが、ピーク波長λの550nmにおいて反
射率が最小を示していることが確認できた。また、第3
図(b)は背面絶縁層に入射する発光層からの光の波長
と反射率を示すが、ピーク波長λの550nmにおいて反射
率が最大を示していることが確認できた。
A voltage was applied to the produced thin film EL element of this example to cause it to emit light, and the relationship between the wavelength of light from the light emitting layers in the front insulating layer 3 and the back insulating layer 5 and the reflectance was measured. ) And the results shown in FIG. 3 (b) were obtained. FIG. 3 (a) shows the wavelength and reflectance of light from the light emitting layer incident on the front insulating layer, and it was confirmed that the reflectance was minimum at the peak wavelength λ of 550 nm. Also, the third
FIG. 6B shows the wavelength and the reflectance of the light from the light emitting layer incident on the back insulating layer, and it was confirmed that the reflectance was maximum at the peak wavelength λ of 550 nm.

次に、実施例1と同様に、駆動電圧による輝度の変化を
測定したところ、実施例1と同様に本実施例は比較例に
くらべて輝度が優れ駆動電圧が低くて済むことが確認さ
れた。さらに、実施例1と同様の方法で寿命特性を測定
したところ、初期輝度が半減する発光時間は、実施例1
と同様に本実施例は比較例と比較して、約2〜5倍長い
ことが判明し、本実施例の寿命特性が優れていることが
確認された。
Next, when the change in the luminance due to the driving voltage was measured in the same manner as in Example 1, it was confirmed that, as in Example 1, the present example had better luminance and a lower driving voltage than the comparative example. . Furthermore, when the life characteristics were measured by the same method as in Example 1, the emission time at which the initial luminance was reduced to half was found to be in Example 1.
Similarly, it was found that this example is about 2 to 5 times longer than the comparative example, and it was confirmed that the life characteristics of this example are excellent.

(実施例3) 発光層4には、赤色発光(発光ピーク波長λ=610nm)
のCaS:0.1wt%Eu(膜厚600nm)を用い、その他は実施例
1と同じ構成の透過型の薄膜EL素子を作製した。なお、
前面絶縁層3は発光層4の発光ピーク波長の610nmに対
して反射減少させるように(1)式に基づいて、前面低
屈折率絶縁層32の膜厚を105nm、前面高屈折率絶縁層31
の膜厚を200nmとし、さらに背面絶縁層5は反射増加さ
せるように(2)式に基づいて、背面低屈折率絶縁層51
を210nmとし、背面高屈折率絶縁層52の膜厚を210nmとし
た。
Example 3 The light emitting layer 4 emits red light (emission peak wavelength λ = 610 nm).
Using CaS: 0.1 wt% Eu (film thickness 600 nm), a transmissive thin film EL device having the same structure as in Example 1 was manufactured. In addition,
The front surface insulating layer 3 has a film thickness of the front low refractive index insulating layer 32 of 105 nm and a front high refractive index insulating layer 31 based on the equation (1) so as to reflect and reduce the emission peak wavelength of 610 nm of the light emitting layer 4.
Of the rear low-refractive-index insulating layer 51 based on the formula (2) so that the back-side insulating layer 5 increases reflection.
Was 210 nm, and the film thickness of the back high-refractive-index insulating layer 52 was 210 nm.

作製した本実施例の薄膜EL素子に電圧を印加して発光さ
せ、前面絶縁層3および背面絶縁層5における発光層か
らの光の波長と反射率の関係を測定したところ、第4図
(a)および第4図(b)に示すような結果を得た。第
4図(a)は前面絶縁層に入射する発光層からの光の波
長と反射率を示すが、ピーク波長λの610nmにおいて反
射率が最小を示していることが確認できた。また、第4
図(b)は背面絶縁層に入射する発光層からの光の波長
と反射率を示すが、ピーク波長λの610nmにおいて反射
率が最大を示していることが確認できた。
A voltage was applied to the fabricated thin film EL device of this example to cause it to emit light, and the relationship between the wavelength of light from the light emitting layers in the front insulating layer 3 and the back insulating layer 5 and the reflectance was measured. ) And the results shown in FIG. 4 (b) were obtained. FIG. 4 (a) shows the wavelength and reflectance of the light from the light emitting layer incident on the front insulating layer, and it was confirmed that the reflectance was minimum at the peak wavelength λ of 610 nm. Also, the fourth
FIG. 6B shows the wavelength and the reflectance of the light from the light emitting layer incident on the back insulating layer, and it was confirmed that the reflectance was maximum at the peak wavelength λ of 610 nm.

次に、実施例1と同様に、駆動電圧による輝度の変化を
測定したところ、実施例1と同様に本実施例は比較例に
くらべて輝度が優れ駆動電圧が低くて済むことが確認さ
れた。さらに、実施例1と同様の方法で寿命特性を測定
したところ、初期輝度が半減する発光時間は、実施例1
と同様に本実施例は比較例と比較して、約2〜5倍長い
ことが判明し、本実施例の寿命特性が優れていることが
確認された。
Next, when the change in the luminance due to the driving voltage was measured in the same manner as in Example 1, it was confirmed that, as in Example 1, the present example had better luminance and a lower driving voltage than the comparative example. . Furthermore, when the life characteristics were measured by the same method as in Example 1, the emission time at which the initial luminance was reduced to half was found to be in Example 1.
Similarly, it was found that this example is about 2 to 5 times longer than the comparative example, and it was confirmed that the life characteristics of this example are excellent.

[考案の効果] 本考案は以上詳述したように、発光層を挟む前面絶縁層
および背面絶縁層をそれぞれ低屈折率層と高屈折率層よ
りなる2層以上の光学多層膜とすると共に、発光層の発
光ピーク波長と絶縁層の屈折率に合わせて絶縁層の膜厚
を規制することにより、前面絶縁層においては発光層の
発光ピーク波長を選択的に反射低減し、背面絶縁層にお
いては発光層の発光ピーク波長を選択的に反射増加させ
るものであって、従来の透過型薄膜EL素子に比較して、
輝度を著しく向上させることができる。なお、本考案は
透過型の薄膜EL素子に適用すると特に効果のあるもので
あるが、Al膜を背面電極層に用いた通常の反射型の薄膜
EL素子に適用しても効果的である。また、本考案の薄膜
EL素子は、同一輝度を得るために、従来の素子よりも印
加電圧が低くて済むので、素子への負担が軽減され、初
期輝度が半減する発光時間で表される寿命特性が著しく
向上する。
[Advantages of the Invention] As described in detail above, the present invention provides the front insulating layer and the back insulating layer sandwiching the light emitting layer with two or more optical multilayer films each including a low refractive index layer and a high refractive index layer. By limiting the thickness of the insulating layer according to the emission peak wavelength of the light emitting layer and the refractive index of the insulating layer, the emission peak wavelength of the light emitting layer is selectively reflected and reduced in the front insulating layer, and the back insulating layer is reduced. This is to selectively increase the emission peak wavelength of the light emitting layer by reflection, and compared with the conventional transmissive thin film EL element,
The brightness can be significantly improved. Although the present invention is particularly effective when applied to a transmissive thin film EL element, it is an ordinary reflective thin film using an Al film as a back electrode layer.
It is also effective when applied to EL devices. The thin film of the present invention
In order to obtain the same brightness, the EL device requires a lower applied voltage than the conventional device, so that the burden on the device is reduced and the life characteristics represented by the emission time at which the initial brightness is reduced by half are significantly improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の薄膜EL素子の部分断面図、第2図
(a)および(b)は実施例1における前面絶縁層およ
び背面絶縁層に入射する発光層からの光の波長と反射率
の関係を示す線図、第3図(a)および(b)は実施例
2における前面絶縁層および背面絶縁層に入射する発光
層からの光の波長と反射率の関係を示す線図、第4図
(a)および(b)は実施例3における前面絶縁層およ
び背面絶縁層に入射する発光層からの光の波長と反射率
の関係を示す線図、第5図は駆動電圧による輝度の変化
を示す線図、第6図は発光時間に対する輝度の変化を示
す線図、第7図は従来の薄膜EL素子の断面図である。 1……基板、2……前面電極層、3……前面絶縁層、31
……前面高屈折率絶縁層、32……前面低屈折率絶縁層、
4……発光層、5……背面絶縁層、51……背面低屈折率
絶縁層、52……背面高屈折率絶縁層、6……背面電極層
FIG. 1 is a partial cross-sectional view of a thin film EL device of the present invention, and FIGS. 2 (a) and 2 (b) are wavelengths and reflectances of light from the light emitting layers incident on the front insulating layer and the back insulating layer in Example 1. 3 (a) and 3 (b) are diagrams showing the relationship between the wavelength of light from the light emitting layer incident on the front insulating layer and the back insulating layer and the reflectance in Example 2. 4 (a) and 4 (b) are diagrams showing the relationship between the wavelength and the reflectance of the light from the light emitting layer incident on the front insulating layer and the back insulating layer in Example 3, and FIG. FIG. 6 is a diagram showing changes, FIG. 6 is a diagram showing changes in luminance with respect to light emission time, and FIG. 7 is a sectional view of a conventional thin film EL element. 1 ... Substrate, 2 ... Front electrode layer, 3 ... Front insulating layer, 31
...... Front high refractive index insulating layer, 32 …… Front low refractive index insulating layer,
4 ... Emitting layer, 5 ... Back insulating layer, 51 ... Back low refractive index insulating layer, 52 ... Back high refractive index insulating layer, 6 ... Back electrode layer

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】透明な基板と、前記基板の裏面に形成され
た透明な前面電極層と、低屈折率層と高屈折率層の2層
の屈折率の異なる絶縁層からなり前記高屈折率層が前記
前面電極側になるように前記前面電極層の上に形成され
た前面絶縁層と、前記前面絶縁層の上に形成された発光
層と、低屈折率層と高屈折率層の2層屈折率の異なる絶
縁層からなり前記低屈折率層が前記発光層側になるよう
に前記発光層の上に形成された背面絶縁層と、前記背面
絶縁層の上に形成された背面電極層とからなり、光が入
射する媒体となる前記発光層をn0、光が透過する薄膜と
なる前記前面または背面の低屈折率絶縁層の屈折率を
n、光が透過する薄膜となる前記前面または背面の高屈
折率絶縁層の屈折率をns、としたときn0>n<nsであっ
て、光が透過する薄膜となる前記前面および背面の低屈
折率絶縁層の屈折率をn0、光が透過する薄膜となる前記
前面または背面の高屈折率絶縁層の屈折率をn、光が透
過する薄膜を支持する基板となる前記前面または背面電
極層の屈折率をns、としたときn0<n>nsであって、光
が透過する薄膜となる前記前面または背面の低屈折率ま
たは高屈折率絶縁層の膜厚をd、前記発光層の発光ピー
ク波長をλとした場合、視認側の各絶縁層は次式 n・d=(2N−1)λ/4 視認側と反対側の各絶縁層は次式 n・d=(2N)λ/4 (ただし、Nは自然数) を満足することを特徴とする薄膜EL素子。
1. A high refractive index comprising a transparent substrate, a transparent front electrode layer formed on the back surface of the substrate, and two insulating layers having different refractive indices, a low refractive index layer and a high refractive index layer. A front insulating layer formed on the front electrode layer so that the layer is on the front electrode side; a light emitting layer formed on the front insulating layer; and a low refractive index layer and a high refractive index layer. A back insulating layer formed on the light emitting layer so that the low refractive index layer is on the light emitting layer side, and a back electrode layer formed on the back insulating layer. consists of a, the front of the light emitting layer in which light as a medium which enters n 0, becomes the refractive index of the light becomes a thin film that transmits the front or back of the low refractive index insulating layer n, a thin film through which light is transmitted or ns the refractive index of the back of the high refractive index insulating layer, and the time a n 0> n <ns, thin to transmit light N 0 the refractive index of the front and rear of the low refractive index insulating layer becomes, the refractive index of the light becomes a thin film that transmits the front or back of the high refractive index insulating layer n, light support the thin film that transmits When the refractive index of the front or back electrode layer serving as a substrate is ns, n 0 <n> ns, and the refractive index of the low or high refractive index insulating layer of the front or back is a thin film through which light is transmitted. When the film thickness is d and the emission peak wavelength of the light emitting layer is λ, each insulating layer on the viewing side has the following formula: n · d = (2N-1) λ / 4 A thin film EL device characterized by satisfying the expression n · d = (2N) λ / 4 (N is a natural number).
JP13155089U 1989-11-10 1989-11-10 Thin film EL device Expired - Fee Related JPH0733433Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13155089U JPH0733433Y2 (en) 1989-11-10 1989-11-10 Thin film EL device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13155089U JPH0733433Y2 (en) 1989-11-10 1989-11-10 Thin film EL device

Publications (2)

Publication Number Publication Date
JPH0369899U JPH0369899U (en) 1991-07-11
JPH0733433Y2 true JPH0733433Y2 (en) 1995-07-31

Family

ID=31679051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13155089U Expired - Fee Related JPH0733433Y2 (en) 1989-11-10 1989-11-10 Thin film EL device

Country Status (1)

Country Link
JP (1) JPH0733433Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3274527B2 (en) * 1992-09-22 2002-04-15 株式会社日立製作所 Organic light emitting device and its substrate
JP5079064B2 (en) * 2010-08-25 2012-11-21 悦子 大池 Cat toilet

Also Published As

Publication number Publication date
JPH0369899U (en) 1991-07-11

Similar Documents

Publication Publication Date Title
JP4951130B2 (en) ORGANIC LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF
JP2797883B2 (en) Multicolor light emitting device and its substrate
Singh et al. Improving the contrast ratio of OLED displays: An analysis of various techniques
JP4779171B2 (en) Multiple wavelength light emitting device and electronic device
JP4769068B2 (en) ORGANIC LIGHT EMITTING DEVICE AND MANUFACTURING METHOD THEREOF
JP2553696B2 (en) Multicolor light emitting thin film electroluminescent device
KR100848347B1 (en) Organic light emitting device
US9136504B2 (en) Organic electroluminescent device
US20090267490A1 (en) Transparent light-emitting component
JP2008521165A (en) Organic light emitting device, method for manufacturing the same, and array comprising a plurality of organic light emitting devices
KR20020034165A (en) Organic electroluminescent device
US20060284170A1 (en) Transparent Light-Emitting Component
US20060267485A1 (en) Organic light emitting diode (oled) with contrast enhancement features
US4590128A (en) Thin film EL element
CA2352390A1 (en) Contrast enhancement apparatus
JPH0733433Y2 (en) Thin film EL device
KR100528916B1 (en) Rear type electroluminescence device
JP4990587B2 (en) Light emitting device and manufacturing method thereof
JP4515274B2 (en) Inorganic light emitting display
JPH0256892A (en) Electroluminescence panel
JP2689661B2 (en) Thin film electroluminescent device including optical interference filter
CN108987604B (en) Red light organic electroluminescent device
JPH0428197A (en) End-face radiating type electroluminescent element and its driving method
KR100326464B1 (en) Electroluminescent display device
CN110707233B (en) Display panel and display device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees