JPH07333382A - Core monitoring device for reactor - Google Patents

Core monitoring device for reactor

Info

Publication number
JPH07333382A
JPH07333382A JP6127313A JP12731394A JPH07333382A JP H07333382 A JPH07333382 A JP H07333382A JP 6127313 A JP6127313 A JP 6127313A JP 12731394 A JP12731394 A JP 12731394A JP H07333382 A JPH07333382 A JP H07333382A
Authority
JP
Japan
Prior art keywords
coolant
detector
neutron flux
fast neutron
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6127313A
Other languages
Japanese (ja)
Inventor
Takanobu Ishii
孝信 石井
Hiroyuki Handa
博之 半田
Katsumi Hayashi
克己 林
Hitoshi Narita
均 成田
Takaaki Shimozaki
敬明 下崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP6127313A priority Critical patent/JPH07333382A/en
Publication of JPH07333382A publication Critical patent/JPH07333382A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To obtain the method for easily detecting the event increasing the void fraction in the coolant in a part of channels in case of a flow blockage events. CONSTITUTION:With a fast neutron flux detector 11 placed in a guide tube 1 and an output calibration detector 12 placed in detection lead pipe 10 for output calibration, the fluctuation in the fast neutron flux level due to void fraction variation in the coolant generated from fuel element 1 can be detected. By this, such a coolant flow lowering event due to flow blockage can be detected early.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧力管型原子炉におい
て、流路閉塞事象等の極く一部のチャンネルの冷却材ボ
イド率が急増する事象を確実に、簡便に検出可能な検出
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure tube type reactor capable of surely and easily detecting an event such as a flow path clogging event in which the coolant void ratio of a very small number of channels rapidly increases. Regarding

【0002】[0002]

【従来の技術】圧力管型原子炉における放射線レベルを
計測して炉心状態を監視する装置の従来例を図4に示
す。燃料要素部1は圧力管2に囲まれさらにカランドリ
ア管3に囲まれている。カランドリア管3はカランドリ
アタンク5を貫通している。この燃料要素部1から発生
する放射線レベル(熱中性子束)を計測して炉出力の監
視を行うために熱中性子束検出器6を設けている。熱中
性子束検出器6は案内管7に囲まれ、信号ケーブル8で
検出回路装置に信号を伝える。また、出力状態の校正を
行うために出力校正用検出器9が出力校正用検出器導管
10内に設けられている。
2. Description of the Related Art FIG. 4 shows a conventional example of an apparatus for monitoring a core state by measuring a radiation level in a pressure tube reactor. The fuel element part 1 is surrounded by a pressure pipe 2 and further by a calandria pipe 3. The calandria pipe 3 penetrates the calandria tank 5. A thermal neutron flux detector 6 is provided to measure the radiation level (thermal neutron flux) generated from the fuel element unit 1 and monitor the reactor output. The thermal neutron flux detector 6 is surrounded by a guide tube 7, and a signal cable 8 transmits a signal to a detection circuit device. An output calibration detector 9 is provided in the output calibration detector conduit 10 for calibrating the output state.

【0003】[0003]

【発明が解決しようとする課題】圧力管型原子炉では独
立した多数のチャンネルにより炉心が構成されており、
1チャンネルが流路閉塞するような局所的な冷却材流量
低下事象を検出することにより、原子炉の信頼性が向上
できる。
In a pressure tube reactor, the core is composed of a large number of independent channels,
The reliability of the reactor can be improved by detecting a local coolant flow rate drop event in which one channel is blocked.

【0004】この流量低下事象を検出する方法として、
流量の低下によって冷却材のボイド率が上昇し、冷却材
の実効的な密度が低下することにより、圧力管まわりの
放射線レベルが変動するが、この変動を検出することに
より冷却材の流量低下を感知することが可能である。
As a method of detecting this flow rate decrease event,
A decrease in the flow rate raises the void ratio of the coolant and a decrease in the effective density of the coolant, which changes the radiation level around the pressure tube.By detecting this variation, the flow rate of the coolant can be decreased. It is possible to sense.

【0005】この放射線レベルを計測して炉心状態を監
視する方法として、従来例があるが、この場合、熱中性
子束を計測しており、その熱中性子束は圧力管外の減速
材の中性子減速効果に起因するものが支配的である為、
冷却材の流量変動に対する熱中性子束レベルの変動の感
度が極めて小さく、1チャンネルが流路閉塞するような
局所的な冷却材流量低下事象に対しては、検出器として
の信頼性は低いものであった。
As a method of measuring the radiation level and monitoring the core state, there is a conventional example. In this case, the thermal neutron flux is measured, and the thermal neutron flux is the neutron moderator of the moderator outside the pressure tube. Because the ones that are caused by the effects are dominant,
The sensitivity of the fluctuation of the thermal neutron flux level to the fluctuation of the coolant flow rate is extremely low, and the reliability of the detector is low for the local coolant flow rate drop event in which one channel is blocked. there were.

【0006】本発明の目的は、局所的な冷却材流量低下
事象を、冷却材のボイド率の上昇に伴なう高速中性子束
の増加を検知し、確実に検出可能な高信頼性の方法を提
供することにある。
An object of the present invention is to provide a highly reliable method capable of reliably detecting a local coolant flow rate drop event by detecting an increase in fast neutron flux associated with an increase in void ratio of the coolant. To provide.

【0007】[0007]

【課題を解決するための手段】流路閉塞事象等によって
冷却材ボイド率が上昇し、冷却材の実効密度が低下し、
冷却材の遮蔽効果が低下する為、圧力管まわりの高速中
性子束が増加する。この高速中性子束の増加を、従来の
中性子検出器案内管内に設置した高速中性子束検出器に
より検出することにより、冷却材のボイド率の上昇を検
知する。
[Means for solving the problems] The void ratio of the coolant is increased due to a flow path clogging event and the effective density of the coolant is reduced,
Since the shielding effect of the coolant decreases, the fast neutron flux around the pressure tube increases. By detecting this increase in fast neutron flux with a fast neutron flux detector installed in a conventional neutron detector guide tube, an increase in the void fraction of the coolant is detected.

【0008】[0008]

【作用】図3に、冷却材(軽水)の中性子透過距離に対
する高速中性子束の相対的な減衰分布を、冷却材のボイ
ド率をパラメータとして示す。同図より、冷却材のボイ
ド率が上昇するにつれて、冷却材の高速中性子に対する
遮蔽効果が低下することがわかる。通常運転時における
圧力管型原子炉の圧力管内の冷却材ボイド率は0〜70
%程度の間で分布している。また、流路閉塞事象等によ
り極端に冷却材流量が低下した場合、ボイド率はほぼ1
00%に達する。高速中性子は、圧力管内の燃料領域よ
り発生し、その燃料領域を取り囲む冷却材層を透過して
圧力管外側に漏えいする。したがって、圧力管外側の高
速中性子束レベルは、冷却材ボイド率の低下によって上
昇し、その上昇程度は、図3より、例えば、平均ボイド
率30%から100%に達した場合、冷却材の中性子透
過距離が10cm程度で高速中性子束が約2倍となり、有
為な検出が可能である。
FIG. 3 shows the relative attenuation distribution of the fast neutron flux with respect to the neutron transmission distance of the coolant (light water), using the void ratio of the coolant as a parameter. From the figure, it can be seen that as the void fraction of the coolant increases, the shielding effect of the coolant on fast neutrons decreases. The coolant void fraction in the pressure tube of the pressure tube reactor during normal operation is 0 to 70.
It is distributed between about%. In addition, when the coolant flow rate is extremely reduced due to a flow path blockage event, the void ratio is almost 1
Reach 00%. Fast neutrons are generated in the fuel region inside the pressure tube, penetrate the coolant layer surrounding the fuel region, and leak to the outside of the pressure tube. Therefore, the fast neutron flux level on the outside of the pressure tube rises due to the decrease in the coolant void fraction, and the increase degree is from FIG. 3, for example, when the average void fraction reaches 30% to 100%, With a penetration distance of about 10 cm, the fast neutron flux doubles, enabling significant detection.

【0009】また、この高速中性子束検出器の案内管を
従来検出器の案内管と共有することにより、設備の増加
が抑制でき、メンテナンスが容易となる。
Further, by sharing the guide tube of this fast neutron flux detector with the guide tube of the conventional detector, the increase in equipment can be suppressed and the maintenance becomes easy.

【0010】[0010]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0011】図1は本発明の実施例の一つである。これ
は従来例(図4参照)の案内管7の中に高速中性子束検
出器11を、出力校正用検出器導管10内に出力校正用
検出器12を設置することによって構成されている。出
力校正用検出器12によって、通常運転時の冷却材のボ
イド率に対応する中性子束レベルを設定し、次に高速中
性子束検出器11で高速中性子束レベルを監視し、その
高速中性子束レベルの変動によって冷却材のボイド率の
変化を検出する。両検出器は、冷却材のボイド率の変化
を同検出器位置の中性子束レベルの変化として捕えるの
に必要な中性子の冷却材透過距離を確保するために、燃
料要素部1の上方、即ち、冷却材の流れの下流側に設置
されている。冷却材のボイド率の変化は初期には冷却材
の流れに沿って伝播するため、この位置に設置すること
により、冷却材のボイド率の変化が生じた後に短時間に
検出が可能となる。
FIG. 1 shows one embodiment of the present invention. This is configured by installing a fast neutron flux detector 11 in a guide tube 7 of a conventional example (see FIG. 4) and an output calibration detector 12 in an output calibration detector conduit 10. The neutron flux level corresponding to the void fraction of the coolant during normal operation is set by the output calibration detector 12, then the fast neutron flux level is monitored by the fast neutron flux detector 11, and the fast neutron flux level The change in the void ratio of the coolant is detected by the change. In order to secure the neutron coolant penetration distance necessary to capture the change in the void fraction of the coolant as the change in the neutron flux level at the detector position, both detectors are located above the fuel element portion 1, that is, It is installed downstream of the coolant flow. Since the change in the void rate of the coolant propagates along the flow of the coolant in the initial stage, the installation at this position makes it possible to detect the change in the void rate of the coolant in a short time.

【0012】図2は、本発明の他の実施例である。これ
は前記の実施例(図1参照)の高速中性子束検出器11
及び出力校正検出器12を燃料要素部1よりも下方レベ
ル、即ち、冷却材の流れで上流側の位置に設置したもの
である。通常時には、燃料要素部1よりも上流側の冷却
材のボイド率は低く、事象前後のボイド率の差が大きく
なるため、同位置に検出器を設置した場合の中性子束レ
ベルの変動が大きくなる。したがって、検出器の検出精
度に対する要求条件が緩和され装置の信頼性が向上する
利点がある。
FIG. 2 shows another embodiment of the present invention. This is the fast neutron flux detector 11 of the above embodiment (see FIG. 1).
Also, the output calibration detector 12 is installed at a lower level than the fuel element unit 1, that is, at a position upstream of the flow of the coolant. At normal times, the void ratio of the coolant upstream of the fuel element part 1 is low, and the difference in void ratio before and after the event becomes large, so the fluctuation of the neutron flux level when the detector is installed at the same position becomes large. . Therefore, there is an advantage that the requirement for the detection accuracy of the detector is relaxed and the reliability of the device is improved.

【0013】[0013]

【発明の効果】本発明によれば圧力管型原子炉の流路閉
塞事象等の1部のチャンネルの冷却材のボイド率が上昇
する現象を、容易に検出可能である。また、高速中性子
検出器の案内管を従来検出器の案内管と共有することに
より、設備の増加が抑制でき、メンテナンスが容易とな
る。
EFFECTS OF THE INVENTION According to the present invention, it is possible to easily detect a phenomenon in which the void ratio of the coolant in a part of the channel increases, such as a flow path clogging event in a pressure tube reactor. Further, by sharing the guide tube of the fast neutron detector with the guide tube of the conventional detector, increase in equipment can be suppressed and maintenance becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の高速中性子束検出器を冷却
材の流れの下流側に設置した断面図。
FIG. 1 is a cross-sectional view in which a fast neutron flux detector according to an embodiment of the present invention is installed on the downstream side of a coolant flow.

【図2】本発明の一実施例であり、高速中性子束検出器
を冷却材の流れの上流側に設置した断面図。
FIG. 2 is a cross-sectional view showing an embodiment of the present invention in which a fast neutron flux detector is installed on the upstream side of a coolant flow.

【図3】冷却材の中性子透過距離に対する高速中性子束
の相対的な減衰分布図。
FIG. 3 is a relative attenuation distribution map of fast neutron flux with respect to a neutron transmission distance of a coolant.

【図4】炉心状態を監視する装置の従来例の断面図。FIG. 4 is a cross-sectional view of a conventional example of a device for monitoring a core state.

【符号の説明】[Explanation of symbols]

1…燃料要素部、2…圧力管、3…カランドリア管、4
…冷却材、5…カランドリアタンク、6…熱中性子束検
出器、7…案内管、8…信号ケーブル、9…出力校正用
検出器、10…出力校正用検出器導管、11…高速中性
子束検出器、12…出力校正用検出器。
1 ... Fuel element part, 2 ... Pressure tube, 3 ... Calandria tube, 4
... Coolant, 5 ... Calandria tank, 6 ... Thermal neutron flux detector, 7 ... Guide tube, 8 ... Signal cable, 9 ... Output calibration detector, 10 ... Output calibration detector conduit, 11 ... Fast neutron flux Detector, 12 ... Detector for output calibration.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 克己 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 成田 均 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 (72)発明者 下崎 敬明 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsumi Hayashi 3-2-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Engineering Co., Ltd. (72) Inventor Hitoshi Narita 2-3-2, Saiwaicho, Hitachi-shi, Ibaraki No. 1 within Hitachi Engineering Co., Ltd. (72) Inventor Noriaki Shimozaki 3-2-1, 3-chome, Saiwaicho, Hitachi City, Ibaraki Within Hitachi Engineering Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料要素部と前記燃料要素部を冷却する為
の冷却材を内蔵する複数の圧力管と、前記圧力管の相互
間に設けられた中性子検出器案内管とからなる圧力管型
原子炉において、前記中性子検出器案内管内に高速中性
子検出器を設置することを特徴とする原子炉の炉心監視
装置。
1. A pressure tube type comprising a fuel element section, a plurality of pressure tubes containing a coolant for cooling the fuel element section, and a neutron detector guide tube provided between the pressure tubes. In the nuclear reactor, a fast neutron detector is installed in the neutron detector guide tube, and a reactor core monitoring device for a nuclear reactor.
JP6127313A 1994-06-09 1994-06-09 Core monitoring device for reactor Pending JPH07333382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6127313A JPH07333382A (en) 1994-06-09 1994-06-09 Core monitoring device for reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6127313A JPH07333382A (en) 1994-06-09 1994-06-09 Core monitoring device for reactor

Publications (1)

Publication Number Publication Date
JPH07333382A true JPH07333382A (en) 1995-12-22

Family

ID=14956859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6127313A Pending JPH07333382A (en) 1994-06-09 1994-06-09 Core monitoring device for reactor

Country Status (1)

Country Link
JP (1) JPH07333382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100856537B1 (en) * 2007-05-01 2008-09-04 한국전력공사 Diagnosis for flow hole blockage of steam generator using wide range level increasing rate
KR100882195B1 (en) * 2007-08-14 2009-02-06 한국원자력연구원 Guide thimble of the dual tube type structure for nuclear fuel assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100856537B1 (en) * 2007-05-01 2008-09-04 한국전력공사 Diagnosis for flow hole blockage of steam generator using wide range level increasing rate
KR100882195B1 (en) * 2007-08-14 2009-02-06 한국원자력연구원 Guide thimble of the dual tube type structure for nuclear fuel assembly

Similar Documents

Publication Publication Date Title
US20220084703A1 (en) Method and system to detect and locate the in-core position of fuel bundles with cladding perforations in candu-style nuclear reactors
JP2007064635A (en) Monitoring device and monitoring method for nuclear reactor state
JPH0631791B2 (en) Fixed in-reactor calibrator for thermal neutron flux detectors in boiling water reactors.
US4639349A (en) Non-invasive liquid level and density gauge for nuclear power reactor pressure vessels
US6345080B1 (en) Measurement device for determining boron concentration
JPH07333382A (en) Core monitoring device for reactor
JP6523877B2 (en) Reactor instrumentation system and reactor
US4649015A (en) Monitoring system for a liquid-cooled nuclear fission reactor
US5956380A (en) Method and apparatus for determining neutron flux density, in particular in a nuclear power facility
EP3467843B1 (en) Reactor output monitoring device
KR101178707B1 (en) Boron Dilution Accident Alarm System using CUSUMCumulative Sum Control Chart and Method Thereof
JP2010048752A (en) Radiation monitor
Perry et al. The CEBAF beam loss sensors
WO1998057194A1 (en) Neutron modulation-activation for fissile material flow velocity and fissile content measurement
JPS5857719B2 (en) Abnormality detection device for neutron measurement equipment
US3393126A (en) Testing for fuel element sheathing failures in nuclear reactors
JP4052618B2 (en) In-reactor monitoring device
GB2157879A (en) Nuclear reactor core monitoring
JPS5857720B2 (en) Insulation resistance abnormality test device for neutron measurement equipment
JPS6138830B2 (en)
JP3079447B2 (en) Radiation detector
Macrae Outline of the CRBRP Reactor Instrumentation System
JP2022184277A (en) radiation monitor
JPH1184065A (en) Reactor output measuring device
CN113724904A (en) Method for measuring power of reactor core of pressurized water reactor